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Abstract

We present a vortex method for the simulation of the intésaadf an incompressible flow
with rigid bodies. The method is based on a penalizationrtiecte where the system is consid-
ered as a single flow, subject to the Navier-Stokes equatithraypenalization term that enforces
continuity at the solid-fluid interface and rigid motion iices the solid. Level set functions are
used to capture interfaces, compute rigid motions insiéestilid bodies and model collisions
between bodies. A vortex in cell algorithm is built on thisthmed. Numerical comparisons
with existing 3D methods on problems of sedimentation aniisean of spheres are provided to
illustrate the capabilities of the method.

1 Introduction

Vortex methods have long been used for the simulation of-blodly flows. The success of these
methods comes from the combination of several features$,jliustrated in the pioneering workiLpB]
for 2D cylinder wakes, as well in more recent 3D calculatip®$, 11] : stability, localization of
the computations in the regions of interest and naturatrtreat of far-field boundary conditions.
Moreover when combined with fast grid solvers to comput@cigy} fields, and more generally all
guantities that are not directly related to the transpontasficity, these methods offer for external
flows economical alternatives to more traditional griddshEulerian solvers.

In this paper we consider the extension of the Vortex In Cellhad [7] to the case where several
rigid bodies interact under the action of gravity with andmpressible flow. The difference with
previously considered cases is that the rigid bodies maeyir and eventually collide, under the
combined action of gravity and forces imparted by the flone ibmerical challenge in this problem
lies in the coupling of stresses and velocities at the moflingd/solid interfaces and in the modeling
of collisions.

Let us first consider the fluid/solid interaction problem.isTtype of problem is often dealt with
by ALE (for Arbitrary Lagrangian Eulerian) methods where ihterface is tracked, flow and solid
equations are solved separately, and continuity conditfon the velocity and stress are explicitly
enforced at the interface (sekg] and the references therein). These methods are accutdtarouo
implement in 3D and expensive, in particular if several otgénteract in a non laminar flow. Here we
consider a different approach. The fluid-solid is considerg a single flow. The interface is captured
by a level set method and the rigid constraint together wighdontinuity conditions are implicitly
recovered through a penalization method. When formulatettié primitive variables, this method



extends to the case of the two-way fluid-solid coupling thehme of [1] which was introduced for
the computation of bluff-body flows. The benefit that can bpeeted from this approach comes
from the fact that fast grid solvers, based for instance atigka or finite-difference methods, can be
used, leading to substantial computational savings, itiqogar for 3D cases, compared to body fitted
methods.

Our method is related in particular to the fictitious domagpr@ach of 4] and to the projection
method of P0]. The fictitious domain approach af4] was already derived as an alternative to ALE
methods. The rigid motion inside the solid bodies is enfoiteough a Lagrange multiplier, which
somehow plays the role of the pressure for the incomprdigibonstraint. The method is defined
in a variational framework which is well suited for finite glent discretization. A number of vali-
dations of this method have been performed and we will ektelysuse them to test our approach.
A more recent work in the same spirit is the penalty methodL@}. [In this work the rigid motion
is also modeled in a variational framework leading to a mination problem for the velocity. The
functional to minimize in the space of rigid motions insitie body is approximated by a functional
over all velocities with a penalization of the deformatioside the rigid bodies. In our method the
interfaces are captured by advection equation which aneezied to the flow equations only through
the advection velocity. The added flexibility in the choidehe solvers makes the method fast and
rather simple to implement, in particular when several bsdire considered.

The projection method of2[)] consists of alternating Navier-Stokes solvers and ptigacsteps
where the rigid motion is recovered inside the body. Thishoets in the same spirit as the classical
splitting method for the Navier-Stokes equations to erdaiivergence free flows. As we will see it
appears as a particular case of our penalization method) a/fiest order explicit time-discretization
is chosen. Our approach is more general. In particular afidinppeatment of the penalization term
allows larger penalization coefficients and thus more ateuesults.

Besides providing a simple way to capture body boundaridseaforce rigid motions, an addi-
tional benefit of level set methods is to enable simple gotisnodels to deal with contacts. Our
starting point is a simple dynamical system with short radgeiltonian forces to model single point
collisions. The level set approach allows to generalize wery straightforward way this system to
more general collisions. Level set functions are used hmtmeéasure distance between interfaces
and to localize the forces on the interfaces. The resultifiision forces appear just as an additional
force in the single flow equation representing the fluidésslistem.

In this paper we focus on a vorticity formulation based os #pproach which is appropriate for
a particle discretization. We derive and illustrate péatigrid algorithms suitable for the simulation
of the level set fluid-structure model.

This work is part of a series of papers where we systematicalestigate multi-phase flow mod-
eling and the associated algorithms for generic fluid-stinecinteraction problems2] is concerned
with the numerical analysis of the underlying penalizatioethod in primitive variables, ané]deals
with application of the present method in computer graphiReferencesq, 9] deal with modeling
and numerical issues of related methods for the case ofcetadids.

An outline of the paper is as follows. In section 2 we preseamtftow model. In section 3 we
describe its particle discretization. In section 4, todalé our method and discuss its efficiency, we
focus on test cases where quantitative comparisons w4{t2p] are possible, namely the sedimenta-
tion and collision of spheres. Finally section 5 is devoteddncluding remarks and perspectives.



2 Flow model

We first focus on the fluid/body interaction problem and then to the problem of collision between
rigid bodies.

2.1 Interaction of an incompressible fluid with a rigid body
2.1.1 The physical problem

We consider a rigid solidb(¢) freely evolving in an incompressible flow contained in a dom&
(the formulation readily extends to several bodies). Wemssthat the density is constant in the fluid
and in the solid, with values respectively denotechpyandps. We denote by'(t) = K — S(t) the
fluid domain, by (¢) the fluid-solid interface and by its normal pointing towards the solid.

The fluid-solid interaction problem can be modeled by theidla8tokes equations ifA'(t), con-
tinuity of velocity and stresses at the interface and thiel migotion of the solidS () :

p (?9_1: + (u- V)u> —divT(u,p) = pg for x € F(t) andt > 0 (1)
u=V+Qx((x-—xq) forx € S(t) andt > 0 (2)
MV:—/Tmmmm+Mg (3)
)
JQ = —/ T(u,p) X (x — xg) dx. 4)
)

This system has to be complemented by initial conditions lamdhdary conditions oK. In the
above systeng is the gravity,p is the variable densitya andp are the velocity and pressurg/ is
the solid massx its center of gravity and/ its inertia matrix. The solid translation and angular
velocities are respectively denoted By and 2. Equation g) gives the general form of a rigid
deformation. Equations3] and @) translate the solid acceleration as a result of gravity faund
forces at the interface. The stress teriBas defined as
8’&@' 8Uj

8:L'j + 8:L'Z

Tij(u,p) = v(

) — POij
wherev is the fluid viscosity.

2.1.2 The penalization model

The idea is to extend the fluid velocity inside the solid body o solve the flow equations with a
penalization term to enforce rigid motion inside the sol&lven a penalization parametgr>> 1,
and denoting by s the characteristic function ¢, the model equation is the following :

p (g_? +(u- V)u> —divT(u,p) =pg+Apxs(@—u)forzc Kandt >0 (5

coupled with the incompressibility condition

dvu=0forz e K (6)



and the calculation of the rigid motial, obtained by averaging translation and angular velocities
over the solid :

=]

= ﬁ/}(xgudx—k (J_l/KXgux (X—XG)dx> X(x —x@a). (7)

The rigid body follows the trajectories of the flow, with anvadtion velocity that can be chosen to be
either the flow velocityu or the rigid motiora. As a result, its characteristic function can be obtained
by solving the advection equation

0

§+(ﬁ-V)XS:OformeKandt>0. (8)
Alternatively on may computgs from a level set functios satisfying the same advection equation

0

%+(ﬁ-V)¢s:0forazeKandt>0. 9)

If ¢ is positive insideS and negative outside theyy = H(¢s) whereH is the Heaviside function.
It is customary to initializeps as a signed distance function to the boundanb ofit is important
to notice here that, becauseis a rigid body motion, one can guarantee thgtremains a signed
distance for all time.

The densityp is computed from the the fluid and solid densities and thetfong s by

p=pr(l—xs)+ psxs- (10)

A few comments on the systerf){(8) are in order. First in the case of a fixed obstacle witijiven,
one can recognize the penalization method designed angzadah [L]. Next, the choice to follow
the solid phase with the velocityinstead ofu (both choices are equivalent only in the limit— oo)
maintains a strictly rigid motion of the solid, independerdf numerical errors, a feature which is
important in practice. Finally, a natural projection methfor this system leads to the following
algorithm : given a time step\t, if we sett,, = nAt, one goes fronu” ~ u(-, t,) tou" ! through
the following steps :

e solve the Navier-Stokes equatids) (vith A = 0 for a time stepAt¢; denote bya" the result of
this iteration,

e computera” from (7) after replacingu by the resulta™ of the previous step,

e solve

M vs(u-w) (11)

for a time stepAt.

Next we observe that for the particular choite= 1/At and a Euler scheme to discretiZgl), this

step returns
n+1l __ u” in F(t)
u —{ T in S(1). (12)
This is essentially the method proposed by Patankéf o compute flow around rigid particles.
There are however several advantages in considering patiafi formulations. First this approach

enables to consider penalization term in the diffusion famorder to enforce more strongly rigid
motion inside the solid. This option has not been considaredir numerical illustrations below but
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it can prove useful to accelerate convergence. The petializapproach is also more tractable for
numerical analysis (se€]) and it allows to distinguish between modeling and diszegion errors.

A third and more important advantage is that the penalinadiguation can be discretized in time in
an implicit fashion allowing larger penalization coefficie and therefore better accuracy in satisfy-
ing the interface boundary conditions. Indeed, explicitdidiscretization of (1) requires takingh
smaller thanl /At. A consequence that we have observed in practice is that@maie treatment
of wall boundary conditions may thus require to take timepstalues for this part of the algorithm
much smaller than necessary for the particle treatmenteoativection-diffusion. Alternatively, the
implicit Euler time discretization ofi(1) reads:

W u” + MAtysu”

14+ AAtxs (13)

This method is unconditionally stable. We will show in sentB.2 how this implicit formulation is
implemented in our vortex method.

Finally, and this is important in the context of the preseatkythe penalization approach provides
a natural vorticity formulation which would be less strafghward to derive in a projection approach.
As a matter of fact, taking the vorticity formulation &)(yields
Oow

N +(u Viw=(w-V)u+rvAw — VpXV(%) + AV X xs(@—u). (14)

This system has to be complemented by the usual system dgihéngelocity in terms of the vorticity :
V-u=0inK;VXxu=win K (15)

and appropriate boundary conditions@R . The rigid velocitya is computed from7). Ignoring for

a moment the barotropic term and the rigid motion couplingemcombined with a vortex method,
one may recognize in the above equation an immersed bounuzthod in the spirit of the methods
designed in21, 11, 12]. We will comment later on this point.

We now continue with the derivation of the model. Developthg termV X xs(d — u) one
obtains

%_c: +(u-V)w— (w-V)u—rvAw = —-VpXx V(%) + Axs(@ —w) + Mg n x (W—u). (16)
In the above equation we have &&t= V x1u and we recall thah is the normal to the interface
oriented towards the solid. It is interesting to note thatiight hand side of this equation contains
two vorticity generators : one in the barotropic term radate the underlying variable density flow,
and one coming from the no-slip condition at the fluid-sohiterface. Both terms are singular and
localized at the interface. Note that the second vorticitydpction term, which is reminiscent to
vorticity creation algorithms often used in conjunctiorttwiortex methods, would not directly result
from a projection method on the vorticity flow equation.

Both (14) or (16) require to compute the pressure, something which is inrgénet necessary in
vorticity formulation of the Navier-Stokes equations. Toia explicitly computing the pressure one
may alternatively rewrite the vorticity equation in thelfoling way :

%—L:—l—(u-V)w:(w-V)u—l—yAw—%x <g—ltl+(u-V)u—g>+>\V><(Xg(ﬁ—u)) (17)

The system to solve in our model consists finally of the eguatil4) or (16) or (17) together with
(15), (7), (8) (or (9)). In all our calculations we will follow the above formuiah. However one may
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also consider the implementing a simplified model based oous&inesq approximation of variable
density flows. In this approximation, the density is suppldsdbe almost constant. If one still denotes
by p the density variations around a constant statewangthe velocity and vorticity created by this
density variation, an expansion around a steady-stateedfytsiem gives, up to lower order terms, the
following vorticity equation:

%_‘;J+(u.v)w:(w-V)u+yAw+Vng+/\VXXg(ﬁ—u)- (18)

2.2 Collision model

We now consider the case of rigid bodies.S; with densitiesp; interacting in an incompressible
fluid and we design a method to handle collisions betweendbab. Each body is followed through
its level set functionp;. Each level set function is moved with the rigid motion assied to the
corresponding rigid body. In other words we considércopies of equations7y, (8), (9), with .S
replaced bys;. The density is given by

N N
p=pr(l— ZXz‘) + ZPiXia wherey; = H(¢;). (19)

i=1 i=1

When dealing with collision of solids in incompressible dlsij one faces a dilemma. On the one
hand, experiments show that collisions occur betweensalia fluid and lead to rebounds. On the
other hand, as noted iri4] and confirmed by recent theoretical works, the Navier-8sokystem
with no-slip boundary conditions is not compatible with tamt between rigid bodies. In any case,
collision models appear to be necessary at least to prevemenical error to result in overlapping of
solid bodies. Such collision models should be energy coirsgr For the case of bodies imbedded
in a viscous flow, energy dissipation at collision time skloaihly result from viscous dissipation in
the boundary layer. Here we consider a direct approach tildievagain rely on interface capturing
by means of level set functions. Using level set functionddal with collisions is actually not new.
These techniques were proposed under the names of implitces in physical modeling for the
animation of elastic or rigid bodies (see for instardig. [In these methods, body surfaces are captured
by implicit surfaces which are used to detect penetratioistaDce functions serve to compute the
amount of overlapping. This information is used to deriveés on the surfaces that are subsequently
propagated throughout the bodies in saamaehocfashion in order to remove this overlapping. Our
method differs from these implicit surfaces techniquesartipular in that we compute a single force
which is essentially parameter free and simply supplentbetfiow equation. The level set collision
formulation is only a way to distribute in a clear-cut wayukgive point forces over the surface of the
bodies.

2.2.1 One-dimensional model

Like in [14], we start from a dynamical system for the one-dimension#iston of a material point
located atz(t) > 0 with a wall assumed to be locatediat= 0. We choose a dynamical system which
is both short range and singular at the contact point. Thisuhical system reads

= g exp (—x/e) (20)

wherex is a coefficient which has the dimension of the square of acitglolt is an Hamiltonian
model acting on a width of the order efroundz = 0. As a result, it produces an energy preserving
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collision at a distancé(¢) of the wall. More precisely, its potential energy is, up toalditive

constant, given by
T, x/e P
Bw) = [ Zexp(-s/efds = [ S exp(-g)dy
1 8 1/e Y
Consider a point initially located at(0) = 1 and with velocityv(0) = vy < 0. If we denote by:*
its minimal location (a point at which the velocity is zerby, conservation of energy we have

2 = e G (v3/2k) ~ e G(vE/2K) for e < 1, (21)

whereGe andG denote the inverse functions respectively of the functibagind F' defined as

1/e +00
Fe(w)Z/ éexp(—y) dy , F(w)Z/ éexp(—y)dy.

Equation R1) states that the rebound width scaleg.as

2.2.2 Level set model

The level set formulation allows to translate the simpleaiyital system above into a body force
distributed on the surface. Level set functions indeed gjiveiltaneously access to distances, normals
and surface integrals on the interfaces. If the rigid bodieslabelled by indice to compute the
rebound ofS; and .S;, imbedded in a fluid with fluid interfaces respectively captliby level set
functions¢; and¢;, point forces similar to the right hand side @ are implemented on each point
of the interface ofS;, localized through the level set functigrn. The direction of the force and the
distance of the boundary points §f to the bodyS; are obtained directly from the level set function
¢j. From these observations, one readily obtains the follgance resulting from all possible body

interactions : B Vi
fa) = = 3 "2 (20 ) T e (). @2)

The minus sign above comes from the fact that, by the defmitibthe level set functionsy ¢;

is oriented inwards with respect to the bofly. The function( in the above expression is a one-
dimensional cut-off function. In view ofZ(l), the coefficientss;; are to be chosen proportional to
the square of the relative velocities of the correspondimgdjes just before the collision. Note that in
the above equation, we have used the fact already mentibagdihce the body/fluid interface level
set functions are transported by rigid body velocity, theyain distance functions at all time (in the
discretization described below, this property will alsodagisfied at the discrete level). The force
given by @2) supplements density driven and penalization forces inigig hand side of%). In a
vorticity formulation, the right hand side of equatid¥) is complemented by the teriV x fco))/p.

If we denote bya; the rigid motion velocity of the solid;, obtained by replacing by .S; in (7), and
sety; = xs, We obtain :
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Figure 1: Level set collision mode2®) for a 2D cylinder falling in vacuum on a flat plane. Positions
(left picture) and velocity (right picture) as a function tohe. Sampling is done at time intervals
equal toe/10 ande = h = 1/128. The dotted horizontal line in the right picture isat yya11 + h
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(u-Viw—(w-V)u= (23)

To illustrate this model, we consider in Figutehe case of a 2D cylinder falling on a flat plane. The
solid body has initially its center at = 0.3 and is falling under the action of gravity, with= —1.
The action of the flow is neglected so the only forces are tydwice and the collision force2p).

In this equation the level set function associated to thepfate is they-coordinate. The numerical
parameters are= h = 1/128 andAt = h/10, whereh is the grid size on which level set functions
are captured. One can observe that the balls rebounds wiligsipation. As a matter of fact, the
ball elevation after the first rebound is slightly higherrthithe initial elevation. This is due to the
fact that we used an Euler time explicit discretization d@ds not guarantee energy control. A more
involved implicit discretization, which would prevent egg increase, has not been considered, as
in the flow/body interaction problems below the Euler diszegion was found to give satisfactory
results. A first conclusion is that the equati@®)(provides a reasonable energy preserving collision
model which is essentially parameter free if we seek to priesentact beyond a scale of the order of
the grid spacing.

3 Discretization method

To discretize the system28), (15), (7), (8) we combine a level set method with an hybrid particle-grid
method. The fluid-solid system is assumed to be locateddrsicbmputational bof in which we
consider a uniform fixed grid with grid siZe This grid is used in particular to initialize and remesh
vorticity particles and to compute velocity and level satdiions. We denote byt the time-step
and we set,, = nAt forn > 0 and¢}, u”, w" grid values of the level set functions, velocity and
vorticity fields at timet,,. We assume that these quantities are known up to tjpand we describe
how to compute them at time levg], ;. We first focus on the level set equation and then turn to the
vorticity equation.



3.1 Level set equations

Each body-fluid interface is captured by a level set functiimese level set functions are advected by
a rigid body motion, associated to the rigid body under atersition and computed from the known
values of¢; etu on the grid. This enables an analytic calculation of the #vellset functions. For
simplicity let us focus on an individual level set functigrsatisfying the following equation

d¢
o5+

Let us denote byX(¢;x,0) and X(0;x,t) respectively the forward and backward characteristics
associated to the flow field. One has

(@-V)p=0fort >0; ¢(-,0) = ¢o. (24)

(;5(X, t) - ¢O(X(07 X, t)) (25)

Let us fixx and setX,, = X(¢,;x,0). Assuming that the rigid motion velocity takes a constant
value (with respect to time) in the time interjal, ¢,,+1] one may deduc¥,,;, from X,, by rotation
and translation. Given the following parameters

N

w
0" = |wn|At7 T—=n| — (avﬁvv)
=

we consider the rotation around the mass cesjjesf S at timet,, and matrix

1—202—222  2ab—2cd 2ac + 2bd
R" = 2ab + 2cd 1 —2a2 — 2¢2 2bc — 2ad
2ac — 2bd 2bc + 2ad 1 —2a2% — 2b2
where

n n n HTL

a:asinj,bzﬂsini,c:’ysinj,d:cosj.

With these notations, the rigid motion Sfis given by
X" = ¢ @At + RY(X™ — ).
By induction we can thus compute matrick$™ and vectorsV™, independent ok, such that
X7+ — A0 4oyt

From the above formula one can therefore analytically campii} = x from X"+, The numerical
computation ofp"*! on the grid thus goes along the following lines :

e for all grid pointsx;, compute analyticallyX (0; x;, t"*!) with the above procedure,

e interpolatepy (X (0; x;, " 1) from grid values ofpy by bilinear interpolation.

Note that this algorithm, unlike a solution based on the migakdiscretization of the underlying
PDE, avoids to accumulate numerical errors which might ®xadly deform the rigid body. It also
involves negligible computational effort, since it amautd computing at every time step a single 3
by 3 matrix. This is a very desirable feature if one wishesinwate a large number of interacting
bodies.



3.2 \Vorticity equation

We now come to the vorticity equatio@3). To simplify the notations we consider the case of a single
body. We split this equation and successively solve in the intervallt,,, t,,+1]:

aw o V X fco|
Fr p (26)
ow
S AVX (xs(T - w) @)
ow  Vp ou
E__—X <§—|—(u-V)u—g> (28)
ow
E—l—(u-V)w:(w-V)u—i-qu (29)

The velocityu needed in equatior{) is evaluated with the formula’). In principle the velocityu

in the right hand side of7) should be computed from the vorticity resulting from omadistep of
the equationZ6). In practice we directly compute it by adding to the averegjecity of the previous
time-step the average velocity of the collision force irpitgnitive form. This means that we actually
by-pass the resolution o26) and directly average the collision forc2Zj on the body. This has the
advantage of avoiding the numerical differentiation ofregsiar force, and the associated possible
discretization error. Note that this also means that we tmifpossible contribution of the collision
force in the flow outside the body, or, equivalently, that vge a one-sided cut-off function i2%).

To solve @7) we use a vorticity form of the implicit schem&3) and we set

o — vx [u” + )\AtXSﬁ”]

14+ AAtxs

The right hand side above is evaluated by centered finiterdifices.

To solve the equation2@), density values are obtained frorh9j and differentiated on the grid ;
we use grid values ofi” andu™~! to computedu/ot and centered finite differences to estimate
(u-V)u, Vx (ys(@ — u)) atall grid points at time,,. \Vorticity grid values are updated fro@™
using these approximations.

At this point, grid vorticity above a certain cut-off is usedcreate particle at grid point locations
and equationd9) is solved by a classical vortex-in-cell methdtD]. Particles are pushed with a
RK2 time-stepping. Particles are then remeshed on thenatigiid using the following third order
interpolation kernel

0 if |z| > 2
Mj(z) = § 3(2 —lfﬂl)Q(la— =) 1< x| <2 (30)
1 o2ty 3 if || < 1

Finally diffusion is solved through a implicit solver on thad, with a classical 7-points second order
scheme. Note that the same kernel is used to interpolategjndity values onto particles in the RK2
particle pusher. It remains now to indicate how we compuitt \gglocity values. In all the examples
below we will consider internal flows in domains that can beipa rectangular box. Since we use an
immersed boundary approach, including for the externalsyale can choose any type of boundary
conditions for the velocity at the boundary of this compiotzl box. The wall boundary conditions
will eventually be corrected by the penalization method: rReximum efficiency it is natural to use
periodic boundary conditions and FFT-based velocity etauas on the grid. For external flows it
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would be more appropriate to use fast Poisson solvers witicHdét boundary conditions related to
the flow value at infinity for the stream function at the outeubdary. Grid values for vorticity,
velocity and level set functions are now available for tithe; and a new cycle of iterations can start.

It is worthwhile to point out that, in case we consider a rigadid with a prescribed motion, we
obtain an immersed boundary vortex method. This type of atklias been for instance considered
in [21, 11, 12]. Note however that, unlike in these references, the \igrtjgenalization approach
avoids to deal separately with the vorticity forcing and bweindary potential (or vortex sheet) in
the calculations of the velocity. The penalization apphoallows to cancel at once, up to truncation
errors, both normal and tangential velocity componentsuri8ary conditions for both the normal
and tangential components can be simultaneously imposealibe the penalization method tends
to cancel the vorticity inside the solid. This clearly siifipk the implementation and reduces the
computational cost. Another important difference is tl inethod is by definition conservative
with respect to the circulation, whereas in previous wovksticity inside the obstacle is generally
discarded which may require ad hoc circulation correctionhe vicinity of the obstacleslp]. A
validation study of the present method in the case of a flowapéiged cylinder is reported iriLp].

4 Numerical illustrations

In this section we consider numerical illustrations of thetiod just described on test cases that have
been considered ilfl] and [20]. These cases deal with the sedimentation and interactispheres.
Throughout this section we denote hythe size of the grid on which particles are initialized and
remeshed and on which velocity fields and level set functemesevaluated. In all cases we have
taken the collision parameterequal toh and we have set the penalization paramatey 106,

4.1 Sedimentation and rebound of a 2D cylinder on a flat plane

We consider the case of a 2D cylinder in a square cavitynfallinder gravity on a flat plane. This
test serves as a way to validate both the force calculatiodghee contact model. We use parameters
that have been considered ¥]. The dimension of the cavity ii9, 2] x [0, 6]. The viscosity i€).01.
The density inside and outside the cylindet s and1. The cylinder has radius 125 and is initially
located at the pointl,4). It is accelerating under gravity, setgo= —980, then settles to a steady
velocity, due to the friction forces, and eventually hit tiwitom of the cavity and stops. We show in
Figure 2 the values of the vertical velocities, far= 1/256 andh = 1/512, in an horizontal cut of
the computational domain though the center of the cylintdénee ¢ = 1. This figure shows that the
rigid motion is not exactly satisfied inside the cylinder.eféis actually forh = 1/512 a maximum
relative discrepancy of abodf% in the vertical velocity. This discrepancy is small but wiide
enough to eventually deform the body if the level set funtiias advected by instead ofa. This
figure also illustrates that we do not discard vorticity desthe body : in the present case, a small
dipole survives inside the body. FiguBedemonstrates that the deviation of the flow velocity from
a rigid body motion has negligible impact on the dynamic &f fody. For the same grid-resolution
and time-steps our results match almost perfectly thos&4pf Plthough in principle, the collision
parameters;; should be automatically adjusted to the velocities befoeecbntact, in this experiment
as in the following ones, we have chosen to specify it by hdre collision parameters;o = ko1
were set t30. We actually observed that the results, in particular thplénde of the rebound when
the cylinder hits the wall, are not very sensitive to thisugaffor instance multiplying this coefficient
by a factor2 has almost no effect). However taking a too small value (ia &xperiment a value
smaller tharl0) can lead to undesirable oscillations after the contacis &periment both validates
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Figure 2: 2D cylinder falling in a square cavity (parametgik®en in sectiord.l) : vertical velocity
on an horizontal cut through the center of the cylinder aetire- 1. Solid line : » = 1/512; dashed
line : h = 1/256; dotted line : value oft obtained forh = 1/512.

the penalization approach for the two-way fluid-body caupland shows that our collision model
behaves like the one irifl]. We will come back to this point in sectich2.3below.

4.2 Three-dimensional cases

We consider here three-dimensional cases which are welindected in the literature, namely the
sedimentation of a sphere and the tumbling and kissing ofspiweres. To illustrate our collision
model in absence of symmetry we also consider the less ctiomahcase of an ellipsoid colliding

with a sphere.

4.2.1 Sedimentation of a sphere

We consider here the 3D counterpart of the problem seeniiosecl We study the settling velocity
of a sphere in an infinitely deep channel. This problem has lséadied both experimentally and
numerically. Experiments have been done to measure thénaraelocity of settling spheres falling

in cylindrical channels and particularly to study the efffeaf boundaries on it. Brown and Lawle][
give the corrections to be applied to account for wall efedthe smaller the ratio = d/L between
the channel sizé and the sphere diametéis, the more the walls affect the sphere and slow it down.
Glowinski et al. L4] have computed terminal velocities with varying fluid visiy, sphere diameter
and density. We use the same geometry and physical param@&tes computational box i§, 1] x
[0,1] x [0, 4]. No slip boundary conditions are imposed, using the pesigdiz method, on the surface
of a vertical cylinder of radius inside this box. The fluid density isandg = —980. We first perform

a convergence study for our method in the case when the sghesity is1.02. Figure4 shows the
terminal velocities obtained at = 1.2 for various grid sizes. This experiment indicates that our
method is roughly first order as far as the rigid motion veiois concerned.

We show in tablel a comparison between our results (in the limit witer- 0) and experimental
results for a sphere diametdr= 0.2,0.3, fluid kinematic viscosity otv = 0.02,0.05,0.1. Our
results agree with the experiments within an accuracéytofl 1% depending on the cases. A possible
reason for the discrepancy between the experimental seantt our numerical results may be that
our simulation runs in a closed box where no fluid is escapirtiyeatop nor the bottom. For the same
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Figure 3: Sedimentation of a 2D cylinder falling in a squaa®ity under gravity and hitting the
bottom wall. Comparison of our results (right pictures)iwitiose in 4] (left pictures). Top pictures :
height of the center of the cylinder. Bottom pictures : \@tivelocity. In all pictures the solid lines
are for @ = 1/256, At = 7.510~%), and the dashed lines fok = 1/384, At = 510~%). Physical

parameters are given in sectigri.
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Figure 4: Terminal velocities as a function of grid spacifigaettling sphere of diametér3 and
density1.02 falling in a fluid of densityl and viscosity).02.

diameter viscosity Upg Un_o Relative error| Uj,—1 /64 Ug
0.2 0.10 0.2571 0.275 8% 0.256  0.2567
0.2 0.05 0.4603 0.513 11% 0.475 0.4844
0.2 0.02 0.9129 1.016 11% 0.937  0.9480
0.3 0.10 0.4047 0.435 ™% 0.401 0.4072
0.3 0.05 0.7493 0.795 6% 0.748  0.7599
0.3 0.02 14359 151 5% 1.39 1.392

Table 1: Comparison between terminal velocifieor spheres falling in a fluid for various diameters
and viscositiesUg are the experimental results. The relative error is contbogtween experimental
results and our asymptotic resulté; andUj,_, /¢, are respectively the results ib4] and our results
for h = 1/64.

experiments 14] report values obtained with a grid size= 1/64. For a fair comparison we have
indicated these results together with our (non convergesl)lts for the same grid resolution. The
results agree very well.

4.2.2 Kissing and tumbling of spheres

We next turn to more complex 3D dynamics : we study the sediatien of two balls in a Newtonian
fluid. The balls are aligned on the axis of gravity, one being distance of the order of its diameter
above the other. While falling, the sphere on top experigtess friction with the fluid as it stands
in the wake of the bottom one. Its velocity becomes greatam the second one, and at some point
the balls are bound to collide with each other leading to #issing”. The aligned configuration of
the balls falling is known to be unstable and they eventul@fyve the axis and tumble aside from
each other. This phenomena called "Drafting, kissing anabling” has been observed and studied
experimentally in13]. Numerical simulations are reported 4], 20] an we use the same parameters
as in these references.

The computational box is a rectangular channel of fizé] x [0,1] x [0,4]. The fluid has density

1 and a kinematic viscosity = 0.01; the balls have radiug.083 and densityl.14. They are placed
initially at the center of théx,y) cross section at = 3.5 andz = 3.16 respectively. In order to
initiate the instability in ther andy directions, we slightly shifted (by one grid size) the locatof
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the bottom ball. The spatial discretizationsis= 1/60. For that case, the time-step value is adjusted
in function of the maximum vorticity value, as it is commomlgne in vortex methods. Our time-step
value was initialized at.07 and then was given bt = 0.8/|w|~, As a result of vorticity production

in the wake of the cylinders it decreased to reach a v@l@4 att = 0.5 and settle around this value
later on. As usual the collision widthwas equal td» and the corresponding amplitude coefficients
werer1s = ko1 = 25. The gravity was set tg = —980.

The velocity of the solids are plotted in figuse They are in good agreement with the results obtained
by Glowinski et al. 14]. The fact that in our case the top ball accelerates a bit mustebefore

t = 0.3, may be due to the fact that the instability, which causedtils to separate in a diagonal
plane, is triggered faster irl4l]. This is visible in the horizontal velocity plot in figur@ In our
case the instability is triggered by the contact, while 1d][it happens earlier. As a result, in our
simulation the ball on the top is sucked in the wake of thedmtbne for a longer time and slips
more slowly along its edge. For the same reason, the corgaetbn the balls between= 0.3 and

t = 0.4, when their velocities are almost equal, lasts longer incage. It is interesting to note that
our results as well as the results @#], depart quite a bit just before and after the contact froen th
results of Sharma et Patankad], although our penalization method is closer to their metthan to
the method of Glowinski et al. In figuréwe show the distance between the two balls against time :
from¢ = 0.3 tot = 0.4 the minimum distance using in our method is approximatelyaétp /.

Let us now comment on the computational complexity of thehmes$. Forh = 1/60, [14] reports

a CPU time of 120 seconds per iteration on a DEC 500 Mhz wdikstdthere is no reference to
computational time inZ0]). In our case the cost of one time-step, on a Dell Precisiai® Minning

an Intel Centrino 2GHz processor with 1GB of RAM memory, garidue to the increasing number
of particles from 5,000 to about 400,000, from 9 secondsheiteiarly stage of the simulation, to
18 seconds at the end. Given the relative performance of fhiesessors one may deduce that the
complexity of the methods are similar, at least for the flodemconsideration. A difference in the
computational cost of the methods comes however from thestobss of the vortex methods and
the large time-steps that they allow. The time-step used4hwWas 102, a value from 5 to 7 times
smaller than our time-step.

4.2.3 Collision model in cases with or without symmetry

We come back to our level set collision model. We have alreglnserved in sectiod.1 that it
performed like that of 14] in the case of a 2D cylinder hitting a wall. To confirm this ebstion
in the more complex case of kissing spheres just considareghow in Figure3 a comparison of
the velocity of the spheres obtained by our vortex methodptement either by our collision model
or the collision model of14]. To implement the collision model ofLfi] in our vortex penalization
method , we took, with the notations of this referenee; 2/60, e = 10~* andc;; = 3.33 1076, The
two models give roughly the same response.

The reason why the two collision models give results whiah s close lies in the symmetry
of the problem. The model used 4], and which is similar to other models currently used in the
literature, looks at the distance between the centers aflifexts. Based on this distance it computes
a short range repelling force parallel to the centerlinghi{(wbvious modifications in the case of a
sphere interacting with a flat plane). This force is well addpo small particles or objects which
have spherical symmetry, but not in more general cases.rticyar it is unable to produce rotation
that should result from a collision taking place on a poirfttbe line linking the centers of the
objects. By contrast, our model yields a force which is tisted along the interface. In presence of
symmetry, the resulting global force is along the centerllike the model in14], but in more general
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Figure 5: Drafting, kissing and tumbling of two balls fafijiim a Newtonian fluid : comparison of the
balls velocity obtained with different methods. Physiaadl mumerical parameters of sectiér?.2
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Figure 6: Drafting, kissing and tumbling of two balls fatjim a Newtonian fluid: horizontal compo-
nents of the position (left) and velocity (right) of the cenof the two spheres . Top pictures : results
from [14], bottom pictures : our results. Physical and numericahipaaters of sectiod.2.2
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Figure 7: Drafting, kissing and tumbling of two balls fallitn a Newtonian fluid : distance between
the two balls. Physical and numerical parameters of sedtipr2

0 T

T
Our model ——
Glowinski et al. model -

-9 I I I I I I
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
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Figure 9: An ellipsoid colliding a still sphere : 3D views anet¢ = 0,0.15,0.175,0.2,0.25,0.3
from left to right and top to bottom. The, y andz axis of the ellipsoid are shown in color red, green
and blue respectively. Physical and numerical parametessation4.2.3

cases it has the ability to produce rotation. This is illatgd in Figured which shows the collision
of an ellipsoid with a fixed sphere. For this simulation weégakenh = 1/64 in a computational
box [0, 1]3, At = 0.005, ¢ = h and collision coefficients:;; equal to5. The center of the sphere
is initially located slightly on the right and in the back titsphere so that the contact will produce
rotations along the three axis. In this example, to makethatehe rotation is an effect of the contact
and not of the vorticity shed in the flow by the objects, we hawveed off the flow solver, like in the
experiment in Figuré.

5 Conclusion

We have presented a vortex level set method for the two-waplow of a fluid with rigid bodies.
The method is based on a penalization fluid model to enfogid motion inside the solid, coupled
with a level set method to capture the interfaces. The lesehwethod is also used to distribute
collision forces to handle the contact between rigid badiegarticle discretization of this model was
implemented and tested in 2D and 3D flows against experinagtether fictitious domain methods.
For fixed bodies the method appears as a simplified versionsria€ity creation algorithms that are
commonly used for the simulation of bluff-body flows by verteethods. For the more general case
of fluid-solid interaction it essentially combines a classivortex in cell method with an advection
equation that can be solved analytically for the rigid bedialthough the rigid motion constraint is
not exactly satisfied inside the bodies, the accuracy of te#had was found to be satisfactory. In
addition the method enjoys the usual robustness of vortekads which allows large time-steps.
To further illustrate the capabilities of the method we stibes example of a complex scene where
three dimensional effects and strong interactions withflinid are apparent. Figur&0 shows the
fall of a cup on a water-air free surface. The density of the isul.2. In this case the fluid has
a variable density but the ideas described above readilly apphis case. An additional level set

18



Figure 10: A cup falling into water. Level set functions ased for the air-water free surface and the
cup-flow interface.

function was used to capture the air-water interfagelp]. No surface tension was assumed on this
free surface. The viscosity of air and water was taken equilt?. The following successive events
can be observed : the splash of the cup on the water, a sligttinel of the cup with a rotation effect,
and finally the filling of the cup with water before it sinks. i§ttalculation used28? grid points.
Although it is hard to validate in a quantitative way this ¢ypf calculations, these sequences do
demonstrate that our model, although it essentially reliea vortex code in a square box combined
with a couple of advection equations, is able to handle tmepbex interaction of rigid bodies with
free surface flows.
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