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Abstract. The skill of proxy-based reconstructions of North- 1 Introduction
ern hemisphere temperature is reassessed. Using an almost
complete set of proxy and instrumental data of the past 13@everal attempts have been made to reconstruct the millen-
years a multi-crossvalidation is conducted of a number of stanial history of global or Northern hemisphere temperature
tistical methods, producing a distribution of verification skill (NHT) by way of proxy information (Overpeck et al., 1997;
scores. Among the methods are multiple regression, multidones et al., 1998), (Mann et al., 1998, henceforth MBH98),
ple inverse regression, total least squares, RegEM, all considiMann et al., 1999; Crowley and Lowery, 2000; Briffa, 2000;
ered with and without variance matching. For all of them the Briffa et al., 2001; Esper et al., 2002; Moberg et al., 2005).
scores show considerable variation, but previous estimatessince past variability is essential for the understanding of,
such as a 50% reduction of errdt &), appear as outliers and and attributing forcing factors to the present climate some
more realistic estimates vary about 25%. It is shown that theof these reconstructions have played a prominent role in the
overestimation of skill is possible in the presence of strongthird report of the IPCC (IPCC, 2001). This was followed by
persistence (trends). In that case, the classical “early” omn intense debate about the used data and methods (Mclin-
“late” calibration sets are not representative for the intendedyre and McKitrick, 2003; von Storch et al., 2004; Mcintyre
(instrumental, millennial) domain. As a consequenké, and McKitrick, 2005a, henceforth MMO5; Rutherford et al.,
scores are generally inflated, and the proxy predictions are005; Mann et al., 2005; iBger and Cubasch, 2005; Huy-
easily outperformed by stochastic, a priori skill-less predic-bers, 2005; Mclntyre and McKitrick, 2005b;iiger et al.,
tions. 2006; Wahl et al., 2006; Wahl and Ammann, 2007), some of
To obtain robust significance levels the multi- which has found its way into the fourth report of the IPCC
crossvalidation is repeated using stochastic predictors(IPCC, 2007). While that debate mostly turned on the vari-
Comparing the score distributions it turns out that the prox-ability and actual shape of the reconstructions (the “hockey
ies perform significantly better for almost all methods. The stick”) the aspect of verification has not found a comparable
scores of the stochastic predictors do not vanish, nonetheassessment.
less, with an estimated 10% of spurious skill based on | the above models (that term used informally here to
representative samples. | argue that this residual score is du@ean any empirical scheme), a limited number of proxies
to the limited sample size of 130 years, where the memory_ ysyally in the order of several dozens — serve as predic-
of the processes degrades the independence of calibratiagys, either for the local temperature itself or for some typi-
and validation sets. Itis likely that proxy prediction scores ca| global pattern of it. The models are defined/calibrated in
are similarly inflated and have to be downgraded further.the overlapping period of instrumental data, and predicted
leading to a final overall skill that for the best methods lies hack to those years of the past millennium where proxies

around 20%. o - _ _ are available but temperature observations are not. Once a
The consequences of the limited verification skill for mil- model is specified, e.g. as a multiple linear regression with a
lennial reconstructions is briefly discussed. specified number of predictors and predictands, its parame-

ters (the entries of the regression matrix) are calibrated from
a finite sample of data (the calibration set). This is usually
Correspondence tdG. Birger done by optimizing some measure of model skill, a “score”,
(gerd.buerger@met.fu-berlin.de) e.g. mean square error or correlation (Frank and Friedman,

Published by Copernicus Publications on behalf of the European Geosciences Union.



398 G. Burger: On the verification of climate reconstructions

1993). With decreasing sample size the estimated model pawvhich they were derived. In other words: scores, be they
rameters are increasingly disturbed by “sampling noise”, thafrom a calibration or validation set, are random variables,
is, random properties of the sample that do not reflect the enwith variations that mainly depend on the sample size. And
visaged relationship. This estimation error renders the modesince it is unlikely that the “true” model is the one with the
imperfect, and its “true” skill for predicting independent data highest score, picking a modatfter the validation basically
is bound toshrinkrelative to the calibration skill (cf. Cooley renders it unverified, which is therefore not a recommended
and Lohnes, 1971). procedure (cf. Brger et al., 2006). This equally applies to
One would assume that this shrinkage for independent datany other possible variation in the model setting, as long as
equally affects all skill scores, simply because the modelthere is no a priori argument against its use.
quality (its “skill”) is impaired. This is not true, however. Like any bootstrapping, multi-crossvalidation is blind to
Model skill, as we shall see, cannot be characterized by simany predefined (temporal) structure on contiguous calibra-
ple measures such as a single number. Different scores capion or validation periods, such as the 20th century warm-
ture different aspects of a model performance. The absencig trend, and will pick its sets purely by chance. This ap-
of a single, perfect score is a well known phenomenon frompears to entirely conflict with a dynamical approach, since
weather forecasting for which most of the scores were orig-any “physical process” that one attempts to reflect (cf. Wahl
inally invented (cf. Murphy, 1996). Moreover, basic condi- et al., 2006) is destroyed that way. However, empirical mod-
tions such as model linearity are often tacitly implied but areels of this kind do in no way contain or reflect dynamical
not per se valid, and should be checked using appropriat@rocesses beyond properties that can be samplatsian-
tests on the residuals, see below. taneouscovariations between the variables. The trend may
Instrumental temperatures are available only back untilbe an integral part of such a model, but only as long as it
about 1850. Therefore, the period of overlap is just a smallrepresents these covariations.
fraction of the intended millennial domain. It is evidentthat To estimate whether a verification score represents a sig-
empirical models calibrated in that relatively short time spannificantly skillful prediction it must be viewed relative to
(or even portions of it) must be taken with great care andscore levels attained by skill-less, or “nonsense”, predictions.
deserve thorough validation. This applies even more sincé his is necessary because such predictions, in fact, may at-
proxy and temperature records in that period are stronglytain nonzero values for some of the scores. Inferences based
trended opersistentwhich considerably reduces the effec- on nonsense (“spurious”, “illusory”, “misleading”) correla-
tive size of independent samples that are available to fit andions turn up since the first statistical measures of association
verify a model. came to light (Pearson, 1897; Yule, 1926). In most cases they
It is therefore essential to find robust estimates of the pre-are a typical byproduct of small samples (Aldrich, 1995), a
dictive model skill, as a basis for model selection as well asproblem that is aggravated in the presence of nonstationarity
for the general assessment of the resulting temperature rgsee below).
constructions. Besides analytical approaches to estimate the There is some analogy to classical weather forecasting
true predictive skill from the shrinkage of the calibration skill where climatology and persistence serve as skill-less predic-
(Cattin, 1980; Raju et al., 1997) various forms of cross vali- tions whose scores are, especially in the case of persistence,
dation are utilized. Simple cross validation (MBH98; Mann not so easy to beat. While the notion of a skill-less predic-
et al., 1999; Cook et al., 2000) proceeds as follows: Fromtion is common sense in weather forecasting, it is the subject
the period of overlapping data with both proxy and temper-of considerable confusion and discussion in the field of cli-
ature information a calibrating set is selected to define themate reconstruction. To give an example: for the reduction
model. This model is applied to the remaining indepen-of error (RE, see below) in NHT reconstructions, MBH98
dent set of proxy data (as a guard against overfitting), ancand MMO5 report the 1%-significance level B to be as
modeled and observed temperature data are compared. different as 0% and 59%, respectively. On this background,
more thorough estimate, called double cross validation, ighe usefulness of millennial climate reconstructions, such as
obtained by additionally swapping calibrating and validating MBH98 with a reportedR E of 51%, depends on the very
sets Briffa et al., 1988, 1990, 1992; Luterbacher et al., 2002, notion of a nonsense predictor. This confusion evidently re-
2004; Rutherford et al., 2003, 2005). Multiple cross valida- quires a clarification of terms. Towards that goal, the study
tion (“multi-crossvalidation”) using random calibration sets begins by analyzing and discussing a very basic example of a
(Geisser, 1975) is a form of bootstrapping (Efron, 1979; nonsense prediction with remarkalil& scores. This is fol-
Efron and Gong, 1983) that has been applied only rarely folowed by a more refined bootstrapping and significance anal-
reconstructions (Fritts and Guiot, 1990; Guiot et al., 2005),ysis, with models that are currently in use for proxy recon-
but never in a hemispheric context. In this study, that ap-structions. Having obtained levels of skill and significance
proach will be applied to the NHT. the consequences for millennial applications are reflected.
Only multi-crossvalidation fully accounts for a basic prin-
ciple of statistical practice: that estimated skill scores are
always affected by random properties of the sample from
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G. Burger: On the verification of climate reconstructions 399

2 Skill calculations, and shrinkage

1007~

The study is based on proxy and temperature data that

were used in the MBH98 reconstruction of the 15th cen- 8o~ :

tury. Specifically, the multiproxy datase®, consists of the

22 proxies as described in detail in the MBH98 supplement.

To meet the bootstrapping conditions of a fixed set of model &

parameters, the 219 temperature grid poifitsre used that N

are almost complete between 1854 and 1980, and which were ~ *[° S )

used by MBH98 for verification (see their Fig. 1). This gives r 1

127 years of common proxy and temperature data. Note thai 2o :

the proxies represent a typical portion of what is available I

back to AD 1400, showing a large overlap with comparable ‘ - ‘ ‘ ! ‘ ! ‘

studies (cf. Briffa et al., 1992; Overpeck et al., 1997; Jones 0 2 © o & 100

et al., 1998; Crowley and Lowery, 2000; Rutherford et al.,

2005). Other studies, such as Esper et al. (2002), relied on

these proxies as well but processed them differently. Noterig. 1. Dependence of? on R? and corresponding shrinkage.

that for the relatively short time span considered here non-

stationarity is hardly an issue. But it might become relevant

for millennial applications since some of the proxies actu- period does not really exist. Note that Briffa et al. (1988)

ally reveal rather large values of the memory parameter (cfincorrectly equat& E with the “coefficient of efficiency” of

Robinson, 1995). Nash and Sutcliffe (1970). In that source (which moreover
Suppose now that we have formulated a statistical modelCook et al. (1994) incorrectly characterize as a multiple re-

relatingP andT, and picked a calibration set to estimate and gression study) a validation period mean is never mentioned

a validation set to verify its parameters. For the validationand the coefficient is simpIR E itself.

set we denote observed and modeled NHTx and x, re- Both scores are useful, but they measure different things

spectively. Now suppose we have calculated fromand  especially when there is a climate shift from calibration to

% some measure of skill§, such as the mean square error validation. Denoting this shift b =< (o, the valida-

MSE=((x —£)?) (brackets indicating expectation). A classic tion standard deviation), both are simpfy related as follows:

method to transform a scofeinto one that measures perfor-

60 7

mance relative to a perfect scor,, and a reference score, [g _ CE+ A%_ ()

S,, is the “skill score”,S S (cf. Wilks, 1995). It is given by 1+ A%

g S-S5 (1)  CE. on the other hand, is related to the correlationpe-

Sp— 5 tweenx andx:

In numerical weather prediction (NWP) it is convenient to ~g _ p% = (p —85)% — 52, (5)

take climatology,u, as a reference forecast (besides, e.g., "

persistence). Fof =MSE, with S,=0, this gives with §,, ands,, being the mean and variance bias of the mod-

MSE eled values (cf. Wilks, 1995, p. 256, and Appendix).

Sse =1- ——-. (2) For example, applying a multiple regression for the com-

(=) plete population (or, equivalently, validating with the calibra-

which is also known under the name “reduction of error” tion set) givess,=p andé, =0, and thus for the coefficient
(sometimes also reduction of variance). But while for the of determinationR2=C E=R E=p?, the well known relation
stationary context of NWP “climatology” was considered a of the squared multiple correlation. From Egs. (4) and (5)
constant, its use changed in the paleoclimate community tdt follows generallyCE<p? and CE<RE. That CE<p?
refer to a specific period. Accordingly, the meaning of the has the important consequence that skill-less predictions, for
score became somewhat ambivalent. WiRiIE was associ-  which p=0, must haveC £ <0. Equation (4) illustrates the
ated with the calibration climatology,., (Fritts, 1976; Cook  dependence oRE on the climate shiftA¢, and how large
etal., 1994), a new scor€,E, was introduced by Briffaetal. A values inflate that score. For example Af=1, that

(1988) relating it to the validation climatology,,: is, one standard deviation, a score(®£=0% would yield
RE=50%. This applies, e.g., to time series that exhibit per-
MSE MSE . . S .
RE=1-———>-; CE=1-—"—"—-, (3) sistence, such as a trend, be it deterministic or stochastic. For
(0 = 1)) (= 1)) example, MMOS5 report for their MBH98 emulatidRE and

The latter scoreC E, is actually the formal analogue of the CE validation scores of 46% and —26%, respectively. That
SSyse from NWP, for which the concept of a calibration discrepancy is solely caused, as calculated from Eq. (4), by
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400 G. Burger: On the verification of climate reconstructions

perfectly estimated (e.g. fa¥ — oo). That is, however, a
very rare circumstance since real models are usually imper-

[ |
|
4 ! ] fect. If predictions/reconstructions are made with those real
I ! ] models an estimate of skill is needed that takes into account
2 I M | this imperfection. One of the first attempts to incorporate
L |
! l

X 1 this additional effect has been Lorenz (1956). A more re-
°r i ' VVW V 7 fined estimate was then given by Nicholson (1960), (cf. Cat-

validation calibration

NHT [K]

tin, 1980):

02+

,  (N—DR*4+R? @)
~ (N-p)RZ+p

04+

0.6

1 R? andp? must not be confused. While? is of explanatory
T - LA T S — character describing the statistical populatipf,explicitly

me b represents the correlation skill of a model that is estimated
from a finite sample of that population, and represents the
same quantity as the corresponding term in Ex).vfhere

Fig. 2. NHT observed (thin black line) and predicted from the se- . . “yalidat ; -
ries of calendar years (blue line). The model is calibrated in theIs was estimated from cross-validation. Accordlngiﬁ, IS

late portion (1917-1980) and validated in the early portion (1854—Often referreq to as cross-yal!dlty - Inthe current c_onte_xt,
1916), yielding arR E score of 56%. Also depicted is the climatol- Eq. (7) describes the following: suppose for our multiple fin-

ogy forecast of the calibration period which, by definition, scores €ar regression model _Witb pred.ictor_s Calib_raEed frOW_V
RE=0 (heavy black line). years we found an adjusted calibration skill ®f. If this

model is applied to past (independent) proxies the resulting
reconstructed temperature will roughly have a correlation of
a climate shift ofAc=1.2. Similar sensitivities are reported p to the true temperature.
by Rutherford et al. (2005); Mann et al. (2005); Wahl and The dependence @f on R? is shown in Fig. 1 for thé®
Ammann (2007). andT setting withN=127 andp=22. Even with very large
It has been argued (Wahl and Ammann, 2007) thaAtis multiple correlations the cross-validity remains quite mod-
superior toC E in measuring the low-frequency performance erate, so that, for example, to achigv®=50% one already
of models. While in faciR E better “rewards” a correct rep- needsR2=80%. Conversely, a regression of NHT on the
resentation of climate shifts, such ag, that fact is based proxies using thdull instrumental period yield®2=36%,
on merely one sample and does not warrant the definitiorwhich dramatically shrinks to a cross-validity of only 6%.
of a proper low-frequency skill score. Due to the limited This illustrates the order of magnitude that is to be expected
time span of little more than a century no validation skill for from shrinking, given a ratio of predictors and sample size
time scales longer than a few decades can be expected frothat is typical for millennial climate reconstructions. Esti-
this kind of analysis. For an impression of what skills, and mates based on multi-crossvalidation shall be provided in §5.
in particular what shrinkage thereof, might generally be ex- It should be noted that via Eq. (3},E provides an ad hoc
pected let us consider, as the most straightforward statisticaissessment of the uncertainty of a reconstruction. Using a
model, a multiple regression of average NHT piproxies, 5% significance level, that uncertainty is
using N years of calibration. We consider the coefficient of
determination,R?, to estimate the skill. First of all, simple 7 =20v1—RE, (8)
mathematics ghows ‘h"’?t with an Increasing numper of (mde-o_ denoting the standard deviation of the measured values.
pendent) proxies (or, vice versa, with a decreasing number
of years) thecalibratedreconstruction will become perfect -
and the model not even uniqui? does not account for this 3 The trivial NHT predictor
inflating effect, so its practical value is limited as it contains

not much information about what can be expected from in-Having studied the close relation betweRE andC E math-
dependent (past) data. But it can be adjusted for the numbesmatically via the climate shiftA¢, let us illustrate this de-

of predictors, as follows (cf. Seber and Lee, 2003): pendence using a very basic example. Figure 2 shows the av-
~ N—1 erage NHT as estimated from the set of 219 temperature grid
R =1-(1- RZ)N——p—l (6) points, T. There is an obvious imbalance between the early

and the late half of the period: while colder, even cooling
Eq. (6) gives an estimate of the true multiple correlation from conditions prevail in the early portion, much warmer con-
the multiple correlation of a sample of si2e It aims, there-  ditions, initiated by a strong positive trend between 1920
fore, at the correlation that one can expect if the model wasand 1940, dominate the second half. Along with NHT, the
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G. Burger: On the verification of climate reconstructions 401

linear model is plotted that results from regressing the late .
portion (1917-1980) against a very simple predictor: the se- e
ries of calendar years. | will call this the trivial model or I
trivial predictor. This is in effect nothing more than fitting

a linear trend to that portion. And as a positive trend, the
trivial model predicts colder conditions for the past earlier
portion. While this does not seem to be an overwhelming
performance, the model attains for that part (1854-1916) a
verification RE score of 56%! Recalling thak E measures
the relative improvement to the climatology forecast, in-
dicated by the zero line, the trivial model outperforms that
forecast easily by simply predicting colder conditions.

RE, CE (%]
N

o o

T T

|
=)
p-value [%]

N
=]
T

40

1 \
1 |
60~ h \ —-60

On the other hand, the trivial prediction attain€#& of L w

late calibration

Pol

—70%. According to Eq. (4), this large discrepancy is caused ey calbraton
by the enormous bias in the calibration meanfqgf=1.7

standard deviations (note thAi-=1.2 from the last section o
is based on a 1902—1980 calibration period). At this point it 19 3- The dependence of the validation scoras andC E on the
is important to understand what — besides the presence of thfi9ré€ of temporal separatiod, for the simple NHT predictor

_ . . . see text). For the full separation with a late (1917-1980) calibra-
overall trend — leads to that bias. The trend is obviously onlytion and early (1854-1916) validatic (solid black) approaches

gﬁective be<_:au§e of the clean temporal separation of galibraeo%, while the fully mixed case attains only about 302 to-
tion and validation sets. Large values®¢, and thus high \yargs early calibration RE rises again to 40% but then sharply drops
RE scores, are obtained becausepé positivetrend inthe o negative valuesCE (dashed black) shows somewhat opposite
late calibrationandb) negativeanomalies in thearly val-  pehavior, with strongly negative values for the full separation and
idation. In general, it needs a calibration trend of the samevalues similar taR £ in the mixed case. Also shown is an index (see
sign as the mean difference between late and the early potext) of the representativeness of the corresponding calibration sets
tion. (red).

To clarify the interplay between trend and the degree of
temporal separation the following Monte Carlo exercise isthat each of the above points has now 500 realizations. Using
performed. We iteratively define two series of calibration andtheir (vector-) average as a new point gives a graphic that is
validation sets, starting from the original, well separated par-obviously a function, as shown in Fig. 3. It shows a smooth
tition into a 1917-1980 (1854-1916) late calibration (early dependence of thR E and C E values onAr. Both scores
validation) set. For a given calibration and validation set weshow opposite behavior, WitRE preferring positive and’ E
randomly pick one year from each, swap them and put thennegative valuesRE values rise from about 30% for the full
back to form a new calibration and validation set. — At the mixture to almost 60% for the full separation of the late cali-
end the initial separation is lost, and calibration and valida-bration, while the early calibration shows much lower scores
tion years are equally distributed and mixed. These series ardue to the missing, or negative, trend thafé is more sym-
now “mirrored” by swapping, at each step, the entire calibra-metric about the full mixture. Ther€ E nearly equalsRE,
tion and validation sets. while it strongly decreases to about —-50% at both ends of the

For each of the generated partitions we regress NHT orfull separation. Itis thus found that a trend creates enormous
the trivial predictor using the respective calibration and val- RE scores, but at least half of it is due to the particular se-
idation sets, resulting in correspondi®gZ andCE scores.  lection of calibration and validation sets.
Moreover, we calculate an individual “degree of separation”, The statistics of each single calibration set are now, with

Ar, for such a partition, using the relative difference varying degree, representative of the full set (population). As
L a simple measure of that representativeness one can, for ex-
T.— T, ample, test the hypothesis that the NHT values from the cal-
Ay = ———— 9) oo -
Tiate — Tearly ibration and those of the full set are equally distributed, us-

ing the Mann-Whitney (ranksum) test, and take the resulting
whereT indicates the mean of the respective calendar yearg-value. Averaged over the 500 realizations one finds, not
(with subscriptg andv indicating calibration and validation, surprisingly, a strong dependence of that indexon (see
respectively, and “early” and “late” as above). This definesFig. 3). It is symmetric about zero separation, i.e. full mix-
two series of points, A7,RE) and (Ar,CE), that should ture, with a maximum attained there and calibration sets that
roughly reflect the dependence of each scoreAgn That  are representative. At both ends, under full separation, the
dependence is noisy, however, due to the random partitionsalues are practically zero and the calibration sets not repre-
in combination with the NHT fluctuations. To remove these sentative. It is at these minima where both scofes, and
random effects the entire analysis is repeated 500 times, s@ E, happen to show the most extreme values.

www.clim-past.net/3/397/2007/ Clim. Past, 3, 397-409, 2007



402 G. Burger: On the verification of climate reconstructions

Note that this representativeness is closely related to theatible with that study | also used only one PC (explaining
missing-at-random (MAR) criterion that is important for the about 20%-30% depending on the calibration set).
imputation of missing data and algorithms such as EM and 3) full set. The third possibility, applied by Mann and
RegEM (see below; cf. Rubin, 1976; Little and Rubin, 1987). Rutherford (2002); Rutherford et al. (2003, 2005); Mann
It is also relevant for the extrapolation argument given byet al. (2005), does not apply any reduction at all to the tar-
Burger and Cubasch (2005). get quantity, treating the entire set of temperature grid points

If it is not clear from the start that the trivial predictor, (more than 1000 in those studies) as missing. In our emu-
which was basically the trend itself, does not represent a usdation, the full sefT of 219 temperature grid points is set to
ful model it will be so in view of the intended time span missing. From the reconstructed series the NH mean is cal-
— the full millennium. The model simply extrapolates the culated.
trend backwards into the millennium and produces unrealis-
tic cooling. Hence, the higiR E scores do not convey much 4.2 Statistical method (METH)
useful information in this simple case.

| will now turn to “real” predictors, that is, proxy infor-
mation made up of tree-rings, corals, ice cores, etc., and th
more sophisticated empirical models that make use of them

The reconstruction of temperatures from proxies can be
giewed in the broader context of infilling missing values. The
infilling is done by using either a transfer function between
knowns and unknowns that is fitted in the calibration (1-4
below), or in a direct way using iterative techniques (5, 6):

4 Reconstruction flavors 1) Classical (forward) regressionBetween the knowi®

and unknowril quantities, a linear relatioR is assumed, as

Several statistical methods exist or have extra been developd@!lows:

to derive millennial NHT from proxy information. They are T—RP+¢ (10)
distinguished by using or not using a number of independent '
options in the derivation of the final temperature from the where ¢ represents unresolved noise. The mafix =
proxies. These options mainly pertain to the specific choicez*lsz, with X., denoting the cross covariance matrix
of the preprocessing, the statistical model, and the postprobetweenx andy (taking =,=%,,), is determined by least
cessing. squares (LS) regression, withassumed to be noisy.

The methods basically fall into two categories: those 2) Inverse (backward) regressioithis method is applied
which employ a transfer function and those which employby MBH98. It also uses a linear model as in 1), but new
direct infilling of the missing data. In the first approach, the is assumed noisy, leading to the LS estinfate= Z{CPET,
heterogeneous proxy information is transformed to a temper{“+” denoting pseudo inverse).
ature series by means of a transfer function that is estimated 3) Truncated total least squares (TTLShis form of re-
from the period of overlapping data. In the second approachgression, in combining 1) and 2), assumes errors in both
data are successively infilled to give a completed dataset thaquantitiesP andT (cf. Golub and Loan, 1996). In this study,
is most consistent (see below) with the original data. Thethe 10 major singular values were retained.
transfer function approach uses either some a priori weight- 4) Ridge regressionAs 1) , but with an extra offset given
ing of the proxies, based on, e.g., areal representation, or # the diagonal elements of the (possibly ill-conditioned) ma-
weighting directly fitted from the data, that is, multiple re- trix Xp used as regularization parameters (Hoerl, 1962).
gression. To reduce the number of weights in favor of sig- 5) EM.Unlike using a fixed transfer function defined from
nificance, several filtering techniques can be applied, sucla calibration set, there are methods that exploit all avail-
as averaging or EOF truncation on both the predidBuiffa able information when infilling data, including those from
et al., 1988, 1992) and the predictand side (MBH98; Evansa validation predictor set. A very popular method uses the

et al., 2002; Luterbacher et al., 2004). Expectation-Maximization (EM) algorithm, which provides
maximum-likelihood estimates of statistical parameters in

4.1 Preprocessing (PRE) the presence of missing datBdmpster et al., 1977). EM
is applied using the more specializesjularizedEM algo-

Besides using rithm, RegEM (see below), with a vanishing regularization

1) NHT directly as a target, that is, calibrating the empiri- parameter.
cal model with the NH mean of thiEseries, so that no spatial 6) RegEM.RegEM has been invented to utilize the EM
detail is modeled at all, algorithm for the estimation of mean and covariance in ill-

intermediate targets can be defined, as follows: posed problems with fewer cases than unknownsSafinei-

2) PC truncation. Here a model is calibrated from the der, 2001). It was intended for, and first applied to, the inter-
dominant principal components (PCs) ©of and a hemi-  polation/completion of large climatic data sets, such as grid-
spheric mean is calculated from their reconstruction. This isded temperature observations, with a limited number of miss-
applied by MBH98, who have used a single PC. To be com-ing values (3% in Schneider, 2001). The technique was then
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Table 1. Table of the 3x6x2=36 reconstruction flavors.
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extended to proxy-based climate reconstructions (with a rate _12
of missing values easily approaching 50%) and seenasasuc -
cessor of the MBH98 method (Mann and Rutherford, 2002;
Rutherford et al., 2003, 2005; Mann et al., 2005). Details on

ﬁ
=
=
BT
|
o

‘

|

RegEM are given in the Appendix. Fig. 4. Boxplot of the distribution ofR E and CE for each of the
36 flavors, based on 300 resamplings of the calibration/verification
4.3 Postprocessing (POST) period. Each box indicates the 10%, 50%, and 90% quantile, and

the whiskers the minimum and maximum, of the distribution. Also

In applications (e.g. verifications) the output of the StatisticaIShown are the scores obtained from the_full separe_ltion_into early
model is either taken 1) as is or 2) rescaled to match the CaIgupward triangle) and late (downward triangle) calibration. For
. . . ) readability, some flavors/experiments are not shown (too negative).
ibration variance (cf. Esper et al., 2005]f8er et al., 2006).

Note that this operation increases the expected model error.

As all of PRE’ METH, and POST r_epresent mdepend_entinto calibration and validation set,, andV,, where both
groups of options, they can be combined to form a possible

N 5 o Sets are roughly of equal sizgCf |=64 and|V,|=63). For
reconstruction “flavor” (cf. rggr etal, 2.006)' As aref- any of the 36 flavorsy, it is now possible to calibrate an
erence, each such flavor receives a cod@ the form of

a triple from the se{1,2.3x{1,2,3.4,5.6x(1,2}, indicating empirical model, with corresponding scor&¥, () and

) X . CE,(7). RE,(m) andCE,(w) thus appear as realizations
which options were selected from the 3 groups above. This_ ¢ ¢ ¢ , N
defines a set of 3x6x2=36 flavors. For example, the MBH98Of random variablesk £, andC £, with corresponding dis

method corresponds to flaver=222 and Rutherford et al. tr_|but|ons. Along with the 300 randc_)_m partl_tlons | also con-
. . . . sider the two complementary partitions with full temporal

(2005) top=161. Table 1 illustrates the various settings. separation

It should be emphasized that the suite of flavors shall re- The distributions ok £, andC E,, are depicted in Fig. 4 as

flect existingmethods, taken from the literature, that are to S
: . . a boxplot. For most flavors the distributions show a remark-
be validated in terms of model error. No focus is put on ways : o : :
able spread, with minimum and maximum (low and high

to improve them. For example, all flavors rely in some form '~ : . 0 0
or another on a linearity assumption that is not necessarilylo./O'quam"es) easily departed by more thap 5.0/0.(20 %) of
skill. Moreover, between the flavors the distributions are

true, and other schemes such as nonlinear regression or neu-. . _
ral nets might give better performance. On the other handqu'te different. For example, the flavops161 andp=162

corresponding Durbin-Watson statistics (not shown, cf. Se-]‘?gfmrx(r;lyﬁéﬁ&g\?;'sgwrgglhe dliJf?eergr:tres_,rcriI;ng. -ll-igzlr”Eee_r'
ber and Lee (2003)) give no indication that the flavors are . ' 1S9 y ‘ bp

critically misspecified. Likewise, the chosen set of 22 pre-Wlse to the flavorgy=141/2 andyp=151/2, so that at least

dictors is not likely to be optimal in a pure statistical sense'" these cases skill is strongly degraded by rescaling (note,

(using measures such as Mallows, AIC, BIC, etc., cf. Se- h(_)w_ever,go:261/2). While there is 0 m_uch_spread in skl
S . within and between the flavors the distributions themselves
ber and Lee (2003)), as that choice is also determined by o o
. . . are quite similar for both scoreBE, andCE,. This indi-
external factors like spatial representativity. . S S -
cates that, in fact, most calibration/validation partitions are
temporally well mixed an®R E, andC E, measure the same
thing (see 83).
The skill varies, but it varies on rather low levels. The 90%
| consider 300 random partitonst of the set duantile hardly exceeds the 30% mark, and the highest me-

5 Multi-crossvalidation of NHT reconstructions

I= {1854 ..., 1980 of calendar years, dian isRE,=26.5% andC E,=24.6% forp=262. Generally,
flavors of the form 2xx, i.e. those predicting PC1 of NHT,
I = C; U Vg, (1)) perform much better, with almost all medians above 20%.
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The other flavors are much more variable, partly caused bypractically useless, i.e. indistinguishable from noise, in the
the degradation from rescaling mentioned above. An exceplatter. And what might be even more intriguing: The trivial
tion are the flavors of the form x61 which show remarkably model of §3 with anR E score of 56% would be accepted as
little variance (albeit only moderate scores). This is under-“significantly skillful” under both interpretations. Obviously,
standable insofar as RegEM, unlike the other flavors, dethe notion of “being significant”, or of being a “nonsense pre-
pends on the particular calibration set only in terms of thedictor”, deserves a closer look.

predictand (utilizing the full instrumental period for the pre- A major difference in the two approaches is the allowance
dictors). This would also apply to the EM flavors (x51), but for nonsense regressors for the significance estimation. That
they are probably more susceptible to overfitting. Note thatis, whether stochastic time series themselves are considered,
the flavorgp=311, which has shortly been touched in 82 to or instead the result of feeding them into a regression model.

exemplify shrinking, scores very little, witRE andCE val-  Only the latter yields higher scores. Now even in the well-
ues below 5%. This is about the same order of magnitude afmixed, representative case the trivial predictor scored about
the estimate obtained from Eq. (7). RE=20% (similarly toCE), which is still higher than the

The mindful reader has noticed that some flavors, such ag%-significance level oR E=0%. To avoid this, nonsense
=111 andp=311, have identical distributions. In fact, for regressors must therefore be allowed. On the other hand
direct regression, with a linear dependence of the estimatedie have seen how the temporal separation produces non-
model on the predictand, cf. 84.2, they are equivalent withrepresentative samples and creakds “outliers” of up to
respect to NHT and thus redundant. (Note that the RegEMB0%. The proposed significance levelRE=54%, which is
flavorsp=161 andp=361 are similar as well.) based on these outliers, is thus equally inflated and must be

The triangles in the figure represent the two calibrationsreplaced by something more representative.
with full temporal separation, i.e. the periods 1917-1980 (up- A crucial question is: What kind of nonsense predictors
per triangle) and 1854-1916 (lower triangle). They are moreshould be allowed? — To derive a statistically sound signif-
comparable to estimates of previous studies and obviouslycance level requires a null distribution of nonsense recon-
assume the role of outliers, in a positive senseffifrand in  structions. Now one can think of all sorts of funny predic-

a negative one fo€ E. While severalRE values approach tors, things like calendar years, Indias GDP, the car sales in
50% theCE values are negative throughout. Models with the U.S., or all together, etc., but that will not make up what

trended and fully separated calibration sets are thus rewardeghathematically is called a measurable set (to which proba-
with high RE scores but penalized with lo&@ E scores. bilities can be assigned). Hence, a universal distribution of

Based on such levels of performance it is difficult to de- nonsense predictors does not exist. — A more manageable
clare one specific flavor as being the “winner” and being su-type of nonsense predictors are stochastic processes gener-
perior to others. Just from the numbers, the flayeP62 ated from white noise, such as AR, ARMA, ARFIMA, ...,
gives the besR E performance (see above). It predicts PC1 (cf. Brockwell and Davis, 1998). Once we fix the number
using RegEM and rescaling. But it is only marginally better of predictors, the type of model, say ARMAyg), and the
than, e.g., the simpler variant 211 (simple forward regres-set of parameters, a unique null distribution of scores can be
sion, with median 23.4%). Note that the flavor 161 was pro-obtained from Monte Carlo experiments. From these, a sig-
moted by Mann et al. (2005) and earlier to replace the origi-nificance level can be estimated and compared to the original
nal MBH98 flavor 222. From the current analysis, this cannotscore of the reconstruction. The only problem is then that
be justified R E median of 21.8% compared to 25.9%). This each of the specified stochastic types creates its own signifi-
is somewhat in agreement with Rutherford et al. (2005) whocance level.
report a millennialk E of 40% (46% for the “hybrid” case), It was perhaps this dilemma that originated the debate
as compared to the 51% of MBH98. Moreover, for the late about the benchmarking & E, specifically, estimating the
calibration the 161 flavor is particularly ba® £,=11.9%); 1% level of significanceR E¢it. In the literature, one finds
it improves, nonetheless, when calibrating with the “classi-the following approaches:
cal” calibration period 1902—-1980 (28%).

1. (MBH98) simple AR(1) process with specified mem-
N ory: R Ecrit=0%;
6 Significance
2. (MMO5) inverse regression of NHT on a red noise pre-

There is an ongoing confusion regarding the notion of sig- dictor derived from the North American tree ring net-
nificance of the estimated reconstruction skill. For the same o R E . =59%:

model (the one used by MBH98, here the emulated flavor

222), MBH98 (resp. Huybers, 2005) and Mclntyre and McK- 3. (Huybers, 2005; Wahl and Ammann, 2007) as 2, with

itrick (2005b) report a 1% significgnce level f&E as dif- rescaling: R E¢rit=0%. Using the matlab code accom-
ferent as 0% and 54%! Hence, with a reporfed of 51% panying Huybers (2005) | obtaineRlE cir=36%.

the model is strongly significant in the first interpretation and
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4. (Mcintyre and McKitrick, 2005b) as 3, but with 21 o
additional (uncorrelated?) white noise predictors: alt
REcr|t:54% 208

RE [%)]

One might now feel inclined to provide the “correct” or

“optimum” way of representing the proxies as a stochastic 4 ; ;
process. If | now add 80—+ [
-100 = =
5. as 4, but with all noise predictors (not only the North o eREEEREREREE
American treering PC1) estimated from the original a0
proxies, 22

the series of benchmarking attempts from 1 to 5 would in &
fact slowly convergence to what MBH98 and similar studies 60
should be compared to. But so much is not required. One  *
can and must only provide a realistimver boundon the '
level of significance (cf. MMO05), may it come from whatever
stochastic process. Actually, “whatever” is not entirely true rig. 5. As Fig. 4, using nonsense predictors.
as the class of stochastic processes is not fully arbitrary, as
discussed below. With regard to 5, a benchmark has not been
estimated so far, and will not be estimated here. The lessowoutliers with very good scores-é45%). These are possible,
of 83 is that all benchmarks 1—4 are inflated by the temporalas we saw, if the predictors are sufficiently persistent, and
separation of calibration and validation sets, and more real€alibration and validation sufficiently separated in the time
istic values are to be expected from multi-crossvalidation. domain.

For each of the 36 flavors | have therefore repeated the The degree to which the proxy predictions outperform
analysis of 85, with the proxies being replaced by red noisetheir nonsense pendants is depicted in the last Fig. 7; it shows
series. Specifically, for each proxy a fractionally integratedfor each flavor the respective Mann-Whitney test statistic.
noise series is generated whose memory paramgteres-  Except for the flavore=13x the values are well beyond the
timated from the proxy using log-periodogram regression1% significance level of the standard normal null distribution
(Geweke and Porter-Hudak, 1983; Brockwell and Davis, of the test (obtained if both samples come from the same pop-
1998). To obtain more robust estimatesidfused here, like  ulation). The highest values are, like in Fig. 4, attained by the
MMOS5, thefull proxy record from 1400 to 1980; the corre- 2xx flavors that are based on predictand EOF filtering. The
sponding estimates varied betweg¢a—0.17 andd=0.85. x61 flavors, i.e. those using RegEM, are also large, which is
Note that the log-periodogram estimation is slightly different possibly due to the overall reduction R spread for those
from the method applied by MMO5 (which is based on Hosk- flavors (see above).
ing, 1984). Neither method is perfect, as both rest on various Now one thing is still unresolved: Why do the non-
approximations (cf. Bhansali and Kokoszka, 2001) that pro-sense predictions yield non-vanishing score even for the well
vide little more than a rough guess of what the “true” mem- mixed, representative samples? — A nonsense prediction has,
ory parameter might be. The noise generation was redonby definition, no skill. In an ideal world, which among other
for each of the 300 partitions (to remove sampling effects).things has infinite samples and truly independent validation,
The result is shown in Fig. 5. Like in Fig. RE andCE it would have a cross-validity gd=0 and thus, using Eq. (5),
values are similar. All scores are smaller compared to theC E<0. In the real world of finite samples, this condition is
corresponding proxy predictions, with a greater spread pewiolated. The 127 cases/years of instrumental data capture
flavor. They are nonetheless not negligible. Analogously totoo few degrees of freedom to facilitate proper independent
the proxies, the scores are generally better for flavors of thevalidation sets.
form 2xx, with median levels varying about 10%. For each The inflation of scores is thus an artifact of the imperfect
flavor, also included are the experiments with full temporal verification. The validity of a calibrated regression equation
separation. Some of thiRE scores exceed 50%, like the triv- is partly inherited by the (no longer independent) validation
ial predictor (54% forp=311). As an example, Fig. 6 shows set and creates skill there. This is aggravated by the presence
the distribution of the 300 predictions for the flaugr222, of strong trends, such as those seen in many of the proxy
in terms of validationRE and in comparison to the proxy and temperature series in the instrumental period. The inflat-
predictions. We clearly see different distributions, the non-ing effect has two consequences: First, it affects all recon-
sense predictions being more spread and generally shifted tstructions that are based on the instrumental period, includ-
smaller RE values, varying roughly about 20%. Note that ing those based on real proxies. The cross-validity estimates
this is about the score of the trivial predictor for representa-from this study, along with most others reported in the liter-
tive calibration sets, depicted in Fig. 3. There are nonethelesature, have yet to be adjusted (downgraded) for this effect.

i ——— }
\\»HH‘ }
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This suggests to use direct, formula based approaches suc’
as those of Eq. (7). Second, the estimation of the significance
level from the noise series requires the adequate represente
tion of the persistence properties of the proxies. Incorrect | L e o
estimation entails incorrect significance levels. For example,

increasing the estimated memory paramétefthe noise se-
ries by 50% enhances their verification scores considerably,
with the result that the proxy reconstructions are rendered
insignificant for all flavors (not shown).

cases

7 Conclusions

The analysis poses three questions:

0,
-30 -20 -10 0

10 20 30 40 50
RE [%]

1. How do we interpret the estimat&zlelsof reconstruc-
tion skill?
Fig. 6. Histogram ofR E from proxy and nonsense prediction using
flavor ¢=222. Proxy predictions show less spread and generally
3. How are possible answers to 1. and 2. affected by thedreater skill. Note, however, that high scores are also obtained from
significanceanalysis? nonsense predictions.

2. How do we interpret the resultirgpreadin that skill?

ad 1: It was found that realistic estimates of skill vary

about 25%, equally foRE andCE. The results were ob- for the proxy predictions — from this and from any compara-
tained using a well confined testbed of proxy and temper-le study — a substantial amount of the estimated verification
ature information through 127 instrumental years, with al-skill is likely to be spurious and must further be downgraded.
most no gaps. The proxies represent a standard set of whathe significance level, and thus the final value of the recon-
is available back to AD 1400. The set of temperature gridstructions, depends strongly on the persistence properties. A
points does not cover the entire globe, and its areal averversion with memory parameters increased by 50% rendered
ages serve only as approximations to the full NHT averageall reconstructions insignificant. This is important insofar as

but it is about the largest subset that is rigorously verifiable.well established methods for their estimation do not (yet) ex-
On this background, previous estimates of NHT reconstrucist.

tion skill in the range ofR E=50% appear much too large. |tjs unknown how such a downgrading should be done nu-
They are inflated by the use of a non-representative calibramerically, producing a final overall verification skill that for
tion/validation setting in the presence of trended data. ~  the best flavors is likely to be around 20%, with large uncer-

~ ad 2: Crossvalidation of any type (single, double, mult)) tainties. Are such levels of skill sufficient to decide the mil-

is @ means to estimate the distribution of unknowns (herejennial NHT controversy? — Inserting a value RE=20%

the reconstruction skill). As there is no a priori criterion to jto Eqg. (8) gives a reconstruction uncertainty #t=0.43 K.
prefer a specific calibration set, all such sets receive equak one were to focus the controversy into the single question:
weights before and after the analysis (this is in conflict with\y;35 there a hemispheric Medieval Warm Period and was it
Rutherford et al. (2003) who seem to prefer onetetause  possibly warmer than recent decades? — that question cannot

similar for RE andCE, indicating that both scores actually ot in a verifiable sense.

measure the same thing. The considerable spread of most
distributions simply reflects our limited ability to estimate
skill any better, based on a sample size of 127 casesl/years, .
and on an effective sample size that is even less, due to peéppendlx A
sistence.

ad 3: Reconstructions from real proxies significantly out- RE,CE,andp
perform stochastic (nonsense) predictions if those have com- ) .
parable persistence characteristics. The scores attained P! €ase of notation, we generally drop the subsaripind
the latter do not vanish, nevertheless, Wil (C E) values virite all valldqtlon vaIue; in the form_ mean plus anomaly,
varying about 10% for many flavors. This was attributed to 4+ The variance relative to the calibration meaq, can
the degraded independence of the finite validation period byhus be written (recalling that ¢ =)
memory effects, allowing portions of the calibration infor-
mation to drop into the validation. As this is equally true ((u +x — )% = ((x + 0Ac)?) = 02(1 4 A2) (A1)
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20 was not applicable. One part of the EM algorithm is a regres-
< sion of the unknown on the known variables of a field, rep-
e | ¢ * . .
15 . resenting the expectation (“E"-) step. If there are too many
explanatory variables the problem is ill-posed. RegEM over-
+ comes this by regularizing (e.g. ridge regression, principal
s component regression). The algorithm was quickly adopted
for climate reconstructions, the role of the known part being
‘e played by the proxies. But due to the relatively small num-
0 ber of proxies the problem is no longer ill-posed and it is not
clear why the much simpler EM algorithm had not been used
from the start. Moreover, the reported millennial verifica-
tion RE of RegEM is less than that of the original MBH98
(cf. Rutherford et al., 2005). The current study is the first to
favors compare the performance of EM and RegEM.
Configuration: - To control the iteration, RegEM has a
number of configuration switches that can be adjusted. The
Fig. 7. TestingRE scores of proxy vs. nonsense predictions, using following settings gave satisfactory convergence results for
Mann-Whitney test, for all flavors. The null distribution is N(0,1), most of the experiments. | used: multiple ridge regression
so that for almost all flavors the real predictions are significantly 55 g regression procedure; regularization parameter deter-
better than the nonsense predictors. mined from general cross validation (GCV); minimum rel-
ative variance of residuals: 5e-2; stagnation tolerance: 3e-
5; maximum number of iterations: 50; inflation factor: 1.0;
minimum fraction of retained variance: 0.95. This latter set-
RE x02(14 A2) = 0?(1+ AZ) — MSE ting is borrowed from Rutherford et al. (2003) who argue
CExo2=02— MSE (A2) that the GCV regularization estlm_ate is too crude in the pres-
ence of too many unknowns. This was true here as well. In
Subtracting the second equation from the first immediatelyfact, using the GCV estimate for the flavars1xx resulted
gives in RegEM reconstructions that were hardly distinguishable
from the calibration mean.

10

MW statistic
o)

-10

Now we can write Eq. (3) in the form

CE + A2
RE — —2C (A3)
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