An Efficient Algorithm for a Sharp Approximation of Universally Quantified Inequalities

Abstract : This paper introduces a new algorithm for solving a sub-class of quantified constraint satisfaction problems (QCSP) where existential quantifiers precede universally quantified inequalities on continuous domains. This class of QCSPs has numerous applications in engineering and design. We propose here a new generic branch and prune algorithm for solving such continuous QCSPs. Standard pruning operators and solution identification operators are specialized for universally quantified inequalities. Special rules are also proposed for handling the parameters of the constraints. First experimentation show that our algorithm outperforms the state of the art methods.
Type de document :
Communication dans un congrès
ACM symposium on Applied computing, Mar 2008, Fortaleza, Ceara, Brazil. ACM, pp.134-139, 2008
Liste complète des métadonnées

Littérature citée [26 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-00297250
Contributeur : Michel Rueher <>
Soumis le : mardi 15 juillet 2008 - 15:58:10
Dernière modification le : mercredi 24 juin 2015 - 10:59:30
Document(s) archivé(s) le : vendredi 28 mai 2010 - 22:29:46

Fichiers

QINE-SAC.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-00297250, version 1
  • ARXIV : 0807.2269

Collections

Citation

Alexandre Goldsztejn, Claude Michel, Michel Rueher. An Efficient Algorithm for a Sharp Approximation of Universally Quantified Inequalities. ACM symposium on Applied computing, Mar 2008, Fortaleza, Ceara, Brazil. ACM, pp.134-139, 2008. 〈hal-00297250〉

Partager

Métriques

Consultations de
la notice

150

Téléchargements du document

74