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Abstract

A worldwide database of dissolved iron observations is used to improve simulations of

the marine iron cycle within a global-scale, Biogeochemical Elemental Cycling (BEC)

ocean model. Modifications to the model include: 1) an improved particle scavenging

parameterization based on the sinking mass flux of particulate organic material, bio-5

genic silica, calcium carbonate, and mineral dust particles; 2) desorption of dissolved

iron from sinking particles; and 3) an improved sedimentary source for dissolved iron.

Most scavenged iron (90%) is put on sinking particles to remineralize deeper in the

water column. The model-observation mismatches are greatly reduced both in sur-

face waters and in the deeper ocean. Inclusion of desorption has little effect on surface10

water iron concentrations where adsorption/scavenging is strongly dominant, but signif-

icantly increases simulated iron concentrations in the deep ocean. Our results suggest

that there must be substantial removal of dissolved iron from subsurface waters (where

iron concentrations are <0.6 nM in most regions) to match observed distributions. Ag-

gregation and removal on sinking particles of Fe bound to organic colloids is a likely15

mechanism.

The improved BEC model is used to address the relative contributions of mineral

dust and marine sediments in driving ocean productivity and observed dissolved iron

distributions. The sedimentary iron source from the continental margins has a strong

impact on open ocean iron concentrations, particularly in the North Pacific. Plumes20

of elevated dissolved iron concentrations develop at depth in the Southern Ocean,

extending from source regions in the SW Atlantic and around New Zealand. The lower

particle flux and weaker scavenging in this region allows the continental iron source

to be advected far from source areas. Both the margin sediment and mineral dust Fe

sources significantly impact global scale primary production, export production, and25

nitrogen fixation, with inputs from dust deposition having a modestly stronger impact.

Ocean biogeochemical models need to include the sedimentary source for dissolved

iron, or they will overestimate the impact of dust deposition variations on the marine
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carbon cycle.

1 Introduction

Iron has been recognized as a key micronutrient, limiting phytoplankton growth in the

oceans, beginning with field measurements and bottle incubation experiments (i.e.,

Martin et al., 1991) and later through in situ iron fertilization experiments (Coale et al.,5

1996; 2004; Boyd et al., 2000; Tsuda et al., 2003; see review by de Baar et al., 2005).

Limitation of phytoplankton community growth rates are seen in three High Nitrate, Low

Chlorophyll (HNLC) regions in the Southern Ocean, and the subarctic and equatorial

Pacific, with strong iron-limitation of the larger diatoms, and weaker iron-limitation and

strong grazing pressure on the smaller phytoplankton (Price et al., 1994; de Baar et10

al., 2005, and references therein). In addition, the nitrogen fixing phytoplankton may

often be iron-limited in subtropical and tropical waters where most of the phytoplankton

community is limited by available nitrogen (Falkowski, 1997; Michaels et al., 2001;

Berman-Frank et al., 2001; Moore et al., 2004, 2006). Thus, rates of iron input to the

oceans may ultimately control global marine productivity, modifying production directly15

in the HNLC regions and indirectly in the subtropical gyres and other low latitude areas

by modifying rates of nitrogen fixation (Falkowski 1997; Michaels et al., 2001; Gruber,

2004; Moore et al., 2006; Moore and Doney, 2007).

Iron has been incorporated as a limiting nutrient for phytoplankton growth in a num-

ber of global-scale ocean biogeochemical models (Archer and Johnson, 1999; Moore20

et al., 2002, 2004; Aumont et al., 2003; Gregg et al., 2004; Parekh et al., 2004; 2005;

Doney et al., 2006). These efforts were made possible by growing understanding of

iron cycling in the oceans, the result of numerous field campaigns, including those as-

sociated with the international Joint Global Ocean Flux Study and the iron fertilization

experiments (see Doney and Ducklow, 2006; and de Baar et al., 2005; and references25

therein). The treatment of iron in these models is still rudimentary, with a single dis-

solved pool and typically no explicit iron-ligand interactions (some ligand dynamics in
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Parekh et al., 2004, 2005; and Doney et al., 2006), due to the remaining large un-

certainties associated with the sources and sinks of iron-binding ligands, the relative

bioavailability of ligand bound iron, and the interaction of ligands with particle scaveng-

ing removal of dissolved iron. Parekh et al. (2004) examined three different models

of iron cycling in the context of an ocean box model that included: 1) a net scaveng-5

ing onto particles; 2) a scavenging and desorption model; and 3) an explicit ligand

complexation model (with globally uniform ligand concentration at 1 nM) that applied

scavenging only to the free Fe ion.

It has been recognized that the flux of iron from the sediments, including in sediment

re-suspension events, leads to high iron concentrations in coastal waters (Luther and10

Wu, 1997; Johnson et al., 1999, Chase et al., 2005). However, it has generally been

assumed that dissolution from mineral dust was the main source of dissolved iron to

the open ocean (i.e., Jickells et al., 2005), particularly in the development of ocean

biogeochemical models, most of which include only a dust source for dissolved iron

(Archer and Johnson, 1999; Aumont et al., 2003; Gregg et al., 2004; Parekh et al.,15

2004, 2005). Moore et al. (2004) included a constant sedimentary iron source of 2µmol

Fe/m
2
/day in areas where depth was less than 1100 m. However, due to the coarse grid

resolution and the necessary strong smoothing of ocean bathymetry, this iron source

was often too deep to influence surface ocean biogeochemistry, even in grid locations

directly adjacent to the continents (Moore et al., 2004). Thus, the biogeochemical20

impact of this iron source was greatly underestimated.

Several papers have suggested that the iron source from the continental margin sedi-

ments may significantly impact global iron distributions, including production and export

in waters far offshore. In the Southern Ocean, rapid advection of iron from sedimentary

sources in the SW Atlantic within the Antarctic Polar Front was suggested to account25

for high iron concentrations measured along 6
◦

W (de Baar et al., 1995; Löscher et

al., 1997). Johnson et al. (2003) noted the influence of the continental iron source

extending well into the North Pacific subtropical gyre. Elrod et al. (2004) estimated

a very large input of dissolved iron from continental shelf sediments of 8.9×10
10

mol
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Fe/yr based on benthic chamber flux data (Berelson et al., 1996, 2003). They sug-

gested the sedimentary source is at least as large as the inputs of soluble iron from

mineral dust, and noted the apparent continental shelf influence extended hundreds of

km offshore. They also found a strong relationship between iron release and organic

carbon oxidation in the sediments, indicating sediments beneath productive regions5

should have significantly higher release of dissolved iron (Elrod et al., 2004). Johnson

et al. (2005) found strong offshore transport of dissolved iron by eddies into the gulf

of Alaska. Lam et al. (2006) found evidence for offshore advection of particulate and

dissolved iron from the margin over 900 km to Station P in the gulf of Alaska. In their

review of iron distributions in the oceans, de Baar and de Jong (2001) noted the high10

concentrations of iron often observed close to the continental margins, with the impact

of this source often extending far offshore.

In a companion paper, we present a new database of dissolved iron distributions

throughout the world ocean, noting a strong apparent influence of the continental iron

source with high values near the continental margins and steadily decreasing offshore15

(Moore and Braucher, this issue, hereafter referred to as MBa). In this paper we at-

tempt to improve several key aspects of iron cycling in the Biogeochemical Elemental

Cycling (BEC) model, including an improved sedimentary source for dissolved iron.

The BEC model includes several key phytoplankton functional groups (diatoms, coc-

colithophores, diazotrophs, and picoplankton) and the biogeochemical cycles of key20

elements (C, N, P, Fe, Si, and O). The observational database is used to evaluate and

constrain the model. We then use the improved model to examine the relative roles

of the sedimentary and mineral dust sources for dissolved iron in driving oceanic dis-

solved iron distributions and the marine biogeochemical cycles of carbon and nitrogen.

2 Methods25

The biogeochemical elemental cycling (BEC) model used here includes an ecosystem

component with four phytoplankton functional groups (diatoms, diazotrophs, picophy-

1283

http://www.biogeosciences-discuss.net
http://www.biogeosciences-discuss.net/4/1279/2007/bgd-4-1279-2007-print.pdf
http://www.biogeosciences-discuss.net/4/1279/2007/bgd-4-1279-2007-discussion.html
http://www.copernicus.org/EGU/EGU.html


BGD

4, 1279–1327, 2007

Sources of dissolved

iron to the World

Ocean

J. K. Moore and

O. Braucher

Title Page

Abstract Introduction

Conclusions References

Tables Figures

◭ ◮

◭ ◮

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

EGU

toplankton and coccolithophores), multiple potentially growth limiting nutrients (nitrate

ammonium, phosphate, dissolved iron, and silicate), and one zooplankton group. The

coccolithophores are simulated as a dynamically varying fraction of the small phyto-

plankton group. The model also tracks the distributions of dissolved organic matter,

dissolved inorganic carbon, dissolved oxygen, and alkalinity. Sinking particles of par-5

ticulate organic matter (POM), particulate iron (pFe), biogenic silica (bSi), calcium car-

bonate (CaCO3), and mineral dust are treated implicitly, assumed to sink and rem-

ineralize at the same location where they are formed (Moore et al., 2004), where the

remineralization profiles are determined from the mineral ballast model of Armstrong

et al. (2002). The BEC model runs within the ocean circulation component of the Com-10

munity Climate System Model (CCSM, Collins et al., 2006; Yeager et al., 2006). The

BEC model has been described in detail elsewhere (Moore et al., 2002, 2004; Moore

and Doney, 2007). Here we focus on key aspects of iron cycling in the model relevant

to the present study (see also MBa, this issue).

The phytoplankton groups have a variable Fe/C ratio that changes dynamically as a15

function of ambient dissolved iron concentrations, allowing a decrease in the ratio un-

der low iron concentrations. The optimum Fe/C ratio is set at 6µmol/mol for all groups

except the diazotrophs, which have a higher ratio of 40µmol/mol. These ratios can

decline to values of 3µmol/mol and 15µmol/mol under strongly iron-limiting conditions

(see Moore et al., 2004 for details). In the companion paper we showed that the model20

tends to overestimate surface iron concentrations in the standard configuration. In this

work, we lower the half-saturation constants for iron uptake in part to address this de-

ficiency, to values of 0.04 nM for the small phytoplankton, 0.06 nM for the diazotrophs,

and 0.09 nM for the diatoms. These values are within the range reported in the litera-

ture. A half-saturation constant of 0.035 nM was estimated for community uptake in the25

tropical Pacific (Price et al., 1994). The rates for large diatoms are often significantly

higher than our value (>0.2 nM, Timmermans et al., 2004; de Baar et al., 2005) but

lower rates have been observed for smaller diatoms from HNLC regions (0.12 nM for

the Iron Ex II diatom dominated bloom, Fitzwater et al., 1996; diatom values of 0.05–
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0.13 nM for the Ross Sea, Coale et al., 2003). Kudo et al. (2006) estimated values

of 0.10 nM and 0.08 nM for the micro and nano-sized phytoplankton fractions in the

SERIES experiment in the NW subarctic Pacific.

2.1 Improving the BEC iron scavenging parameterizations

We began by modifying some of the basic assumptions of the iron scavenging parame-5

terizations of Moore et al. (2004). Typically ocean biogeochemical models assume that

100% of the dissolved iron scavenged onto particles is lost to the sediments (Moore et

al., 2002; Christian et al., 2002; Aumont et al., 2003; Parekh et al., 2005). This is unre-

alistic as most of the particles scavenging iron in the upper water column will not even

reach the ocean floor but remineralize in the upper ocean releasing the iron. Moore10

et al. (2004) put 10% of the scavenged iron into sinking particulates and allowed it to

remineralize within the water column. Here we increase this fraction to 90%. The re-

maining 10% is assumed lost to the sediments and provides the ocean sink necessary

to balance inputs from the atmosphere and the sediments (the model does not include

a sedimentary diagenesis component). This more realistic treatment of scavenged iron15

allows the dust deposition (and sedimentary iron) signal to penetrate deeper into the

ocean as iron is scavenged, released, then scavenged again down the water column.

We also increased the fraction of sinking dust particles that reach the ocean floor

from ∼85% to ∼92% over a 4000 m water column. The remineralization length scale

for the ”hard” dust fraction (97% of the dust that enters the ocean as sinking particu-20

lates) is increased from 40 000 m to 120 000 m. Thus, only about ∼3% would dissolve

over a 4000 m water column (see Armstrong et al., 2002 and Moore et al., 2004 for de-

tails of the particle remineralization scheme). The remaining 3% that enters the ocean

as sinking particulates is remineralized in the upper water column with a length scale

of 600 m. Two percent of the dust flux is assumed to dissolve instantaneously upon25

deposition to the oceans. Biogeochemical models typically include only this surface

dissolved iron input flux. However, it seems likely that some slow additional dissolu-

tion of iron occurs as dust particles sink through the water column, particularly within
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low pH microenvironments in aggregates or zooplankton guts, and through biological

“stripping” of iron from particles as suggested by the recent FeCYCLE field experiment

results (Frew et al., 2006). The three percent that dissolves in the upper water col-

umn reflects the fact that these biological processes are weighted towards the surface

ocean following the general distributions of organic material and zooplankton biomass.5

Dust deposition is from the climatology of Luo et al. (2003).

Moore et al. (2004) scaled iron scavenging by the sinking particle flux of particulate

organic carbon (POC) plus mineral dust. Here we use a modified definition of sinking

particle mass flux in conjunction with a first order scavenging coefficient (Febase =

3.84e-3 day
−1

), where the sinking mass = POC * 6 + biogenic silica (bSi) + CaCO310

+ mineral dust (all in units of ng/cm
2
). Unlike in Moore et al. (2004), no maximum

scavenging rate is imposed. Sinking mass flux in the deep ocean is dominated by

the mineral ballast components (bSi, CaCO3, and lithogenic, Armstrong et al., 2002;

Klaas and Archer, 2002). Thus their inclusion allows the model to more accurately

capture the sinking flux available to scavenge iron in the deep ocean. Sinking flux in15

the upper ocean is strongly dominated by the particulate organic matter (POM), which

decreases more rapidly with depth due to a shorter remineralization length scale. The

POC flux is multiplied by a factor of 6 to reflect the non-carbon portions of organic

matter, and to reflect an increased scavenging efficiency in the upper ocean due to

higher particle concentrations, “stickier” freshly produced organic material, and more20

colloidal organic material (COM) thought to be important in trace metal scavenging, all

of which likely scale to first order with POC flux and biological activity. Recent studies

point to a strong influence of COM on the scavenging and removal of
234

Th from upper

ocean waters, and perhaps throughout the water column as organic coatings on the

mineral substances sinking through the water column (Guo et al., 2002; Passow et25

al., 2006; see review by Santschi et al., 2006). Similar processes likely influence the

scavenging and removal of iron. We note that in reality the specific organic coatings

and particle size distributions will strongly influence trace metal scavenging (i.e. Burd

et al., 2000; Savoye et al., 2006). These factors are not simulated in the model and
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here we propose a bulk formula that attempts to parameterize these effects as a net

scavenging onto the sinking particles. Thus, our approach is similar to the simplest

models of thorium scavenging (see review by Savoye et al., 2006) except that we do

include an explicit desorption of iron from the sinking particles (see below).

We also increase scavenging rate rapidly as dissolved iron concentrations exceed5

0.6 nM, implicitly including the ligand effect as in Moore et al. (2004). Thus, we as-

sume that almost all of the iron at concentrations less than 0.6 nM will be bound to

organic ligands and have reduced scavenging loss rates. Unlike in previous work,

however, scavenging rates are not progressively reduced as ambient iron falls to lower

concentrations. In the companion paper we suggested that this led the BEC model10

to overestimate iron concentrations at lower ambient levels (<∼0.3 nM, MBa, this is-

sue). Here we demonstrate that a much better match to observations is obtained if

scavenging where iron is less than 0.6 nM is simply a first order rate function of the

sinking particle mass. Also, new in this work is a desorption release of dissolved iron

from sinking particles, based on a first order rate constant as suggested for Th (Bacon15

and Anderson, 1982) and applied to iron by Parekh et al. (2004). As sinking particles

are implicit in the model and assumed to instantly sink and remineralize through the

water column at the same location where formed (Moore et al., 2004), this rate is not

expressed in units of time, but rather length (6.0e-6 cm
−1

). This can be converted to

the more familiar time units if we assume some mean sinking speed (at 100m/day the20

desorption rate would be 0.06 day
−1

). Parekh et al. (2004) examined desorption rates

between 0.055–0.27 day
−1

). Desorption is only applied to the particulate Fe sinking

pool coming from particle scavenging and biological uptake and export, not to the inert

Fe in the non-dissolving portion of the mineral dust particles. We conduct two sen-

sitivity simulations to examine the impact of this desorption on iron distributions (see25

below).

We also modify the sedimentary source for iron in the model. Moore et al. (2004) in-

cluded a simple sedimentary source of 2µmol/Fe/m
2
/day everywhere that ocean depth

on the coarse-resolution model grid was less than 1100 m. This improved the model
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results in some areas (like the Ross Sea for example), allowing the model to cap-

ture observed phytoplankton blooms in otherwise HNLC areas. However, as noted

by Moore et al. (2004) the sedimentary source was only weakly captured due to the

coarse resolution of the grid and the necessary smoothing of bottom topography. Thus,

in some areas where shelf sediments are known to be important sources of iron, like5

the U.S. west coast (Johnson et al., 1999), the bottom level of the ocean model was

often much deeper than 500 m, even in grid cells directly adjacent to the continent.

Thus, very little of the iron released in the bottom grid cell reached surface waters to

influence biological production. To correct for this problem, here we use a sedimentary

source that is weighted by the actual ocean bathymetry from the ETOPO2 version 2.010

2-min global gridded database (U.S. Dept. of Commerce, 2006). Thus, for each cell in

the model, we calculate what fraction of the cell area that would consist of sediments

based on the high resolution ETOPO2V2 database (what portion of the ocean floor

in ETOPO2V2 had depths that lie within that grid box). This effectively decouples the

sediment source from the physical ocean grid, and provides for a much more realistic15

distribution of the sedimentary iron source. Figure 1 shows the percentage area with

sedimentary flux integrated through the upper 281 m from the old scheme (100%, only

in bottom ocean grid cell) compared with the new sedimentary source based on the

ETOP2V2 dataset. It can be seen that the influence of the continental shelves are

much better accounted for in many areas where they previously had no influence on20

sedimentary iron flux in the upper ocean. In addition, important iron sources surround-

ing islands in the open ocean are represented, such as the shallow waters associated

with the Kerguelen Plateau and Kerguelen Islands (70
◦

E, 50
◦

S, see Moore and Abbott,

2000; Blain et al., 2001).

We also employ a more sophisticated estimate of the Fe flux from sediments than the25

constant value used previously. Elrod et al. (2004) found a strong correlation between

iron release from sediments and organic carbon oxidation in the sediments (0.68µmol

Fe/mmol Cox/m
2
/day) using benthic flux chamber data off the N. American west coast

from Berelson et al. (1996, 2003). We simplify this relation using 0.68µmol Fe/m2/day
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release for each mmol of C m
2
/day sinking into the ocean grid cell where sedimentary

flux is being calculated. This iron flux is then weighted by the % sedimentary area

computed from the ETPO2V2 data. Initially, the sedimentary iron flux was determined

by the sinking C fluxes from year 3000 of the Old BEC simulation (see below). As this

iron input can modify the organic carbon export, an initial simulation with the iron cycle5

modifications was run for 20 years, and then the sedimentary flux was re-computed

based on the sinking organic C flux from year 20 and used in all subsequent simula-

tions. Ideally the iron flux could be dynamically, linked with the sinking POM flux in

the context of a sedimentary diagenesis model. There is no explicit depth dependence

on the sedimentary iron source, it is a function of only the sinking POC fluxes (thus10

there are much higher iron fluxes beneath productive continental margins, and even

in the deep ocean there is a small source). Elrod et al. (2004) noted a delay between

organic matter flux and iron release from the sediments of several months. We make

the simplifying assumption of a constant flux based on the annual sinking POC flux. In

several regions the resulting Fe sediment flux grid was modified to correct mismatches15

between the ETOPO2V2 and CCSM3 grids and to better match local bathymetry maps

and dissolved iron measurements (Mackey et al., 2002; Reddy and Arrigo, 2006; Bru-

land et al., 2005).

Given the assumptions and modifications to the model outlined above, we optimize

the other parameters in the BEC iron cycle to best match the dissolved iron concentra-20

tions from our observational database (MBa, this issue) by minimizing the root mean

square difference of the log-transformed model output and observational values. The

first order scavenging rate (Febase = 0.00384 day
−1

) was optimized by comparisons

with both euphotic zone (0–103 m) and subsurface observations of dissolved iron (103–

502 m, there are few observations below 502 m depth). Arguably, the subsurface ob-25

servations are preferable for this parameter tuning as they are less affected by the

uncertainties associated with surface inputs and biological uptake of dissolved iron.

However, there are far more observations in surface waters than subsurface (MBa, this

issue). Somewhat reassuringly, the optimal value for Febase was similar for euphotic
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zone and subsurface waters (∼6% higher for subsurface waters), implying a similar de-

pendency on sinking particle flux. This was not the case for the coefficient (Chigh) used

in the equation increasing particle scavenging at high iron concentrations (see MBa,

this issue). The optimal value for surface waters was a factor of 3–4 higher than in

subsurface waters. For our new optimized parameter set we use an intermediate value5

(Chigh=3300) that gave similar rms model-data differences in surface and subsurface

waters for high-end iron concentrations (where both model and observation exceeded

0.6 nM). We will show that this leads to a positive model bias in surface waters and

a negative bias in subsurface waters where iron concentrations are on the high-end

(>0.6 nM). The new iron scavenging parameterization is summarized in Eqs. (1)–(3)10

below, where the scavenging rate is given by Febase * the sinking mass flux, and is

increased under high iron conditions (above HighFe = 0.6 nM). The scavenged iron is

removed from the dissolved pool and 90% is put into sinking particulate iron (10% is

presumed lost to the sediments).

ScavRate=Febase ∗ (POCx6 + Dust + bSi + CaCO3) (1)15

If dFe > HighFe then ScavRate=ScavRate + (dFe−HighFe) ∗ Chigh (2)

ScavengedIron=dFe ∗ ScavRate (3)

We compare BEC model results with the modifications outlined above optimized with

the observational dataset (New BEC), with the last year from an earlier 3000 year equi-

librium simulation (the “Control” simulation described by Moore and Doney, 2007, and20

compared with observations by MBa (this issue) here referred to as the “Old” BEC).

The New BEC simulation was 201 years, long enough for the iron cycle to spin up with

a reasonably small drift (0.025% per decade drift in global mean iron concentration

over the last 20 years, a drift of 0.0024% per decade in the upper 502 m). We focus on

model output from year 201. To gauge the sensitivity to iron sources we compare with25

two additional 201 year simulations; one with only dust inputs of dissolved iron (Dus-

tOnly) and one with only sedimentary inputs of dissolved iron (SedOnly). We conduct
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several other sensitivity simulations: 1) NoDesorp – does not include Fe desorption

from sinking particles; 2) LowFe – a low-end estimate of iron inputs, with a 1% surface

dissolution of the iron in mineral dust as the only source; 3) HighDesorp – desorption

rate is increased by 33% to 8.0e-6 cm
−1

, and the base scavenging rate is increased to

0.00395 day
−1

. In the LowFe simulation particle scavenging of iron occurs only where5

iron concentration exceeds 0.6 nM. Except for these noted differences, all the sensitiv-

ity simulations are identical to the New BEC simulation. Atmospheric forcings for all

simulations are from a from a late 20th century NCAR-NCEP climatology (Large and

Yeager, 2004).

To evaluate the simulations against the observational database and tune model pa-10

rameters we log transform the observations and model output and then compute the

correlation coefficient (r) and the root mean square (rms) difference. Log transforma-

tion provides for a more equal weighting of model-data differences across the rela-

tively wide range of iron concentrations (rather than weigh high-end values much more

strongly than low iron values without log transformation).15

3 Results

The total dissolved iron inputs to the oceans from our improved sedimentary source

(2.0e10 molFe/yr) is of similar magnitude as the total inputs from mineral dust

(2.4e10 molFe/yr, Fig. 2). The sedimentary source is mainly coming from the conti-

nental margins at relatively shallow depths (81%<502 m, compare Figs. 2b and d).20

More of the total release from mineral dust is in the deep ocean (42%>502 m). After

201 years, the combined dust and sediment sources are balanced by the 10% of scav-

enged iron that is lost to the sediments (Fig. 2c). Comparing the spatial patterns seen

in Fig. 2, it is apparent that much of the iron input in the high dust deposition regions

in the North Atlantic and North Indian oceans, and along the continental margins is25

lost to scavenging locally before the circulation can advect it very far. Our estimate for

sedimentary dissolved iron input is somewhat lower that the value of 8.9e10 molFe/yr
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of Elrod et al. (2004). This difference is likely due to our use of model simulated or-

ganic carbon export (typically lower than observations on the continental shelves) to

estimate the iron flux. Previous estimates for dissolved iron inputs from dust, typically

only including a surface dissolution include 9.6e8–9.6e9 molFe/yr (Fung et al., 2000)

2.4e9 molFe/yr (Aumont et al., 2003), 3.75e10 molFe/yr (Moore et al., 2004), and 2.6e95

molFe/yr (Parekh et al., 2005). Recently estimates based on higher surface solubilities

for the iron in mineral dust have led to estimates of 2.0e10–8.9e10 molFe/yr (Luo et al.,

2005) and 1.3e11 molFe/yr (Fan et al., 2006).

We next compare the simulated iron concentrations and distributions from the Old

BEC simulation with those from the New BEC simulation in the context of the observa-10

tional database. The observations from surface waters (0–103 m) and from subsurface

waters (103–502 m) are compared with the simulated values in Fig. 3, where the model

output has been sub-sampled from the same month, location, and depth as the obser-

vations. In the companion paper, we noted a strong tendency for the Old BEC to over-

estimate iron concentrations at lower iron values in the open ocean subset (<∼0.3 nM,15

MBa, this issue). The same pattern is apparent here in the full observational dataset

(Figs. 3a and c). This tendency is greatly reduced in the New BEC simulation, which

did not include the progressive decrease in scavenging rates at low iron concentrations

used in the Old BEC model (Figs. 3b and d). Thus, a first order dependence on sinking

particle concentration (where iron <0.6 nM) provides a much better fit to the observa-20

tions. In general, the New BEC simulation is greatly improved relative to the observa-

tions with the log-transformed, r-correlation value increasing from 0.40 to 0.62 (+57%)

in surface waters (Figs. 3a and b), and from 0.49 to 0.63 (+29%) in subsurface waters

(Figs. 3c and d). Similarly, the root mean square difference (after log-transformation)

between simulated and observed iron values is reduced in the New BEC simulation by25

17% in surface waters and by 10% in subsurface waters (Fig. 3). The basin scale pat-

terns seen in Fig. 3 with high values in the North Indian and North Atlantic oceans and

lower values in the Southern Ocean, are discussed in detail in the companion paper

(MBa, this issue).
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The largest data-model mismatch in the Old BEC simulation comes from data col-

lected along the west coast of South America by Bruland et al. (2005) that strongly

reflects iron input from sedimentary sources on the continental margin (the black dia-

monds in the lower right corner of Fig. 3a). This mismatch is much reduced in the New

BEC simulation (Fig. 3b). Many of these data points fall in a straight line (constant iron5

concentration) in the BEC model output. This is the result of high resolution onshore-

offshore transects, where multiple measurements were made that fall within a single

grid box of the BEC model. This highlights one difficulty of comparing field observa-

tions with the model output. Somewhat apparent in Figs. 3b and d is the tendency for

the model to overestimate in surface waters and underestimate in subsurface waters10

the high-end iron concentrations (>0.6 nM).

Comparing Figs. 3b and d, it can be seen that there is considerably greater scatter

around the one-to-one line (and higher rms difference) in surface waters than in sub-

surface waters. This largely reflects the uncertainties associated with the biological

uptake and removal from the euphotic zone. This removal is impacted by numerous15

parameters in the model including the half-saturation values for iron uptake by the dif-

ferent phytoplankton groups. Other factors such as mixed layer depths and upwelling

rates, the concentrations of the other nutrients also impact this biological removal in

surface waters. Thus, the subsurface iron concentrations may be a better indicator of

how well the scavenging parameterizations for iron are working in the model. In this20

respect, the relatively narrow spread around the one-to-one line, low rms difference,

and good correlation with observations seen in Figure 3D are encouraging.

Basin mean iron concentrations from the observations are compared with the New

and Old BEC values (where again model output has been sub-sampled at the same

month, location, and depth of each observation) in Table 1. Deep ocean values25

(>502 m) in the North Atlantic and North Pacific in the New BEC simulations are closer

to the observed values than in the Old BEC simulation, but still too low. The New BEC

simulation is much closer to observed values in the open ocean, surface waters of the

Southern Ocean, equatorial, South, and North Pacific (Table 1). Mean New BEC sur-
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face value are lower by 52% in the Southern Ocean and by 36% in the North Pacific

relative to the Old BEC, and in each case in good agreement with the field observa-

tions. Surface values in the North Atlantic and North Indian oceans are somewhat

higher in the New BEC simulation than in the observations or the Old BEC simulation.

Another way to evaluate the model simulations is to examine the binned iron distri-5

butions over different depth ranges. Figure 4 compares the binned distributions (bin

width 0.05 nM) from our open ocean subset of the observational database with model

output that again has been sub-sampled at the same month, depth, and location as

the observations. This gives the model output the same sampling biases present in

the observational data. The thick line in Fig. 4 represents the observational dataset,10

the thin line the Old BEC simulation, and the medium thickness line the New BEC sim-

ulation. Note the decline in the total number of observations with increasing depth.

The observations have a primary peak in the surface distribution at low iron concen-

trations (<0.2 nM, Fig. 4a). This primary peak is shifted to progressively higher values

as depth increases (∼0.15–0.35 nM in subsurface, Fig. 4b, and a broader peak in the15

deep ocean centered on ∼0.6–0.7 nM, Fig. 4c). It can be seen at all depth ranges, that

the New BEC simulation has binned distributions much closer to the observations than

the Old BEC. Both the observations and the New BEC simulation have a strong, low

iron peak in surface waters (∼0.05–0.2 nM) with a secondary broader peak centered

at ∼0.7 nM. This higher iron peak is larger in the observations, while both BEC simu-20

lations have another peak at iron concentrations >1.2 nM, illustrating the high bias in

the BEC model in surface waters. In subsurface waters (103–502 m, Fig. 4b), the low

iron peak from the New BEC simulation is in much better agreement with the obser-

vations than the Old BEC, but is shifted to slightly higher iron concentrations. In the

deeper ocean (>502 m) the Old BEC simulation has a very narrow distribution peaking25

between 0.45–0.5 nM. The New BEC simulation has a broader distribution also seen in

the observations (Fig. 4c). Here the BEC has less values above 0.65 nM than are seen

in the observations, illustrating the subsurface, underestimate of high-end iron values.

We compare the spatial patterns of annual mean iron concentration over several
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depth ranges in Figs. 5–7 for the Old BEC, New BEC, SedOnly, and DustOnly simula-

tions. We focus first on differences between the Old BEC and New BEC simulations.

The New BEC simulation has high iron concentrations in surface waters along the con-

tinental margins in many regions due to the improved sedimentary source (Fig. 5b). A

similar pattern is seen in the observational data in the eastern North and South Pacific,5

in the southwestern Ross Sea, and south of Australia, nearly everywhere onshore-

offshore transects for dissolved iron are available (Fig. 5e). In both the model and the

observations these high iron values do not extend far from the continental source re-

gions into the open ocean, depleted by high scavenging rates and biological uptake

in surface waters. In the subsurface observations (and in the New BEC simulation)10

the influence of the continental shelf source can often be seen to extend further off-

shore (Figs. 6b and e). In particular in the sub-euphotic zone observations in the North

Pacific there is a consistent pattern of higher iron concentrations along the margins,

decreasing towards the center of the basin (Figs. 6e and 7e).

Another distinct pattern apparent in the observations is the tendency for much higher15

sub-euphotic zone iron concentrations in the mid-to-high latitude North Pacific than in

the open Southern Ocean (Figs. 6e and 7e). This pattern is captured to a large extent

in the New BEC simulation, but not in the Old BEC simulation (Figs. 6a–b, 7a–b). In

the Old BEC simulation where dissolved iron is mainly driven by dust inputs the North

Pacific has iron concentrations only marginally higher than the Southern Ocean. We20

show in subsequent sections, that it is, in part, the improved sedimentary iron source

that allows the New BEC simulation to capture this observed iron distribution pattern.

Putting a higher fraction of scavenged iron on the sinking particles is also a factor.

Comparing the New BEC and SedOnly simulations there is an expected drastic de-

crease in surface iron concentration in the North Atlantic and North Indian oceans25

without the dust source for iron (Figs. 5b–c). More surprising is the basin-wide decline

in surface and subsurface iron concentrations across the Pacific with only sediment

(Figs. 5b–7b) or with only dust (Figs. 5c–7c) sources for dissolved iron, indicating that

both sources contribute substantially to open ocean iron concentrations. A similar pat-
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tern is seen in most other areas outside the high dust deposition areas in the North At-

lantic and North Indian oceans. Comparing panels b–d in Figs. 6 and 7, it can be seen

that the elevated iron concentrations in the northwest North Pacific are mainly driven

by the sedimentary iron source that is mixed and advected offshore, with a lesser con-

tribution from dust deposition. The sedimentary source is also more significant than5

dust in the eastern tropical Pacific (panels b–d in Figs. 5 and 6).

In several basins, the western boundary currents advect iron from the continental

source into the open ocean at high latitudes (panels b and c in Fig. 5–7). This is par-

ticularly apparent in the case of the Gulf Stream in the North Atlantic. In the New BEC

simulation in the Southern Ocean long plumes of elevated dissolved iron concentration10

can be seen extending for hundreds to even thousands of kilometers downstream of

sediment source regions around New Zealand and in the SW Atlantic sector in the sub-

euphotic zone waters (Figs. 6b and 7b). The relatively low particle export in the South-

ern Ocean and consequent weaker scavenging loss allows for advection of dissolved

iron far from the source regions. Such long range, rapid transport by the Antarctic15

Polar Front of sedimentary-derived iron was suggested to account for the high concen-

trations observed along 6
◦

W in the Southern Ocean (de Baar et al., 1995; Löscher et

al., 1997; see Figs. 5e and 6e). Our results support this idea, although iron is more

depleted in the simulations by the time it reaches this location (compare Figs. 6c and

6e). Our coarse resolution model does not capture well the narrow current and fast20

current speed associated with the Antarctic Polar Front, so there is more time for iron

removal during transit in the model.

We calculated the basin-scale mean iron concentrations for each of our simulations

to further gauge the relative influences of the sedimentary and mineral dust sources

for iron (Table 2). Compared with the New BEC simulation, surface iron concentrations25

in the SedOnly simulation decline by 72% and 60% in the North Atlantic and North

Indian oceans, not surprising given the recognized importance of dust deposition in

these regions. However, in the DustOnly simulation iron declined by 18% in both the

North Atlantic and North Indian oceans, indicating some influence on the basin mean
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value even in these high deposition areas. A very strong sedimentary influence was

seen in the North Pacific, where mean surface iron concentration declined by 73% in

the DustOnly simulation relative to the New BEC simulation (Table 2). Some of this is

due to the large decreases (more than an order of magnitude) in the coastal regions,

but as illustrated in Fig. 5, open ocean concentrations are also impacted. Removal5

of the dust source for iron in this region decreases mean iron concentration by 32%

in the North Pacific. A similar pattern is seen in the equatorial Pacific where mean

iron declined by 82% in surface waters, and 54% in subsurface waters in the DustOnly

simulation. The Southern Ocean mean iron concentration also decreased by 43%

in surface waters without the sediment source, and by 24% without the dust source10

for iron (Table 2). In each case there is a contribution towards the mean value from

the large, localized reductions along the continental margins, and a contribution from

more modest reductions in the open ocean. To distinguish between these margin and

open ocean effects, we also computed mean iron concentrations in the open ocean

North Pacific (160–220
◦

E and 15–45
◦

N) in these three simulations, with mean iron15

concentrations of 0.19 nM for the New BEC, 0.075 nM for the SedOnly, and 0.085 nM

for the DustOnly simulations. Thus, removing the dust source reduced open ocean iron

concentrations by 60%, and removing the sediment source decreased open ocean

iron concentrations by 55%. Both sources significantly impact the open ocean iron

distributions, with a moderately stronger impact from dust.20

We also examined the impacts of each source on globally integrated primary produc-

tion, export production, and nitrogen fixation by comparing output from the New BEC,

SedOnly, and DustOnly simulations. Due to its more diffuse input pattern the removal

of the dust source had a stronger impact on these global-scale biogeochemical fluxes

(Table 3). Primary production in the SedOnly simulation was reduced by 12% relative25

to the New BEC simulation, with export production reduced by 15% and nitrogen fixa-

tion reduced by 38%. Reductions in the DustOnly simulation were still quite significant,

relative to the New BEC simulation, primary production was reduced by 5%, export

production by 10%, and nitrogen fixation by 34%. Thus, both sources for dissolved iron
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contribute substantially in driving productivity and ocean biogeochemical cycles, with a

modestly stronger impact from the mineral dust source.

In some respects, these impacts on the carbon cycle do not seem proportional to

the drastic declines in mean iron concentrations seen in Table 2. There are very large

decreases beneath the main dust plumes and in shallow waters along the continental5

margins, much of this is “excess” iron that would otherwise be removed by scaveng-

ing in these iron-replete regions. Also, because scavenging removal rates of dissolved

iron in the model progressively increase at iron concentrations above 0.6 nM, remov-

ing either iron source lowers iron concentrations, decreasing scavenging losses for the

other source as iron concentrations are reduced in high-iron areas. Even outside these10

high-iron areas, some of the iron decrease occurs in places where iron is not the nu-

trient limiting phytoplankton growth rates. Lastly, there is a downstream effect, where

reductions in production and export in HNLC regions are partially offset by increases

elsewhere due to lateral transport of nutrients (see Dutkiewicz et al., 2005).

In our New BEC simulation each phytoplankton functional group is iron-limited in15

their growth over about one third of the oceans (Table 3). The spatial patterns vary by

group with iron-limitation for the small phytoplankton and diatoms concentrated in the

HNLC regions, and iron-limitation for the diazotrophs spread over much of the tropics

and subtropics (see Moore et al., 2004). In the SedOnly and DustOnly simulations this

iron-limited area increases dramatically to about 60% for each group (Table 1), with20

much of the increase in the Pacific basin where both sources contribute strongly to

open ocean iron distributions.

We compare output from the New BEC simulation with the LowFe, NoDesorp, and

HighDesorp sensitivity simulations in Figs. 8–10. It can be seen that the inclusion of

an explicit desorption of iron from sinking particles has little effect in surface waters,25

increasing dissolved iron concentrations by a few percent in most regions (Fig. 8, pan-

els a, b, and d, Table 2). This is because the release of iron is quite small relative to

the forward scavenging rate onto particles. The similarity in surface iron concentrations

leads to similar global biogeochemical fluxes in these simulations (Table 3). In partic-
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ular, the HighDesorp simulation has nearly identical rates of nitrogen fixation, primary

and export production (Table 3), and fits the surface iron observations essentially as

well as the New BEC simulation (not shown).

Deeper in the ocean where particle scavenging is reduced, including desorption in-

creases iron concentrations significantly in some regions (by 29% in the deep North5

Pacific and Southern Ocean, see Table 2, compare panels a and b in Figs. 9 and 10).

Deep ocean concentrations are further increased in these regions in the HighDesorp

case (modified by the higher base scavenging rate in this simulation). In deep ocean

areas where iron concentrations exceeds 0.6 nM, desorption has less effect due to the

high scavenging rates. Thus, these three simulations have similar deep ocean concen-10

trations in the deep North Atlantic and North Indian oceans (Fig. 10, panels a, b, and

d).

Comparing the New BEC simulation and the LowFe simulation, both simulations

have similar, low concentrations in the lower latitude surface waters, away from the high

dust deposition regions (Fig. 8, panels a and c). In the subsurface waters though, the15

LowFe simulations has very high iron concentrations (>0.5 nM in most regions), well

above the observed values (Fig. 9, panels a, c, and e). Even with the very low (minimal)

iron inputs in this simulation, subsurface iron concentrations are grossly overestimated

without substantial removal of iron by scavenging where iron <0.6 nM. This elevated

subsurface iron strongly impacts surface waters in regions of deeper winter mixing and20

upwelling, as in the Southern Ocean and eastern equatorial Pacific (Fig. 8c). Aver-

aged over the equatorial Pacific, surface concentrations in the LowFe simulation are

slightly lower in than in the New BEC simulation (0.14 nM vs. 0.16 nM), but are more

than twice the New BEC values in subsurface waters (Table 2). Similarly, in the South-

ern Ocean the subsurface LowFe iron concentrations are more than double the New25

BEC values, and much higher than the observations (Tables 1 and 2, Fig. 9). Thus,

surface iron fields can be misleading as biological drawdown keeps iron at reasonable

concentrations, even when the inputs from subsurface waters are much too high. In

the deep ocean, the LowFe simulations are slightly above 0.6 nM beneath the major
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dust plumes, and slightly below 0.6 nM elsewhere, again with a poor match to the ob-

served iron distributions (Fig. 10, panels c and e, Table 2). The New BEC simulation

is in broad agreement with the observations in the North Pacific ocean at shallow and

mid-water depths (Figs. 5–7, panels b and e). However, in the deep ocean the model

underestimates the observed concentrations in this region, even in the HighDesorp5

simulation (Fig. 10). Further increasing the desorption rate could increase deep North

Pacific simulated values, but would also push other regions, like the Southern Ocean

to values well above the observations. It is likely that iron inputs to the North Pacific

are underestimated. This could be due to our low surface solubility for mineral dust

iron (2%), or perhaps the flux from the continental margins to the open ocean, though10

substantial, is still underestimated in this region.

4 Discussion

The results presented here indicate a strong influence of the continental margin iron

source on both the basin mean and open ocean iron concentrations, and on biological

productivity, nitrogen fixation, and the export of organic matter. Inputs from mineral15

dust deposition had a modestly stronger impact on open ocean iron concentrations

and biogeochemical cycling, but the sedimentary source was significant in all regions,

except perhaps beneath the strongest dust plumes in the North Atlantic and north-

ern Indian Oceans. Ocean biogeochemical models need to include the sedimentary

source for iron, as suggested by Elrod et al. (2004). Models without this source will20

seriously overestimate the biogeochemical sensitivity to variations in dust deposition to

the oceans. The combination of high particle scavenging and biological uptake largely

remove the high-iron, continental signal close to the coasts in surface waters, but in

subsurface waters, where losses are reduced, this continental signal can travel far

from the margin source areas.25

There is still considerable uncertainty in the strength of both major sources for dis-

solved iron. There are very few observations of dust deposition to constrain the at-
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mospheric transport models. Similarly, a number of recent studies suggest that our

constant surface solubility for the iron in mineral dust of 2% (or the 1% often used in

other studies) could be low by an order of magnitude in many regions (i.e., see Luo et

al., 2005; and references therein, also Sedwick et al., 2005; Fan et al., 2006; Bakker

et al., 2006). Thus, our simulations may significantly underestimate dissolved iron in-5

puts to surface waters from mineral dust. One uncertainty in our sedimentary source

is missing offshore transport in the model due to eddies and other mesoscale physical

processes ,which likely play an important role (Johnson et al., 2005; Lam et al., 2006).

Similarly, the model advects only dissolved iron offshore, when small particulates likely

also contribute (Lam et al., 2006). The model likely significantly underestimates the10

local scavenging loss of this iron near the source regions, as often the flux from a small

area (a few % of our grid box) is instantly diluted throughout the model grid cell, result-

ing in much lower concentrations than would happen in a finer resolution model (or in

situ). Our results are also extrapolating from a relatively small set of observations (El-

rod et al., 2004) and use model estimates of the organic carbon flux to the sediments15

(likely too low) to drive the sedimentary release of iron.

Our inclusion of an explicit desorption of iron from sinking particles improved the fit

to observations in the deeper ocean (increasing deep ocean concentrations by up to

29% in some regions), but had little impact on surface iron concentrations and upper

ocean biogeochemical cycling. This is similar to the pattern suggested for
234

Th with20

desorption generally negligible in surface waters, where high particle concentrations

lead to strong scavenging removal (i.e., Bruland and Lohan, 2004). In local and upper

ocean models, desorption of iron could likely be ignored in favor of a net scavenging

rate onto particles.

Our parameterization for increasing scavenging rates where dissolved iron concen-25

tration exceeds 0.6 nM led the model to overestimate high-end iron concentrations in

surface waters and to underestimate the high-end values in subsurface waters. The

optimum value of the coefficient Chigh, used in this parameterization, was several-fold

higher for surface waters than for subsurface waters. Several factors may drive these
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results. Iron inputs to surface waters in the high dust deposition regions may be over-

estimated, as values below our assumed 2% solubility have been observed for fresh

Saharan dust (i.e., Baker et al., 2006). In these high-scavenging regions, the scav-

enging efficiency may decrease with depth as organic coatings on sinking particles are

degraded, or as likely sites on the particles for binding iron are filled up.5

Our results suggest that relatively strong scavenging removal of iron from subsur-

face waters is required to match the observations of dissolved iron. This was true in

our simulations with relatively high iron inputs (including the sedimentary source and

some subsurface release from dust particles), and was also apparent in the sensitiv-

ity experiment with a low-end estimate of iron inputs (LowFe, constant 1% dissolution10

from mineral dust). In most regions, the dissolved iron concentrations are well below

0.6 nM in these subsurface waters, and, thus, nearly all the dissolved iron would be

bound to organic ligands (i.e., Rue and Bruland, 1995; 1997; van den Berg, 1995; Wu

and Luther, 1995). Therefore, much of this scavenging removal is likely due to aggre-

gation followed by removal on sinking particles of the colloidal ligand-bound iron (Wu15

et al., 2001; Nishioka et al., 2001; de Baar and de Jong, 2001). Models that explicitly

include the ligand and aggregation dynamics would be computationally expensive, but

could potentially improve simulations of the marine iron cycle. The parameterization of

these processes in the New BEC simulation provides a reasonable fit to the observed

iron concentrations, particularly for the subsurface waters (Fig. 3d and Fig. 6 panels20

b and e). Relatively high scavenging rates are required to match the observed iron

distributions. The residence times for dissolved iron over different depth ranges are

summarized in Table 4. Areas with high inputs of iron (where dissolved concentrations

exceed 0.6 nM) have shorter residence times due to higher scavenging rates. Upper

ocean residence times are quite short, 1.3 and 4.2 years for the upper 103 m and upper25

502 m away from the high iron regions. In the highest dust input regions beneath the

major plumes residence times are only a month or two.

The deep ocean residence time away from the high iron regions was 35 years, some-

what less than the estimate of 70–140 years by Bruland et al. (1994) for the deep North
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Pacific. De Baar and de Jong (2001) estimated surface ocean residence time of a few

months, and for the deep ocean of 15–41 years, assuming a sedimentary input equal

to inputs from dust deposition. Thus, our model results which include both sources are

of similar magnitude (Table 4). Parekh et al. (2005) estimated mean ocean residence

time of 233 years, in a simulation with a 1% surface dissolution of mineral dust as the5

only source. The higher iron inputs in our simulation require stronger scavenging re-

moval and shorter residence times to maintain realistic iron concentrations. Bergquist

and Boyle (2006) estimated a longer scavenging residence time of 270 years based

on differences in deep ocean measurements of dissolved iron at North Atlantic and

South Atlantic sites, the estimated transit time between the two sites, and an estimated10

input of dissolved iron from sinking biogenic particles. This estimate assumed an iron

to carbon ratio equivalent of 10µmol/mol in estimating inputs from biogenic particles.

This estimate is reasonable for biogenic particles produced in the surface ocean, but

the particles releasing iron in the deep ocean would likely have considerably higher

iron content due to scavenging of dissolved iron through the water column (perhaps15

as much as 1–2 orders of magnitude higher Fe/C ratios, lithogenic particles also likely

scavenge iron and release some of it in the deep ocean). Increased iron inputs would

significantly increase the estimated scavenging loss for iron, and reduce the estimated

residence time. Our estimates of dissolved iron inputs to the oceans and model re-

sults suggest a short mean global residence time for iron of a few decades at most, in20

agreement with the estimate of de Baar and de Jong (2001).

In the surface ocean (<103 m) there is a bimodal distribution in the observed iron dis-

tributions, with a larger peak centered at ∼0.1–0.15 nM and a secondary broad peak

centered at ∼0.6–0.8 nM (Fig. 4a). The high-end iron peak reflects samples mainly

from the high deposition regions, or samples from other areas taken shortly after dust25

deposition events. Dust deposition likely varies considerably even within the high de-

position regions, but it seems there is a strong tendency for iron above this peak to be

rapidly removed by scavenging. There is a similar high-end peak in the observations

in the deep ocean (Fig. 4c), suggesting a common controlling process, most likely in-
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creased scavenging losses as iron exceeds ∼0.6–0.7 nM, as suggested by Johnson et

al. (1997a).

The surface peak in the observations between ∼0.1–0.15 nM in surface waters is a

function of removal by particle scavenging and biological uptake of dissolved iron. This

peak in the distribution represents waters that receive a considerable range in iron in-5

puts from the sediments and atmospheric dust deposition – from very low inputs to

the equatorial Pacific and Southern Ocean, to moderate levels of input in the higher

latitude North Pacific (Zender et al., 2003; Luo et al., 2003; see also MBa this issue).

The combination of particle scavenging and biological uptake appear to deplete sur-

face iron concentrations down to relatively low, constant levels, despite the variations10

in iron inputs from dust deposition and laterally from the continental margins. Several

factors likely play a role in this pattern. In some regions, increased iron inputs will lead

to higher biological production and export, providing more particles to scavenge and

remove dissolved iron. When iron is more plentiful, phytoplankton Fe/C ratios will be

higher, in part due to luxury uptake by larger diatoms, removing iron more efficiently15

(i.e., Sunda and Huntsman, 1997). Conversely, the number of binned samples de-

clines sharply in our lowest bin (0.0–0.05 nM). As iron falls to very low concentrations

(<0.1 nM), the phytoplankton will adapt by lowering their Fe/C ratios, thus decreasing

the export efficiency. Also, biological uptake will be reduced as ambient iron concen-

tration approaches or even falls below the half-saturation Fe uptake values. Fitzwater20

et al. (1996) estimated a community value of 0.12 nM in the diatom-dominated IronEx

bloom in the equatorial Pacific. Price et al. (1994) estimated ambient community val-

ues of 0.035 nM in the equatorial Pacific and 0.22 nM in the subtropical Pacific. Kudo

et al. (2006) estimated values of 0.10 nM and 0.08 nM for the micro and nano-sized

phytoplankton fractions in the NW subarctic Pacific. Lastly, extreme iron limitation will25

reduce the formation of biological particles available to scavenge and remove dissolved

iron. Less dissolved iron may be in the colloidal size fraction when iron concentrations

fall to very low values (Nishioka et al., 2001, 2005). Thus as iron falls to very low

concentrations, both the scavenging loss and biological uptake will be reduced.
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It is important for ocean biogeochemical models that include the marine iron cycle

to utilize more fully the growing global database of dissolved iron observations to eval-

uate and constrain model output. A key metric is the model’s ability to reproduce the

sub-euphotic zone observed iron concentrations, as inputs from these source waters

drive much of the biogeochemical cycling in the oceans. Models that overestimate5

the subsurface iron pools will underestimate the potential impacts from variations in

mineral dust deposition. Although still a limited dataset, the currently available obser-

vations can test the large-scale iron distributions from ocean models (MBa and this

paper). The available observational data will increase rapidly over the next decade

through ongoing research projects and the surveys associated with the CLIVAR and10

GEOTRACES programs. The growing global database of iron observations will provide

new opportunities to improve our understanding of the marine iron cycle.
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Table 1. Mean dissolved iron concentrations (nM) in different ocean basins from the obser-

vations (O = open ocean subset and A = all observations) and from the Old and New BEC

simulated mean iron fields, where the model output has been sub-sampled at the month, depth

and location of the field observations. In the Pacific we compute an equatorial mean (from

15
◦

S–15
◦

N) a North Pacific mean (>15
◦

N), and a South Pacific mean (>15
◦

S) Basins and

depths not shown had less than 20 observations, surface waters always had >200 observa-

tions per basin.

Region and Depth Oobs Oold Onew Aobs Aold Anew

North Indian

0–103 m 0.99 1.34 1.58 1.21 1.26 1.54

103–502 m 1.43 0.88 1.12 1.50 0.89 1.12

North Atlantic

0–103 m 0.72 0.96 1.01 0.68 0.97 1.06

103–502 m 0.60 0.59 0.62 0.61 0.59 0.63

502–945 m 0.78 0.60 0.64 0.76 0.60 0.64

>945 m 0.73 0.60 0.63 0.76 0.57 0.62

South Atlantic

0–103 m 0.45 0.59 0.63 0.44 0.57 0.58

North Pacific

0–103 m 0.20 0.28 0.18 0.31 0.25 0.27

103–502 m 0.40 0.41 0.47 0.69 0.40 0.50

502–945 m 0.67 0.47 0.52 0.84 0.45 0.54

>945 m 0.77 0.49 0.45 0.89 0.48 0.47

Equatorial Pacific

0–103 m 0.11 0.14 0.091 0.84 0.11 0.30

103–502 m 0.29 0.26 0.20 0.98 0.25 0.22

>945 m 0.64 0.40 0.38 1.10 0.40 0.37

South Pacific

0–103 m – – – 0.31 0.085 0.22

Southern Ocean

0–103 m 0.17 0.31 0.15 0.50 0.31 0.21

103–502 m 0.23 0.40 0.31 0.43 0.41 0.32

502–945 m 0.28 0.43 0.35 0.39 0.45 0.32

>945 m 0.41 0.40 0.36 0.49 0.48 0.32
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Table 2. Annual mean dissolved iron concentrations (nM) from selected ocean basins and

depths from the simulations. For the simulations with no Fe release from dust (FeSed) or from

the sediments (FeDust), and two simulations with no Fe release from desorption (NoDesorp),

and with elevated desorption release (HighDesorp). Also shown is results from LowFe simula-

tions with lower Fe inputs and scavenging losses (see text for details). Values in parentheses

show the % difference from the New BEC simulation.

Old New SedOnly DustOnly NoDesorp LowFe HighDesorp

N. Indian

0–103 m 0.77 0.98 0.40 (–60) 0.81 (–18) 0.96 (–1.5) 0.66 (–33) 0.98 (+0.082)

103–502 m 0.63 0.77 0.37 (–52) 0.67 (–13) 0.73 (–4.8) 0.61 (–22) 0.78 (+0.97)

502–945 m 0.64 0.78 0.41 (–48) 0.73 (–7.1) 0.74 (–5.1) 0.60 (–23) 0.79 (+1.3)

>945 m 0.63 0.91 0.48 (–47) 0.86 (–6.1) 0.85 (–7.3) 0.65 (–29) 0.92 (+0.77)

N. Atlantic

0–103 m 0.68 0.79 0.22 (–72) 0.65 (–18) 0.78 (–1.6) 0.62 (–22) 0.79 (+0.11)

103–502 m 0.62 0.74 0.28 (–62) 0.64 (–13) 0.71 (–2.8) 0.61 (–18) 0.74 (+0.58)

502–945 m 0.63 0.70 0.31 (–57) 0.64 (–9.2) 0.68 (–4.1) 0.60 (–15) 0.71 (+1.0)

>945 m 0.61 0.79 0.43 (–45) 0.73 (–7.2) 0.73 (–7.7) 0.63 (–21) 0.80 (+0.90)

N. Pacific(>15
◦

N)

0–103 m 0.25 0.34 0.23 (–32) 0.091 (–73) 0.33 (–3.5) 0.21 (–39) 0.34 (+0.36)

103–502 m 0.39 0.50 0.27 (–26) 0.23 (–55) 0.47 (–6.0) 0.49 (–1.0) 0.50 (+4.2)

502–945 m 0.47 0.55 0.42 (–24) 0.30 (–45) 0.48 (–12) 0.59 (+8.3) 0.56 (+2.0)

>945 m 0.49 0.52 0.43 (–17) 0.34 (–33) 0.37 (–29) 0.54 (+4.0) 0.54 (+5.0)

Equatorial Pacific

0–103 m 0.11 0.16 0.14 (–17) 0.030 (–82) 0.16 (–3.0) 0.14 (–14) 0.16 (–0.18)

103–502 m 0.26 0.24 0.18 (–26) 0.11 (–54) 0.22 (–9.3) 0.49 (+106) 0.24 (+0.92)

502–945 m 0.31 0.28 0.19 (–31) 0.22 (–55) 0.22 (–19) 0.59 (+115) 0.29 (+3.6)

>945 m 0.35 0.35 0.29 (–17) 0.22 (–38) 0.27 (–24) 0.52 (+48) 0.37 (+4.9)

Southern Ocean

0–103 m 0.29 0.21 0.16 (–24) 0.12 (–43) 0.19 (–7.4) 0.35 (+70) 0.21 (+0.54)

103–502 m 0.39 0.33 0.27 (–20) 0.18 (–46) 0.28 (–15) 0.57 (+71) 0.34 (+2.5)

502–945 m 0.43 0.36 0.28 (–23) 0.19 (–47) 0.27 (–26) 0.60 (+67) 0.38 (+5.5)

>945 m 0.45 0.46 0.39 (–15) 0.32 (–32) 0.33 (–29) 0.59 (+29) 0.59 (+5.7)
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Table 3. Global scale fluxes from the New BEC simulation are compared with the simulations

with Fe inputs only from the sediments (SedOnly), with iron inputs only from dust (DustOnly),

and with the LowFe and HighDesorp simulations (see text for details). The percentage change

in flux relative to the New simulation is shown in parentheses. Fluxes listed include primary

production (PP in PgC/yr), export production (ExpP sinking POC flux at 103 m in PgC/yr),

nitrogen fixation (Nfix in TgN/yr), and water column denitrification (Denitr in TgN/yr). Also shown

is the percentage of ocean area where iron is the limiting nutrient for each phytoplankton group

(Diat%Fe – diatoms, Diaz%Fe – diazotrophs, and Sp%Fe – small phytoplankton).

NewBEC SedOnly DustOnly NoDesorp LowFe HighDesorp

PP 46.7 41.1 (–12) 44.5 (–4.6) 46.4 (–0.45) 45.37 (–2.7) 46.7 (0)

ExpP 5.75 4.90 (–15) 5.16 (–10) 5.71 (–0.82) 6.05 (+5.1) 5.75 (0)

Nfix 144 89.2 (–38) 94.6 (–34) 143 (–1.1) 127 (–12) 144 (0)

Diat% 34 58 59 36 14 34

Diaz% 36 59 65 37 46 36

Sp% 36 58 51 37 19 37
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Table 4. Residence time for dissolved iron from the New BEC simulation estimated as iron

inventory/(loss due to sinking particulate flux + the 10% of scavenged iron that is presumed

lost to the sediments). For the whole ocean domain this scavenging is the only loss term. We

subdivide the ocean into areas with high and low iron inputs based on the annual mean surface

concentration for iron, where high iron regions have surface concentration >0.55 nM and low

iron regions are <=0.55 nM.

Depth-Area Considered Residence Time (Years)

Upper 103 m Global 0.73

Upper 103 m High Iron 0.59

Upper 103 m Low Iron 1.3

Upper 502 m Global 2.0

Upper 502 m High Iron 1.3

Upper 502 m Low Iron 4.2

All Depths Global 15

All Depths High Iron 7.0

All Depths Low Iron 35
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Fig. 1. Figure displays the percentage of grid cell area that would consist of ocean sediments

(integrated over the upper 281m) in the ETOP2V2 database that is used in estimating the

sedimentary source of dissolved iron (a). Also, shown is the areas with depths less than 281m

on the coarse resolution ocean grid (b).
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Fig. 2. Water column integrated input of dissolved iron from mineral dust (A) and from the

sediments (B), the loss of scavenged iron to the sediments (C), and the sedimentary source of

dissolved iron in the upper 502 m (D).
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Fig. 3. Comparison of ocean measurements of dissolved iron with model output sub-sampled

at the same month, location, and depth of the field observations for the Old BEC and New BEC

simulations in surface waters (0–103 m, panels A and B) and in subsurface waters (103–502 m,

panels C and D). Symbol shape and color indicate the ocean basin of the observation (N. Pacific

– green diamonds, S. Pacific – black diamonds, N. Atlantic – purple triangles, S. Atlantic – black

triangles, N. Indian – blue squares, S. Indian – black squares, and Southern Ocean (>40.5
◦

S)

– orange asterisks). 1320
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Fig. 4. Binned iron concentration values from the observations (thickest line), the New BEC

simulation (medium line), and from the Old BEC simulation (thin line) over depth ranges of

0–103 m (A), 103–502 m (B), and from greater than 502 m (C).
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Fig. 5. Annual mean iron concentrations in the upper ocean (0–103 m) are shown for the Old

BEC (A), New BEC (B), SedOnly (C), and DustOnly (D) simulations with the iron observations

averaged onto the model grid over this depth range (E).
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Fig. 6. Annual mean iron concentrations in the subsurface ocean (103–502 m) are shown

for the Old BEC (A), New BEC (B), SedOnly (C), and DustOnly (D) simulations with the iron

observations averaged onto the model grid over this depth range (E).
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Fig. 7. Annual mean iron concentrations in the mid-depth ocean (502–945 m) are shown for

the Old BEC (A), New BEC (B), SedOnly (C), and DustOnly (D) simulations with the iron

observations averaged onto the model grid over this depth range (E).
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Fig. 8. Annual mean iron concentrations in the upper ocean (0–103 m) are shown for the New

BEC (A), NoDesorp (B), LowFe (C), and HighDesorp (D) simulations with the iron observations

averaged onto the model grid over this depth range (E).
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Fig. 9. Annual mean iron concentrations in the subsurface ocean (103–502 m) are shown

for the New BEC (A), NoDesorp (B), LowFe (C), and HighDesorp (D) simulations with the

observations averaged onto the model grid over this depth range (E).
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Fig. 10. Annual mean iron concentrations in the deep ocean (>945 m) are shown for the New

BEC (A), NoDesorp (B), LowFe (C), and HighDesorp (D) simulations with the iron observations

averaged onto the model grid over this depth range (E).
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