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Abstract. The term nowcasting reflects the need of timely
and accurate predictions of risky situations related to the de-
velopment of severe meteorological events. In this work the
objective is the very short term prediction of the rainfall field
from geostationary satellite imagery entirely based on neural
network approach. The very short-time prediction (or now-
casting) process consists of two steps: first, the infrared ra-
diance field measured from geostationary satellite (Meteosat
7) is projected ahead in time (30 min or 1 h); secondly, the
projected radiances are used to estimate the rainfall field by
means of a calibrated microwave-based combined algorithm.
The methodology is discussed and its accuracy is quantified
by means of error indicators. An application to a satellite ob-
servation of a rainfall event over Central Italy is finally shown
and evaluated.

1 Introduction

Nowcasting of rainfall from satellite imagery is becoming
an important issue for several applications, mainly related to
civil protection alarming, but also to mesoscale system atmo-
spheric dynamics (Marzano et al., 2002; Grimes et al., 2003;
Coppola et al., 2005). Multiple space and time scales can be
taken into account, as well as different data sources and ob-
jectives. The term “nowcasting” should be intended, in this
context, as the ability to predict the evolution of the geophys-
ical field of interest from satellite imagery at very short-term
time scales. The satellite measurements implicitly define the
time and space sampling. For a rapidly varying field such as
rainfall, high repetition times, such as those available from
geostationary satellites, are essential. On the other hand, the
accuracy of the nowcasted field is strictly related to the corre-
lation of the measured remotely sensed data with the rainfall
field itself.
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Several rain retrieval techniques have been proposed on
the basis of image processing approaches and infrared (IR)
radiometry data acquired from geostationary platforms (Hsu
et al., 1997; Miller et al., 2001; Grimes et al., 2003). These
approaches denote some inherent limitations due to the use
of IR radiances, which are measurements poorly correlated
with rainfall-forming processes. In this respect, microwave
(MW) radiometric data available from sun-synchronous plat-
forms can give best results being physically correlated with
rain below the cloud (Kummerow et al., 1995; Levizzani et
al., 1996; Tapiador et al., 2004; Marzano et al., 2005). From
a meteorological point of view, visible (VIS) and IR radiome-
ters can give information on cloud top layers. On the other
hand, MW radiometers can detect cloud structure and rain-
rate since MW brightness temperatures (TB’s) are fairly sen-
sitive to liquid and ice hydrometeors (Ferraro, 1997). Re-
garding the platforms, Geosynchronous Earth Orbit (GEO)
satellites can ensure a coverage with a high temporal sam-
pling, while Low Earth Orbit (LEO) satellites have the ad-
vantage to enable the use of MW sensors, but with the ma-
jor drawback of low temporal sampling. Therefore, LEO-
MW and GEO-IR radiometry are clearly complementary for
monitoring the Earth’s atmosphere and a highly variable phe-
nomenon such as precipitation. The IR radiances from geo-
stationary images have been properly calibrated using MW-
based combined algorithms (Turk et al., 2000; Bellerby et al.,
2000; Marzano et al., 2004). MW data can be extracted from
the Special Sensor Microwave Imager (SSM/I) sensors, but
any rain estimation source may be foreseen.

Rainfall nowcasting by remote sensing imagery has been
approached by means of numerous techniques in the last
decade (e.g., Dell’Acqua and Gamba, 2003). The following
nowcasting methods may be classified among standard, or in
this paper “conventional”, techniques: i) persistence method,
which assumes that each pixel in the forecasted satellite im-
age is associated to the same value as in the previous image;
ii) steady-state method, which assumes that the structures in
the image are transported but unchanged in size and intensity
(the forecasted image is the latest available satellite image
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Fig. 1. Neural network (NN) inputs and outputs during the training
phase.

translated by a suitable motion vector); iii) linear method,
consisting in linearly extrapolating the future value of a pixel
in the satellite frame from the latest two values available.
Each of these conventional nowcasting methods shows a per-
formance that depends on the weather conditions in the con-
sidered region. None of the three can be assumed as the best
method for all possible conditions. Neural networks (NN)
present several advantages with respect to conventional sta-
tistical techniques (Tapiador et al., 2004a, b; Marzano et al.,
2005). Their main feature is the ability to map input data to
output data to any degree of non-linearity. It is well known
that NNs exhibit the capacity to learn and to represent highly
non-linear functional.

In this work a special attention has been devoted to se-
lect the input space-time features in order to optimize the
NN methodology for rainfall nowcasting from satellite im-
agery. For a quantitative evaluation, various performance in-
dexes have been applied. Application to selected case stud-
ies will be discussed in order to show the potential of the
proposed satellite-based nowcasting technique. The compar-
ison of these preliminary results of the different techniques
clearly shows the better nowcasting capability of the neural
techniques with respect to the conventional techniques.

2 Satellite nowcasting of IR radiance field

As a source of geostationary satellite imagery, Meteosat-7
has been here considered over areas of Southern Europe.
The IR Meteosat-7 images considered here are composed by
547×298 pixels, corresponding roughly to longitudes rang-
ing from 0◦ to 22◦ E and latitudes ranging from 36◦ to 48◦ N.
Each pixel can be approximated as a square of 5×5 km2.
Three conventional forecast methods have been considered
for comparison and are briefly described below.

2.1 Conventional nowcasting methods

i) The first technique is the persistence method. This method
assumes that each pixel in the forecasted satellite image is
associated to the same value of the previous image. This
means that if the latest available (or current) image is frame
N, the next satellite image, or frame N+1, is assumed to be
equal to frame N.

ii) The second technique is the steady-state method. This
method assumes that the structures in the satellite frame N
are transported but unchanged in size and intensity. Frame
N+1 (or forecasted image) is assumed to be equal to the last
available satellite image, translated by a suitable motion vec-
tor. The proper displacement vector is found by calculating
the cross-correlation index between frames N and N-1 for all
the possible shifts of one of the two images with respect to
the other, within a range of +/−8 pixels. The values found
for each component of the vector are in the range 0–3 pixel.

iii) The third technique is the linear method. This method
consists in linearly extrapolating the future value of a pixel.
The IR temperature associated to each pixel in the frame
N+1 is linearly extrapolated from the values associated to
the same pixel in the last two available images (frames N and
N-1).

These conventional methods exhibit a performance that
depends on the weather conditions in the considered region.
None of the three can be assumed as the best method for all
possible conditions.

2.2 Neural-network nowcasting method

It is well known that NNs exhibit the capacity to learn and
to represent highly non-linear functional. A neural network,
properly configured, can be regarded to as a universal func-
tion approximator (Hecht-Nielsen, 1991). In general, NNs
provide a powerful methodology to predict temporal series
of random variables.

In this work NNs are trained to forecast the IR temperature
value associated to a certain pixel of the satellite image, start-
ing from the measured values in a region around that pixel
in the previous satellite images. To this aim, a great num-
ber (some tens of thousands) of input pattern/target pairs are
provided to the network during the training phase. Figure 1
shows an example in which the input pattern is a vector of 18
elements, corresponding to the square areas of 9 pixels cen-
tered on the pixeli, j , both in frame N and in frame N-1. The
associated target provided to the network during the training
phase is the IR temperature of the pixeli, j in the frame N+1.

In this example the input pattern is built considering the
neighbouring region around the pixel to be forecasted in the
last two available satellite images. In general, the extension
of the region around the pixel to be forecasted and the num-
ber of previous satellite images can be varied in order to op-
timize the network response.

For tracking cloud structures, at the scale considered here,
a typical wind velocity of 20 km h−1 can be assumed. This
means that in 30 min a certain cloud structure is expected to
be found within a radius of 10 km. The greater is the number
of past frames taken into account, the greater should be the
extension of the region around the consideredi, j pixel for
building the input pattern. This means that the local spatial
scale has to be established according to the considered time
lag.
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3 The neural network architecture

The neural nowcasting technique proposed here is based on
the feedforward multi-layer structure. This type of network is
characterized by the forward propagation of the input infor-
mation through the various layers. All neurons in a layer are
connected to all neurons in the adjacent layers through uni-
directional links. These links are represented by the synap-
tic weights. The synaptic weights act as signal multipliers
on the corresponding links (interconnections). For example,
in the four layers network showed in Fig. 2, the neurons are
grouped in sequentially connected layers; the layers are num-
bered 0, 1, 2 and 3. The neurons of layer 0 (or input layer) do
not perform computation, but only feed input signals to the
neurons of layer 1 (or first hidden layer). The last layer (layer
3) is the output layer. In this work the output layer has only
one neuron since the objective is (as stated before) to forecast
the IR temperature value associated to a certain pixeli, j .

The layers between the input and the output layer are
called hidden layers. It has been shown theoretically that a
three layers feed-forward neural network is sufficient to map
any continuous function (Hecht-Nielsen, 1991). Each neuron
is connected to all neurons of the two adjacent layers and not
to other neurons. Connections between neurons of the same
layer are not permitted and the input signal proceeds from the
input to the output layer and never in the opposite direction.
Each neuron is characterized by one output and many inputs,
which are the outputs of the neurons in the preceding layer.
The output of the neuronj in the layers is:

osj = ψ sj

[
Ns−1∑
i=1

W s
j io

s−1
i

]
(1)

where9sj is the non-linear bounded activation function of
the neuron andW s

j i represent the synaptic weight connecting
the input of thej -th neuron in the layers to the output of
thei-th neuron in the layers−1. In this work, a log-sigmoid
activation function is used for all neurons.

TheNN is trained minimizing the error functionE by the
steepest-descent gradient back-propagation algorithm. Sev-
eral tens of thousands of input/output patterns are provided to
the network during the training phase. The synaptic weights
are updated during the training according to the following
equation

1Wij (t) = −α
∂E

∂Wij

+ β1Wij (t − 1) (2)

whereα andβ are the learning rate and the momentum pa-
rameters, respectively,E the error function, andt is the train-
ing step or epoch.

4 Results

Several configurations of feed-forward networks have been
trained on selected IR satellite images from the 48 frames
sequence of 24 January 2003. In order to introduce in the

Fig. 2. Example of feed-forward neural network.

network the information of the different phases of the me-
teorological process, the pairs of input and output examples
utilized for the training phase have been chosen at a tempo-
ral distance of 6 h, for a total of 4 series of Meteosat images.
The frames 4, 16, 28 and 40 have been used as target frames.

Different number of training patterns, synaptic weights,
neighbours and preceding frames have been used for training
several network configurations.

The resulting trained networks have been tested on two
different sequences of frames extracted from 24 and 25 Jan-
uary, for the prediction of the IR satellite image N+1, be-
ing N the current or latest available Meteosat image. The
performances of the different configurations are evaluated by
statistical indexes and compared to the performances of con-
ventional methods. The errorbias, root mean square error
(rmse) and correlation index (corr) are defined as follows:

bias =
1

N

N∑
i=1

xi − yi (3)

rmse =

(
1

N

N∑
i=1

(xi − yi)
2

)1/2

(4)

corr =

N∑
i=1

(xi − x̄) (yi − ȳ)(
N∑
i=1

(xi − x̄)2
N∑
i=1

(yi − ȳ)2
)1/2

(5)

wherex andy are the forecasted and measured values, re-
spectively.

The best performing NN configuration in the prediction of
frame N+1 (half an hour ahead) has been trained and tested
for the prediction of the satellite image N+2 (1 h ahead). In
Fig. 3 the correlation index results computed between the
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Fig. 3. Correlation indexes (N+1) comparison on 24 Jan 2003 se-
quence.

Fig. 4. Correlation indexes (N+1) comparison on 25 Jan 2003 se-
quence.

forecasted and true image in the case of two different neu-
ral configurations and conventional methods are reported.

The results are similar for the steady-state and the persis-
tence method, while the linear method performs quite poorly
with respect to the other two methods. The correlation in-
dexes of images predicted with the neural configurations, are
greater than those obtained through the conventional meth-
ods. The FF27 75 50 1 is a feed-forward network with 27
elements in the input pattern, 75 neurons in the first hidden
layer, 50 neurons in the second hidden layer and 1 neuron in
the output layer. This configuration utilizes 1 level of neigh-
bours (that is 9 pixels) from the last three previous frames.
The FF363 15 8 1 utilizes five levels of neighbours (121
pixels) from three previous frames. For different network
configurations the number of neurons in the hidden layers
is established so that the ratio between the training exam-

Fig. 5. Correlation indexes (N+2) comparison on 24 Jan 2003 se-
quence.

Fig. 6. Correlation indexes (N+2) comparison on 25 Jan 2003 se-
quence.

ples and the number of weights to be optimized remains un-
changed for all the configurations.

The different results obtained by two FF networks are due
to the different considered area around the pixel.

The configuration FF363 15 8 1 has also been trained
and tested for the prediction of frame N+2 (1 h ahead). Fig-
ures 5 and 6 show the correlation indexes obtained by neural
predictions compared to conventional methods, for 24 and 25
January sequences, respectively.

The positive margin of neural nowcasting with respect to
conventional nowcasting in terms of correlation index results
increases in the prediction of frame N+2, ranging between
3.7 and 4.7 %.

The results in terms ofrmseandbiasalso confirm that the
best performing neural configuration is the FF363 15 8 1.
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Fig. 7. Steady-state nowcasting (N+1) of the frame 31, 24 Jan 2003.

In Tables 1 to 4 the performance indexes related to the
sequences of 24 and 25 January are reported for the neural
nowcasting and the steady-state method.

In Figs. 7 and 8 an example of scatterplot related to the
best conventional method (steady-state) is compared to the
corresponding scatterplot related to the best neural configu-
ration, respectively. The results shown so far indicate that a
properly configured and trained NN can significantly outper-
form the conventional nowcasting methods.

Nevertheless, the performance of a NN configuration de-
pends on the choice of the number of previous frames and the
number of neighbours. A further improvement in the per-
formance of a certain neural configuration is expected if a
wider set of input patterns, representative of different meteo-
rological situations, is provided to the network in the training
phase.

An example of neural prediction of an IR temperature field
by means of the FF363 15 8 1 configuration is shown in
Fig. 9. The left panel of Fig. 9 shows the observed Meteosat
image, whereas the right panel the nowcasted image derived
from the NN approach. The comparison shows an excellent
agreement between the two radiance fields, even in the region
of low equivalent temperatures, which correspond to cloud
and rain coverage.

5 Rainfall nowcasted field estimation algorithm using
MW and IR sensors

The predicted IR field can be used as input to any rainfall
estimation algorithm capable to process IR satellite data. For
producing rainfall field estimation from the nowcasted IR
temperature field, the NEREMIS algorithm has been consid-
ered (Grimes et al., 2003; Marzano et al., 2005; Coppola et
al., 2005). An example of estimated rainfall field is shown
in Fig. 10. The image on the left represents the rain field
estimated by the NEREMIS technique from the real IR tem-

Fig. 8. Neural nowcasting (N+1) of the frame 31, 24 Jan 2003.

perature field as observed from Meteosat 7. On the right the
rainfall field estimated from the neural prediction of the IR
temperature field is shown. Thermse is about 0.4 mm h−1

when selecting the rain areas.

6 Summary and future developments

The comparison of different techniques for the nowcasting
of satellite IR brightness temperature images shows that the
neural approach is definitely performing better than any con-
ventional method considered in the comparison. Both the
predictions at 30 min and 1 h have been compared, showing
an increased positive margin in terms of correlation indexes
for the neural prediction of the frame N+2.

Several four layer feed-forward neural configurations have
been tested, varying the number of preceding frames and the
number of levels of neighbour pixels. A further increase in
the nowcasting performance of a neural configuration is ex-
pected if a wider set of input patterns, representative of dif-
ferent meteorological situations, is provided to the network
in the training phase. For rainfall field nowcasting, the pre-
dicted IR temperature field has been used as input for a com-
bined IR/MW estimation algorithm. Open issues regard the
error budget evaluation for the MW-IR combined rain esti-
mation algorithms (over land) and the network optimal de-
sign for an operational use.
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Table 1. Nowcasting performance indexes (N+1) on Jan 24, 2003 sequence for the neural configuration FF363 15 8 1.

FF 363 15 8 1 – 24.01.03

Frame N 3 4 5 6 7 8 9 10
bias −0.199 −0.303 −0.289 −0.408 −0.384 −0.376 −0.351 −0.374
rmse 4.216 4.185 4.209 4.243 4.269 4.239 4.168 4.172
corr 96.54 96.67 96.66 96.61 96.54 96.59 96.68 96.61

Table 2. Nowcasting performance indexes (N+1) on Jan 25, 2003 sequence for the neural configuration FF363 15 8 1.

FF 363 15 8 1 – 25.01.03

Frame N 3 4 5 6 7 8 9 10
bias −0.219 −0.263 −0.175 −0.231 −0.255 −0.235 −0.173 −0.197
rmse 4.516 4.709 4.814 4.736 4.864 4.867 5.048 5.315
corr 95.68 95.25 95.00 95.08 94.68 94.58 94.04 93.32

Table 3. Nowcasting performance indexes (N+1) on 24 Jan 2003 sequence for the steady-state method.

Steady-state – 24.01.03

Frame N 3 4 5 6 7 8 9 10
bias 0.011 −0.036 −0.014 −0.130 −0.185 −0.148 −0.125 −0.163
rmse 5.778 5.665 5.677 5.735 5.826 5.863 5.836 5.827
corr 93.62 93.97 94.04 93.93 93.68 93.56 93.59 93.54

Table 4. Nowcasting performance indexes (N+1) on 25 Jan 2003 sequence for the steady-state method.

Steady-state – 25.01.03

Frame N 3 4 5 6 7 8 9 10
bias 0.058 0.058 0.104 0.044 0.015 0.020 0.076 0.082
rmse 5.747 5.943 5.999 6.031 6.141 6.250 6.445 6.665
corr 93.23 92.70 92.55 92.38 91.90 91.46 90.78 90.01
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