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Abstract

Paleorecords of dust deposition can be used to evaluate global iron connections under
conditions different from those today. Dust production and deposition has co-varied
with ocean paleoproductivity, pCO2, and climate over glacial-interglacial cycles, and
in this paper we review the current understanding and highlight research needs with5

respect to paleorecords of global iron connections. These records, which include data
from terrestrial (loess) deposits, marine sediments, and ice cores, suggest that average
eolian deposition rates were approximately 2–20 times higher during glacial periods
than during interglacials. Enhanced dust fluxes to the oceans during glacial times,
particularly to the main high-nutrient/low-chlorophyll (HNLC) areas of the open ocean10

(i.e., the Pacific subarctic, the equatorial Pacific, and the Southern Ocean), may have
“fertilized” marine biota, thereby enhancing ocean productivity (1–2 fold) and driving
atmospheric CO2 lower. Current models yield variable results, however, with glacial-
interglacial changes in dust fluxes changing atmospheric pCO2 by the equivalent of
5 to >50% of the total glacial-interglacial change of 80–100 ppm. Positive correlations15

among Asian dust, ocean productivity and atmospheric CO2 in last 130 kyr, 1200 yr and
50 yr indicate that eolian iron has played an important role in global biogeochemical
cycles of the past. A simple calculation suggests that one-tenth to one-third of the
global change in CO2 due to dust-supplied Fe could be ascribed to variations in the dust
supply flux from Asia and its associated effects on productivity in the Pacific Ocean.20

1 Introduction

The relevance of the “iron hypothesis” for glacial-interglacial control of the concentration
of atmospheric CO2 stems from the premise that biological productivity in some large
portions of the world’s oceans is limited by an insufficient supply of the micro-nutrient
iron (Martin, 1990). In these waters, the standing stocks of phytoplankton are relatively25

low despite the availability of major nutrients (nitrate, phosphate and silicate); this has
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lead to their designation as “high nitrate low chlorophyll” (HNLC) regions. Rather it is a
limitation in the supply of iron to the biota in the HNLC regions that prevents the biolog-
ical pump from working at its maximum efficiency (i.e. completely using the available
NO−

3 Coale et al., 1996). Any reduction in dust/iron supply might therefore intensify
the Fe limitation where it already exists and possibly cause Fe-based limitation where5

it was previously non-limiting. One important effect of this would be a reduction in the
amount of CO2 taken up by the ocean.

Paleorecords of dust in continental sediments, marine sediments and ice cores can
be used to verify the existence of global iron connections (GIC) (Jickells et al., 2005)
and to evaluate the GICs under conditions different from those today (Martin et al.,10

1994; Kumar et al., 1995; Boyd et al., 2000, 2004; Watson et al., 2000; Johnson et
al., 2003; Röthlisberger et al., 2004). That is, the evaluation of past GICs provides a
historical analog for present-day studies and serves as means for establishing bound-
ary conditions and validating model studies. Studies of the Vostok ice core (Petit et al.,
1999) for example, have demonstrated that close connections existed between the at-15

mospheric CO2 concentrations and atmospheric temperature over Antarctica over the
last four glacial cycles. The atmospheric CO2 content is anti-correlated with the dust
content in Vostok core, with relatively high atmospheric pCO2 (ca. 280 ppm) during in-
terglacials, and low atmospheric pCO2 (ca. 190 ppm) during the most intense glacial
periods. This suggests that a causal relationship between dust fluxes and pCO2 has20

acted over glacial time-scales.
The connections between dust supplies to the ocean and atmospheric CO2 are nei-

ther simple nor direct, however, and there are two main obstacles complicating the in-
terpretation of the relationships between dust fluxes and pCO2 based on paleorecords.
First, in the case of the Vostok ice core, the dust record reflects dust emitted from25

the Patagonian deserts of Argentina (Petit et al., 1999), and more generally sedimen-
tary records from specific areas do not necessarily represent variations in global dust
fluxes. Second, while increased dust inputs to the ocean may have primed the bio-
logical pump thereby increasing the uptake of CO2 by the surface oceans, variations
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in paleo-productivity have not been clearly established for the various ocean basins
around the world in the past, especially not for HNLC regions.

The IGBP “Fast Track” Meeting on “Global Iron Connections” was organized largely
because the iron fertilization of the oceans is thought to have great significance in
terms of global climatic and environmental changes, in particular for regulating the low5

glacial-age atmospheric CO2 content. While details of the processes involved are still
not completely understood, the “iron hypothesis” provides a plausible mechanism for
global modification of the ocean’s productivity over geological time scales, by geologi-
cal means. This paper focuses on investigations of dust, paleoproductivity, and CO2 in
the past, and evaluates the evidence for GICs from the paleorecords covering the past10

130 kyr, 1200 yr, 50 yr.

2 Biogeochemical records for past global iron connections

Here we summarize records of dust, paleoproductivity and atmospheric CO2 as chroni-
cled in continental sediments, marine sediments and ice cores; these provide evidence
for global dust/iron connections.15

2.1 Global distribution of dust in the present and past

The natural sources of mineral dust today mainly lie in semi-arid to arid belts in the trop-
ics and subtropics (Fig. 1), with the most important source regions being the Sahara–
Sahel in northern Africa and the Gobi–Taklamakan in central Asia (Middleton, 1991;
Middleton et al., 1986; Bergametti, 1992). The amount of dust transported from the20

Sahara has been estimated at 600–700 Mt/year (d’Almeida, 1989), of which ca. 220 Mt
is deposited in the North Atlantic (Duce et al., 1991). The total emission of Asian dust is
around 500 Mt/yr (Zhang et al., 1997) of which about half dust is deposited to the north
Pacific (Prospero et al., 1989; Zhang et al., 1997). Other, less important, source areas
for dust include the Middle East (Middleton, 1986a, b; Pease et al., 1998), the northern25
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part of the Indian subcontinent (Middleton, 1986b), southern South Africa (Prospero,
1981; Prospero et al., 1981), the interior basins of the southwestern USA and the
southern High Plains (Orgill and Sehmel, 1976; Lee and Tchakerian, 1995; Bach et
al., 1996), southern South America (Ares, 1994; Buschiazzo et al., 1999) and cen-
tral Australia (Middleton, 1984; McTainsh and Pitblado, 1987; Shao and Leslie, 1997).5

Dust production and deflation can also occur under periglacial conditions in the high
latitudes (Pye, 1995; Landvik, 1998), but in today’s climate, the areas affected are of
limited extent and do not contribute significantly to the total global dust budget. Due
to the larger source regions, for dust north of the equator, ∼8 times more atmospheric
dust is produced and deposited in the northern hemisphere than in the southern hemi-10

sphere (Duce et al., 1991).
The present-day distribution of eolian dust sources is similar to those in the past,

especially those in the late Pleistocene, i.e., most dust source regions are located in
Sahara and central Asia in the northern Hemisphere. The fates of dust emitted from
these two major sources are different, however. When dust from the Sahara is lifted15

into the atmosphere, a large portion of it either is deposited in the North Atlantic or
transported far downwind, and therefore little information on dust fluxes is preserved in
continental records in Africa. In contrast, much of the eolian material emitted from the
Asian deserts is deposited in nearby downwind regions – the Chinese Loess Plateau
first, then the north Pacific, with some of the dust being transported at least as far as20

Greenland (Biscaye et al., 1997). As a result, the relatively continuous dust records
from the land, ocean, and ice cores provide a means for an integrated study of the
spatial distribution and temporal variations of Asian dust.

Large-scale changes in dust fluxes over glacial/interglacial cycles are well docu-
mented in loess deposits, ice core and sediment records from around the world. These25

records suggest that the global dust fluxes were 2–20 times higher during the last
glaciation compared with the interglacials (e.g. Petit et al., 1981; Hammer et al., 1985;
An et al., 1991; Rea, 1994). The increased dust deposition during glacial periods has
been explained by several factors, which more than likely act in combination. First, an

237

http://www.clim-past-discuss.net
http://www.clim-past-discuss.net/2/233/2006/cpd-2-233-2006-print.pdf
http://www.clim-past-discuss.net/2/233/2006/cpd-2-233-2006-discussion.html
http://www.copernicus.org/EGU/EGU.html


CPD
2, 233–265, 2006

Past global iron
connections

Z. S. An et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

EGU

increase in dust supply may have resulted from a reduction in soil moisture and veg-
etation cover, which was caused by increased aridity and an expansion of the source
regions (Rea, 1994; Petit et al., 1981). Second, an increase in wind intensities under
glacial conditions (COHMAP members, 1988) may have entrained more dust and car-
ried it farther downstream. Finally, a slowing in the rate at which the hydrological cycle5

operated could have allowed the dust particles to remain in the atmosphere longer than
when the cycling of water was more rapid (Yung et al., 1996, Andersen and Ditlevsen,
1998).

In the past two decades, loess deposits have been used to investigate the spatial-
temporal distribution of Asian dust, and these studies indicate that dust deposition10

was 2–3 times higher during glacial periods than in the interglacials (An et al., 1991;
Zhang et al., 1994). Figure 2 is the comparison of the dust flux in four loess profiles
from the Chinese Loess Plateau (CLP): (2a) is the dust flux at Potou section (35◦45′ N,
109◦25′ E) (An et al., 1991), (2b) at Heimugou section (35◦15′ N, 109◦25′ E) (Zhang
et al., 1994), (2c) at Zhaojiachuan section (35◦53′ N, 107◦58′ E) (Sun, 2000), (2d) at15

Lingtai section (35◦04′ N, 107◦39′ E). The reconstructed dust fluxes for these sites dur-
ing the interglacial period, ranged from approximately 8 to 12 g/cm2 kyr. During the
glacial period, the amount of dust flux increased 2–3 fold, varying between 30 and
45 g cm−2 kyr−1. This increase has been ascribed to changes in the aridity of the dust
source regions and the strength of Asian winter monsoon (An et al., 1991; Porter and20

An, 1995).
The sediments in large regions of the ocean floor, especially those in the deep

basins, are dominated by atmospherically-derived clay minerals. These regions thus
seem to be ideal locations for sampling dust records. In order to understand variations
in the dust flux, a sedimentary core was taken the Hess Rise located in the mid-latitude25

North Pacific under the westerly wind system. The δ18O, grain size and grain shape of
type 1 quartz suggest that this quartz is of eolian origin. Strong correlations between
Al and aerosol quartz content and mass accumulation rate (MAR) indicate that the
alumino silicate minerals in sediments from the open ocean are mainly transported by
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wind. The MAR of mineral aerosol (MARAerosol) varies from 1.6 to 7.3 g/m2/yr during the
last 200 kyr (Kawahata et al., 2000). The MARAerosol maxima occur in Oxygen Isotope
Stage (OIS) 4, the latest part of OIS 5, and the middle of OIS 6, moderate maxima
occur in early OIS 1 to 2, late OIS 3 and middle OIS 3. These maxima have been
ascribed to reduced wet scavenging of dust during transport or decreased vegetative5

cover in source regions during the summer monsoon and to strengthening of the winds
during the winter monsoon (Kawahata et al., 2000).

The quantities and characteristics of dust particles retrieved from ice cores vary
greatly with changes in climate. Higher concentrations and smaller particles are gener-
ally found for colder conditions in ice cores collected in areas far from the dust sources.10

During the last glacial period, the dust flux to the polar ice caps changed dramatically in
concert with glacial-interglacial cycles and interstadial Dansgaard-Oeschger (or D-O)
events. Records from Greenland indicate that most of these changes in dust fluxes
occur abruptly, and the changes in the magnitude of the reconstructed dust fluxes are
substantial. Dust concentrations over the last glacial cycle roughly fall into four cat-15

egories with the North GReenland Icecore Project (NGRIP) particle concentrations,
CN being ∼1×104 ml−1 during the early Holocene, ∼5×104 ml−1 during the warm in-
terstadials, ∼5×105 ml−1 during the cold stadials and ∼1×106 ml−1 for the Last Glacial
Maximum (Ruth et al., 2003). In comparison to ice cores from Greenland, Antarctic ice
cores have lower accumulation rates, and they reach further back in time. For example,20

the Vostok (Petit et al., 1999) ice core spans 420 kyrs, the Dome Fuji record 340 kyrs
(Watanabe et al., 1999), and the new EPICA Dome C record (EPICA members, 2004)
at least 740 kyrs. Dust concentrations over the past glacial cycles closely follow the cli-
matic changes depicted by variations in the stable hydrogen isotope ratio, δD. Highest
dust values are found for the cold marine isotope stages MIS 2, 4, and 6 and increases25

in dust flux for these periods are by factors, ∼25, ∼20 and ∼12 as compared with the
Holocene (Delmonte et al., 2004).
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2.2 Paleoproductivity variations in the past

During glacial times, copious dust fluxes to the ocean, particularly in the main HNLC ar-
eas of the open ocean (i.e., the Pacific subarctic, the equatorial Pacific, and the South-
ern Ocean), apparently “fertilized” marine biota and the increased biological activity
drove atmospheric CO2 lower (Martin, 1990; Berger, 1991). Over the last decade, a5

considerable body of evidence has accumulated based on paleoceanographic records
in HNLC areas documenting past changes in the strength of biological pump.

2.2.1 North Pacific

Despite the fact that this is not a typical HNLC region and there was no corresponding
evidence for changes in the Gulf of Alaska (McDonald et al., 1999), paleoceanograph-10

ical data from the mid-latitude northwestern Pacific show increases in productivity dur-
ing periods of glaciation (Kawahata et al., 2000; Kawahata, 2002). Primary productiv-
ities during the late Pleistocene, as estimated from cores S2612 and LH3166, around
35◦ N and S, respectively, in the western Pacific demonstrate that productivity maxima
occurred at late Oxygen Isotope Stage 2 (OIS 2), late Stage 4 (OIS 4) (middle Stage 415

for L3187) and late Stage 6 (OIS 6) while minima were observed at Stage 5 (Kawahata,
1999). Mass accumulation rates of organic carbon and biogenic opal also show sim-
ilar profiles in these cores. These results and paleontological evidence show that the
transition zone between subtropical and subarctic waters migrated in near synchrony
along the latitudinal transect during the last 150 kyr.20

A gravity core H3571 recovered from the eastern corner of the Hess Rise at
34◦54.25′ N and 179◦42.18′ E was analyzed to understand fluctuations in paleopro-
ductivity in the mid-latitude regions of the North Pacific (Kawahata et al., 2000). The
MAR of organic carbon (MARorganic) in that core exhibited two prominent maxima, one
in OIS 2, the other in 4, and relatively high values in mid- to late OIS 6. These au-25

thors suggested that enhanced primary productivity was most likely responsible for the
observed high burial rate of organic carbon in the sediments. Downcore geochemical

240

http://www.clim-past-discuss.net
http://www.clim-past-discuss.net/2/233/2006/cpd-2-233-2006-print.pdf
http://www.clim-past-discuss.net/2/233/2006/cpd-2-233-2006-discussion.html
http://www.copernicus.org/EGU/EGU.html


CPD
2, 233–265, 2006

Past global iron
connections

Z. S. An et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

EGU

data from Site 887 (54◦21.92′ N, 148◦26.78′ W) indicate that exceptional episodic in-
creases in primary production occurred throughout the Brunhes Chron (McDonald et
al., 1999); this was marked by rapid settling of biogenic detritus and the deposition of
diatom oozes. The diatom-rich intervals are characterized by an abundance and rapid
accumulation of large frustules. This deduction is supported by 230Th data showing a5

doubling to a quintupling of the sedimentation rate in the two large diatom bands oc-
curring in Stage 5.2 and in the 5/4 transition. We speculate that the episodic input of
meltwater- or dust-borne iron from Asian or Alaskan sources may have promoted the
extraordinary diatom production events recorded in the sedimentary record.

2.2.2 Equatorial Pacific10

High biological productivity occurred during glacial times in the central equatorial Pa-
cific (Murray et al., 2000), in the western equatorial Pacific (Kawahata et al., 1998), and
in eastern equatorial Pacific (Weber and Pisias, 1999). Temporal and spatial variability
in several chemical proxies of export production, and in particular the distributions of
Ba, scavenged Al, and P, have been studied in a set of sediment cores gathered along15

a cross-equatorial transect at 5◦ S, 2◦ S, 0◦, 2◦ N, and 4◦ N across the central equatorial
Pacific Ocean (Murray et al., 2000). During interglacial oxygen isotope Stage 11, the
chemical proxies indicate lower particle fluxes and export production compared with
OIS Stage 12 (glacial). That is, even though maximum productivity occurred at the
equator during both glacial and interglacial conditions, the magnitude of export pro-20

duction integrated from 5◦ S to 4◦ N during Stage 11 was 25–50% less than during
Stage 12, and also was 25–50% less than it is now.

Similar to the central equatorial Pacific, the primary productivity, as inferred from
the C4402 sediments in the western equatorial Pacific in the West Caroline Basin,
increased during Stage 2, Stage 3, late Stage 6, Stage 6/7 boundary and Stage 825

(Kawahata et al., 1998). These results are generally representative of other reports
documenting higher glacial productivity in low-latitude regions. In the same way, high-
resolution records of glacial-interglacial variations in biogenic carbonate in sediments

241

http://www.clim-past-discuss.net
http://www.clim-past-discuss.net/2/233/2006/cpd-2-233-2006-print.pdf
http://www.clim-past-discuss.net/2/233/2006/cpd-2-233-2006-discussion.html
http://www.copernicus.org/EGU/EGU.html


CPD
2, 233–265, 2006

Past global iron
connections

Z. S. An et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

EGU

from 15 sites in the eastern equatorial (sampling resolution is ∼1 kyr) demonstrate
that accumulation rates of carbonate are higher during glacials and glacial-interglacial
transitions in all cores (Weber and Pisias, 1999).

2.2.3 Southern Ocean

In contrast to the Equatorial and North Pacific, data from the South Pacific suggest5

little change or slight decrease in export production during glacial times (Berger, 1991;
Chase et al., 2003). Nevertheless, a study of N isotopes in the modern Southern
Ocean corroborates the interpretation of the δ15N record in sediments that suggest
an increase in surface nitrate utilization during glacial periods (Altabet and Francois,
2001). Data from the South Atlantic and the Indian Ocean clearly indicate a lower10

export production south of the modern-day Polar Front and higher export between
approximately 53.5◦ S and 40◦ S (Kumar et al., 1995; Anderson et al., 1998; Nees
et al., 1999; Moore et al., 2000). Complementary data for a set of radionuclide proxies
in sediments from the southernmost Atlantic Ocean indicate that glacial periods were
characterized by greatly increased fluxes of biogenic detritus out of surface waters15

(Kumar et al., 1995). This increase in export production, which may have contributed
to lower concentrations of carbon dioxide in the glacial atmosphere, was coincident with
at least a five-fold increase in the accumulation of lithogenic iron; this eolian material
was transported from the Patagonian deserts. Paleoceanographic records based on
proxies of export production have been constructed for the South Atlantic sector of20

the Southern Ocean (Anderson et al., 1998). A radionuclide-ratio proxy of particle flux
(10Be/230Th) and the accumulation rate of authigenic uranium, which responds to the
flux of organic carbon to the sea bed, both indicate a dramatic enhancement, relative to
the present, in the export production of the Subantarctic zone (approximately the region
between the present-day positions of the Subtropical Convergence and the Antarctic25

Polar Front) during glacial periods.
Paleontological data for last two glacial-interglacial cycles preserved in core MD88-

779 from the southeastern Indian Ocean over the South Tasman Rise (47◦50.69′ S,
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146◦32.75′ E; 2260 m water depth) have been analysed by Nees et al. (1999). Diatom
and benthic foraminiferal data indicate there were significant increases in ocean sur-
face productivity during glacial periods and, in particular, during OIS 2, late OIS 3 and
OIS 6. Moore et al. (2000) estimated that export production in the Southern Ocean as
a whole increased by 2.9–3.6 GT C yr−1 at the last glacial maximum (LGM) compared5

with the modern era.
Finally, the data for nine sediment cores from North Pacific, Equatorial Pacific, and

South Ocean, which are major HNLC regions indicate that paleoproductivity was higher
during glacial periods than in interglacials (Fig. 3). Although the magnitudes of the
increases are not same in all regions, the paleoproductivity during glacial periods was10

up to twice times that during interglacials.

2.3 Impact of dust on atmospheric CO2

2.3.1 CO2 changes in ice cores

Analyses of bubbles of ancient air trapped in Antarctic ice reveal that atmospheric
P CO2 during peak glacial times, was roughly 80–100 ppm lower than the interglacial15

value of 280 ppm (Barnola et al., 1987). The connection between atmospheric tem-
perature changes and CO2 levels has been the subject of considerable study. For
example, Petit et al. (1999) found generally good agreement between atmospheric tem-
perature, CO2 and dust levels in Antarctic ice, however the temporal resolution of the
data in that study was relatively low, and the uncertainty in the gas-ice age difference20

too large for any firm conclusions to be reached on the relative timing of the changes.
Related studies show that CO2 in ice from Taylor Dome in Antarctica (Indermühle et
al., 2000) covaries with δD – this is an indicator of atmospheric temperature over the
Antarctic warming events A1 to A4 (20 to 60 kyr BP).

A more general picture of paleoclimate relationships has emerged from data for25

Glacial Terminations I and III (Monnin et al., 2001; Caillon et al., 2003; Röthlisberger et
al., 2004). These authors have shown that changes in CO2 are highly correlated with
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changes in Antarctic temperature, however with CO2 changes lag temperature by 500–
800 years. Certain features in the CO2 curves, however, are closely connected to and
indeed in phase with Northern Hemisphere events such as the onset of the Bølling-
Allerød period and the end of the Younger Dryas. From a comparison of Antarctic non-
seasalt calcium as an indicator for wind-born dust and CO2 Röthlisberger et al. (2004)5

concluded that only a minor part (20 ppm) of the total CO2 increase (80 ppm) during
the last transition can be ascribed to increased iron limitation of the Southern Ocean
caused by a declining dust flux from Patagonia. They ascribe another 8 ppm of the
change in CO2 to iron limitation in the North Pacific.

2.3.2 Models of global iron connections10

Numerical models of global ocean biogeochemistry have been developed to quantify
the effects dust deposition on marine biota and atmospheric pCO2. Differences in dust
deposition from the present-day to LGM (Mahowald et al., 1999) led models predict a
CO2 drawdown in the range 5–45 ppm (Archer et al., 2000; Bopp et al., 2003; Ridgwell,
2001; Watson et al., 2000). The whole-ecosystem global modeling study by Watson15

et al. (2000), which was based on variations in dust fluxes observed in the Vostok
core and holding all other boundary conditions constant, showed a drawdown of atmo-
spheric CO2 by 40 ppm, about half of the observed change. On the other hand, Archer
et al. (2000), using an oceanic general circulation model with a simple biogeochemical
cycle, showed that the impact of iron fertilization resulted only in an 8 ppm drawdown of20

atmospheric CO2. A state-of-the-art ocean biogeochemistry model predicted that the
maximum impact of high dust deposition on atmospheric CO2 must be <30 ppm (Bopp
et al., 2003).

There are substantial uncertainties in our current understanding of the connections
between the ocean carbon and iron cycle and how they separately and jointly respond25

to perturbations, and how they are affected by ocean circulation and the terrestrial
biosphere. The marine iron cycle may well contribute to the instability in the climate
system though positive feedback links. Therefore improving the representation of iron
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biogeochemistry in ocean carbon cycle models may be a prerequisite to gaining a full
understanding of late Quaternary atmospheric CO2 changes and climatic variability.

3 Relationships among Asian dust, ocean productivity, and atmospheric CO2
over different time scales

Arid and semi-arid regions in Central Asia are one of the world’s largest sources of5

dust, and the North Pacific is also one of the most important depositional regions of the
global oceans. However, the connections between dust fluxes and ocean productivity
in the Asia/Pacific region and the roles they play in the global climatic system are
not clearly understood. An examination of the variations of dust/iron-paleoprodutivity-
CO2 in the Asian Pacific region based on continuous records provides a broad view of10

dust/iron connections and the relationship to biogeochemical systems.

3.1 The last 130 kyr

The wind-blown loess-paleosol and Red-clay sequence in the Chinese Loess Plateau
(CLP) provides the most complete record of Asian dust, covering at least 6–8 Ma BP
(An et al., 2001). Loess deposits quickly and changes little during loessification; this15

makes it a nearly ideal material for reconstructing high-resolution dust records.
The classical Lingtai loess section (35◦04′ N, 107◦39◦ E) is located in the western

part of the CLP. Dust deposition in this profile can be traced back to 7 Ma B.P. (Sun
et al., 1998). The upper section has been studied intensively to provide a dust record
for the past 130 kyr. As loess and paleosol have different deposition rates, subsam-20

ples were taken at intervals of 4 and 2 cm, with the higher resolution samples from the
more rapidly depositing loess. Continuous records of magnetic susceptibility, particle-
size distribution and ten major elements (Si, Al, Fe, Ca, K, P, Mn, Mg, Na, Ti) have
been generated. Based on correlations with the particle concentration curve (Ruth
et al., 2003) and the oxygen isotopic curve of the GRIP ice cores on the SS09 time-25
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scale (NGRIP, 2004), we match the three rapid changes in particle-size distribution at
1.08 m, 8.24 m and 10.68 m in the profile with markers for the Younger Dryas/Holocene
transition (11.55 kyr), OIS4/OIS5 (78.6 kyr) and OIS5/OIS6 (129.3 kyr) (Johnsen et al.,
2001; Yuan et al., 2004). The ages for the successive stratigraphic levels were calcu-
lated based on the grain-size vs. age model of Porter and An (1995), assuming that5

the >43µm coarse particle fraction is linearly related to the deposition rate. Elemental
fluxes (EFx) were reconstructed using the equation: EFx=CxρLDR, where Cx refers to
concentration of element x, ρ is bulk density for dust particle (1.6 g cm−3), LDR is linear
deposition rate of loess material. The dust flux (Fdust) is calculated as the product of
aluminum concentration, assuming 6% Al by weight for Asian dust (Zhang et al., 1994).10

Figure 4 shows the dust fluxes for Lingtai loess profile over the past 130 kyr varied
from 7.1 g cm−2 kyr−1 to 27.6 g cm−2 kyr−1. As was seen for the ocean sediments, high
dust fluxes occurred during the glacial stages and low dust fluxes during the interglacial
stages. During the last interglacial (OIS5), the dust flux dropped to the lowest level
of any stage in the record, averaging just 10.3 g cm−2 kyr−1. On the other hand, the15

dust flux increased in the last glacial, especially in OIS2 and OIS4, with an average
value of 20.1 g cm−2 kyr−1, or about 2-times higher than during the last interglacial.
In the Holocene, the dust flux decreased quickly, averaging ∼19.0 g cm−2 kyr−1, but it
remained higher than during the last interglacial.

Core H3571 was taken from mid-latitude North Pacific, which is a main deposition20

region for Asian dust. The organic mass accumulation rate (MAROC) determined for
H3571 was used as a proxy for paleoproductivity in the North Pacific (Kawahata et
al., 2000). During the past 130 kyr, the MAROC fluctuated over glacial-interglacial
timescales: the MAROC is high during the glacial and relatively low during the inter-
glacial. The carbon/nitrogen atom ratios in organic matter verified that the organic C25

was mainly of marine in origin, and this supports the notion that paleoproductivity in
the North Pacific increases in glacial and decreases in interglacial periods.

As Fig. 4 shows, the dust and iron fluxes at Lingtai and the MAROC of H3571 all
display similar patterns over the past 130 kyr: high productivity occurred during glacial
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periods when dust fluxes were high, and low productivity occurred in the interglacials
when the dust fluxes were lower. This demonstration that the input of Asian dust is
connected to productivity in North Pacific raises the possibility that a deficit of iron in
the open ocean is the main cause for the observed low productivity.

The oceanic biological pump, which transports carbon from the atmosphere to the5

deep sea, has been identified as a key modulator of atmospheric P CO2 over glacial-
interglacial timescales (Broecker and Henderson, 1998). From Fig. 4, it can be seen
that the concentration of CO2 in air extracted from Vostok ice is strongly anti-correlated
with the MAR for total organic carbon in the North Pacific, which is a proxy for ma-
rine productivity. This inverse relationship between atmospheric CO2 and productivity,10

implies the biological pump operating in the North Pacific may have affected the at-
mospheric CO2 level during the past 130 kyr. The results support the hypothesis that
changes in atmospheric CO2 are at least partly due to the fluctuations in iron deposition
in the Asia-Pacific region.

3.2 The last 1200 years15

Beside the effects of the GICs over glacial-interglacial cycles, geological and historical
records have shown that dust/iron connections operated in the northern Hemisphere
over the last 1200 years. Zhang et al. (1984) reconstructed the frequency of dust
events over this time period from Chinese historical documents, and Fig. 5a presents a
time series of dust storm frequencies based on those analyses. Before 1200 A.D., the20

frequency of dust storms was relatively low, averaging 1.5 times/year. From 1200 A.D.
to 1700 A.D., the occurrence frequency of dust events increased to ∼3 times/year.
Figure 5b presents a comparable 1200 yr record of paleoproductivity reconstructed
from δ15N data for cores of Karluk Lake sediments from Kodiak Island, Alaska. The
δ15N profile (‰) in these sediments is a proxy for sockeye salmon abundances in25

Alaska, and by implication a first-order measure of productivity for the northeastern
Pacific Ocean.

The timeseries is plotted as the difference over time from the series mean (Fig. 5b),
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that is, positive values of δ15N indicate an increase of fisheries productivity, and vice
versa. Before ∼AD 1200, the δ15N is much lower (∼−0.5‰) than average, whereas
it reached ∼2.0‰ from AD 1200 to AD 1700, suggesting that the paleoproductivity
in the North Pacific increased during this 500 yr interval (Finney et al., 2002). More
to the point, the period of increased δ15N matches the more frequent dust storms in5

Asia (Fig. 5a), implying that the increase of Asian dust is a positive factor contribut-
ing to the productivity changes in North Pacific. At the same time, the atmospheric
P CO2 dropped about 10 ppm based on the ice core record at Low Dome in Antarc-
tic. Although the reasons for the decrease in CO2 are likely diverse, the influence of
dust/iron fluxes to the oceans is a distinct possibility.10

3.3 The last 50 years

The influence of Asian dust on ocean productivity recently has been detected for mod-
ern dust events (Bishop et al., 2002). However, there are almost no studies that
have addressed the connections between dust and paleoproductivity over decadal time
scales. Here we compare recently published data to assess these connections. Fig-15

ure 6a presents the total Asian dust emissions simulated by Northern Aerosol Regional
Climate Model (NARCM) from 1965 to 1990 (Zhang et al., 2003). These model-derived
estimates of springtime emissions varied between 0.55×1010 and 2.0×1011 kg, with a
maximum in 1969 and a minimum in 1965. From 1969 to 1990, the total emission
displayed a decreasing trend. Figure 6b shows the δ15N variations of Pacific salmon,20

which reflect the changes of primary productivity in eastern Pacific (Satterfield and
Finney, 2002). Even though the estimation of Asian dust emissions has large uncer-
tainties and the temporal resolution is low, seven peaks from 1968 to 1988 can be seen
to match between the two time series, with a 2–3 year lag in the productivity records.
While this is clearly a simple and crude first assessment, the results suggest a possible25

correspondence between dust/iron fluxes and productivity in Asia-Pacific regions, and
we believe this deserves further investigation.
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3.4 The influence of Asian dust on past changes in global atmospheric CO2

Here we use a simple approach to semi-quantitatively evaluate the contribution of Asian
dust to the global change in the concentration of atmospheric CO2. The principle of this
method, as described in Röthlisberger et al. (2004), is to estimate data-based bounds
for the contribution of iron fertilization to atmospheric CO2 variations during selected5

periods. In this case, the estimates are made for periods when variations in Asian dust
supply were large, but changes in other parameters likely to affect atmospheric CO2
were modest.

This assessment spans the last 60 kyr, and Fig. 7 presents a comparison of the dust
records of the Lingtai profile with Vostok dust and with atmospheric CO2 records from10

the Taylor and Vostok cores (Smith et al., 1999; EPICA community members, 2004). In
general, one would assume that the loess from the CLP reflect the dust fluxes in north-
ern hemisphere while the Vostok records reflect conditions in southern hemisphere.
A comparison of these records shows that there was a period during the last glacial
maximum when the dust fluxes in the two hemispheres were reversed. From 23 kyr15

to 18 kyr B.P., the deposition of Asian dust as recorded in the Lingtai loess increased
quickly, but the dust concentration in the Vostok core for this period indicates the oppo-
site trend was occurring in the southern hemisphere, that is dust concentrations were
decreasing. Furthermore, the CO2 concentrations in Vostok ice core decreased by
9 ppm during this period and by 4 ppm decrease in the high resolution Tayor ice core.20

One could argue that the observed change of 4 to 9 ppm in CO2 concentration was due
to the influence of Asian dust deposition to the Pacific if it is assumed that the other
mechanisms contributing to the CO2 changes remained constant. While this likely rep-
resents an upper limit for the effect of increased iron fertilization due to an increase
in dust input into the Pacific Ocean, this result is consistent with the 6 to 8 ppm effect25

estimated by Rothlisberger et al. (2004). Since the maximum impact of high dust de-
position on global atmospheric CO2 is though to be around 30 ppm (Bopp et al., 2003),
it would appear that one-tenth to one-third of the global change in CO2 caused by dust
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deposition is due to Asian dust.

4 Concluding remarks

In summary, the positive correlations among Asian dust, ocean productivity and at-
mospheric CO2 over different time scales indicate an important role of dust/iron in
global biogeochemical cycles in the past. The GICs revealed though examination of5

paleorecords are generally consistent with the results of modern studies. Dust/iron
connections clearly existed in the Asia/Pacific region in the past, and further studies
are needed to compare past records of GICs with those occurring today. A simple es-
timation shows that one-tenth to one-third of the change in global CO2 due to the GIC
was caused by the change the dust dynamics in Asia and the associated effects on10

productivity in the Pacific Ocean.
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Röthlisberger, R., Bigler, M., Wolff, E. W., et al.: Ice core evidence for the extent of
past atmospheric CO2 change due to iron fertilization, Geophys. Res. Lett., 31, 16,
doi:10.1029/2004GL020338, 2004.15

Sarnthein, D., Thiede, J., Pflaumann, U., et al.: Atmospheric and oceanic circulation patterns off
Northwest Africa during the past 25 million years, in: Geology of the Northwest African Con-
tinental Margin, edited by: Rad, U. V., Hinz, K. M., Sarnthein M., and Seibold E., Springer-
Verlag, Berlin, 547–604, 1982.

Satterfield, F. R. and Finney, B. P.: Stable isotope analysis of Pacific salmon: insight into trophic20

status and oceanographic conditions over the last 30 years, Progress in Oceanography, 53,
231–246, 2002.

Shao, Y. and Leslie, L. M.: Wind erosion prediction over the Australian continent, J. Geophys.
Res., 102, 30 091–30 105, 1997.

Smith, H. J., Fischer, H., Wahlen, M., Mastroianni, D., and Deck, B.: Taylor CO2: Dual Modes25

of the Carbon Cycle Since the Last Glacial Maximum, Nature, 400, 248–250, 1999.
Steffensen, J. P.: The size distribution of microparticles from selected segments of the Green-

land Ice Core Project ice core representing different climatic periods, J. Geophys. Res., 102,
26 755–26 763, 1997.

Steig, E., Morse, D. L., Waddington, E. D., et al.: Wisconsinan and Holocene climate history30

from an ice core at Taylor Dome, western Ross Embayment, Antarctica, Geografiska Annaler,
82A, 213–235, 2000.

Stephens, M. and Kadko, D.: Glacial-Holocene calcium carbonate dissolution at the central

256

http://www.clim-past-discuss.net
http://www.clim-past-discuss.net/2/233/2006/cpd-2-233-2006-print.pdf
http://www.clim-past-discuss.net/2/233/2006/cpd-2-233-2006-discussion.html
http://www.copernicus.org/EGU/EGU.html


CPD
2, 233–265, 2006

Past global iron
connections

Z. S. An et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

EGU

equatorial Pacific seafloor, Paleoceanography, 12, 797–804, 1997.
Sun, Y. B.: Variations of grain size and dust flux for late Cenozoic eolian sediment in the Chinese

Loess Plateau, Ph.D. thesis, Institute of Earth Environment, Chinese Academy of Sciences,
China, 2000.

Sun, D. H., Shaw, J., An, Z. S., Cheng, M., and Yue, L.: Magnetostratigraphy and Paleoclimatic5

interpretation of a continuous 7.2 Ma late Cenozoic eolian sediments from the Chinese Loess
Plateau, Geophys. Res. Lett., 25, 85–88, 1998b.

Thompson, L. G., Davis, M. E., Mosley-Thompson, E., et al.: A 25,000-year tropical climate
history from Bolivian ice cores, Science, 282, 1858–1864, 1998.

Thompson, L. G. and Mosley-Thompson, E.: Microparticle concentration variations linked with10

climatic change: evidence from polar ice, Science, 212, 812–815, 1981.
Thompson, L. G., Mosley-Thompson, E., Davis, M. E., et al.: Late-glacial stage and Holocene

tropical ice core records from Huascaran, Peru, Science, 269, 46–50, 1995.
Watanabe, O., Fujii, Y., Kamiyama, K., et al.: Basic analyses of Dome Fuji Deep Ice Core

part 1: Stable oxygen and hydrogen isotope ratios, major chemical compositions and dust15

concentration, Polar Meteorology and Glaciology, 13, 83–89, 1999.
Watson, A. J., Bakker, D. C. E., Ridgwell, A. J., et al.: Effect of iron supply on Southern Ocean

CO2 uptake and implications for glacial atmospheric CO2, Nature, 407, 730–733, 2000.
Watson, A. J., Bakker, D. C. E., Ridgwell, A. J., Boyd, P. W., and Law, C. S.: Effect of iron supply

on Southern Ocean CO2 uptake and implications for glacial atmospheric CO2, Nature, 407,20

730–733, 2000.
Weber, M. E. and Pisias, N. G.: Spatial and temporal distribution of biogenic carbonate and opal

in deep-sea sediments from the eastern equatorial Pacific: implications for ocean history
since 1.3 Ma, Earth Planet. Sci. Lett., 174, 59–73, 1999.

Yuan, D. X., Chen, H., Lawrence, E. R., et al.: Timing, duration of last interglacial Asian mon-25

soon, Science, 304, 575–578, 2004.
Yung, Y. L., Lee, T., Wang, C. H., et al.: Dust: A diagnostic of the hydrologic cycle during the

last glacial maximum, Science, 271, 962–963, 1996.
Zhang, X. Y., An, Z. S., Chen, T., et al.: Late quaternary records of the atmospheric input of

eolian dust to the center of the Chinese Loess Plateau, Quat. Geology, 41, 35–43, 1994.30

Zhang, X. Y., Gong, S. L., Zhao, T. L., et al.: Sources of Asian dust and role of climate
change versus desertification in Asian dust emission, Geophys. Res. Lett., 30, 2272,
doi:10.1029/2003GL018206, 2003.

257

http://www.clim-past-discuss.net
http://www.clim-past-discuss.net/2/233/2006/cpd-2-233-2006-print.pdf
http://www.clim-past-discuss.net/2/233/2006/cpd-2-233-2006-discussion.html
http://www.copernicus.org/EGU/EGU.html


CPD
2, 233–265, 2006

Past global iron
connections

Z. S. An et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

EGU

Zhang, X. Y., Arimoto, R., and An, Z. S.: Dust emission from Chinese desert sources linked to
variations in atmospheric circulation, J. Geophys. Res., 102, 28 041–28 047, 1997.

258

http://www.clim-past-discuss.net
http://www.clim-past-discuss.net/2/233/2006/cpd-2-233-2006-print.pdf
http://www.clim-past-discuss.net/2/233/2006/cpd-2-233-2006-discussion.html
http://www.copernicus.org/EGU/EGU.html


CPD
2, 233–265, 2006

Past global iron
connections

Z. S. An et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

EGU
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(b) dust flux

 
 
Figure 1

 28

Fig. 1. The modern location of dust sources, transport paths and deposition zones. (a) Modern
dust source regions and wind trajectories reconstructed from observations of dust storms after
Livingstone and Warren (1996); (b) global fluxes mg/m2 year of mineral aerosols to the ocean
after Duce et al. (1991).
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Figure 2   

 29

Fig. 2. Dust flux variations in Chinese Loess Plateau since the last interglaciation. Lingtai
profile from our paleo-data; Zhaojiachuan profile from Sun et al. (2001); Potou profile from An
et al. (1991); and Heimugou profile from Zhang et al. (1994). The dust flux of Zhaojiachuan
and Potou profiles were calculated by a method put forward by An et al. (1991), whereas the
dust flux of other two profiles were followed a method by Zhang et al. (1994).
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Fig. 3. Variations of paleoproductivity recorded at 9 marine cores in 3 major HNLC regions.
H3571 from Kawahata et al. (2000); NGC108 from Maeda et al. (2002); S-2 from Masayuki
(2003); C4402 from Kawahata (1999); W83 and R13 from Beaufort et al. (2001), PS2449-5
from Asmus et al. (1999); V22-108 and RC13-254 from Anderson et al. (1998).
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Figure 4 

 4

Fig. 4. Correlations between Asian dust and iron fluxes recorded in Lingtai loess profile, dust
particulate counts of GRIP ice core, paleoproductivity represented in MARTOC variations of
H3571 core of northern Pacific ocean, and atmospheric CO2 recorded in Vostok ice core during
the last 130 kyr.
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Fig. 5. Correlations of dust storm events in China and fisheries productivity variations in the
northeastern Pacific Ocean with CO2 changes during the last 1800 years. (a) Dust storm fre-
quency in China (Zhang et al., 1984). (b) Fisheries productivity in the northeastern Pacific
Ocean (Finney et al., 2002). (c) Atmospheric CO2 concentration data are from Etheridge et
al. (1996) after 1000 A.D.; data before 1000 A.D. are from Indermühle et al. (1998). An atmo-
spheric CO2 was apparently increased since the late 18 century, which was mainly influenced
by anthropogenic activities. The rest data of CO2 is not included.
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Fig. 6. A comparison between dust emission in Asia (a) (Zhang et al., 2003), fisheries produc-
tivity (b) reflected by δ15N of Pacific salmon (Satterfield and Finney, 2002) in the Pacific Ocean
from 1965 to 1990. 7 peaks can be matched respectively. 2–3 years lag of peaks can be seen
in δ15N curve.
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Figure  7    

 34

Fig. 7. Comparison of Asia dust curve recovered from Lingtai loess with Vostok dust and
atmospheric CO2 curves over the last 60 kyr. (a) CO2 recorded in Dome C ice core; (b) CO2
recorded in Vostok ice core; (c) dust mass recorded in Vostok ice core (in an inverted scale);
(d) Asia dust recovered from Lingtai loess (in an inverted scale). The trend line of Lingtai curve
is smoothed by 9 analyzing points and the trend line of CO2 in Dome C is smoothed by 25
analyzing points.
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