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Abstract: The angular power spectrum of a stationary random field on
the sphere is estimated from the needlet coefficients of a single realization,
observed with increasingly fine resolution. The estimator we consider is
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1. Introduction

In many application domains (geophysics, cosmology, hydrodynamics, computer
vision, etc.), data are defined on the sphere. If the data fit the model of a
stationary stochastic field, their second order characteristics, summarized by the

∗corresponding author.
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angular power spectrum, is of great importance. It contains all the distribution
information in the case of a Gaussian stationary process. Ordinary spherical
harmonic transform (SHT), the equivalent of the Fourier Series on the circle,
provides a fast and efficient method for spectral estimation in the idealistic case
of a fully and perfectly observed sphere. We are mainly concerned here with the
asymptotics of high angular frequencies.

However, rarely the data are available on the whole sphere. Often it is ob-
served under non-stationary contaminants. This is the case for the cosmic mi-
crowave background (CMB) which is a major motivation for this work. For
those reasons, during the past decade, localized analysis for spherical data has
motivated many developments; see [12, 22, 7, 21, 16] and the references therein.

The wavelets provide a powerful framework for dealing with non-stationarities.
A recent construction of wavelet frames (needlets) by [8, 18] has proved effi-
cient to analyze stationary spherical processes, thanks to their good localization
property. The statistical properties of these frames’ coefficients, in a noiseless
context, are established in [1, 2, 14]. In [1], a Central Limit theorem is proved for
functionals of the needlet coefficients of a pure, noiseless, unmasked, Gaussian
stationary field. This is supplemented in [2] with bootstrap estimators of the
variance of such statistics; the authors show that these bootstrap estimators are
’consistent’ (in a high frequency sense; see below) and that the CLT holds when
the true variance is replaced by its bootstrap estimate.

In the time series literature, wavelets are used for spectral estimation whether
in a semi-parametric (see e.g. [20]) or a non-parametric [4] context. Our obser-
vation model, in addition to being spherical, has the particularity of presenting
quite general non stationarity (in the structure of the noise) and we failed to
find any reference on the subject even for processes living on Euclidean spaces.

In this paper, we establish the consistency of a spectral estimator constructed
on the needlets coefficients in high-frequency asymptotics.

The paper is organized as follows. In Section 2 we present the model, including
assumptions on the way the process is sampled. In Section 3 we define the
needlet spectral estimators and state the consistency results that hold true under
realistic conditions. The finite sample behavior of the estimator is explored by
numerical simulations in Section 4. Our conclusion is given in Section 5 and
Proofs are postponed to Section 6.

2. Model and settings

2.1. Gaussian stationary spherical fields

Consider the unit sphere S in R3 with generic element ξ. The geodesic distance
is given by d(ξ, ξ′) def= arccos(ξ · ξ′) where ξ · ξ′ denotes the usual dot product
between ξ and ξ′ (considered as vectors in R3). The uniform measure dξ is
the unique positive measure on S which is invariant by rotation, with total
mass 4π. Let H def= L2(S, dξ) be the Hilbert space of complex-valued square
integrable functions. We have the following decomposition: H =

⊕∞
!=0 H! where
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H! is the vector space of spherical harmonics of degree #, i.e. restrictions to the
sphere of homogeneous polynomials of degree # in R3 which are harmonic (or,
equivalently, the restriction of which are eigenvectors of the spherical Laplacian
with eigenvalues #(# + 1)). The usual spherical harmonics Y!,m(ξ), −# ≤ m ≤
#, constitute an orthonormal basis of H!. Therefore, the set of all spherical
harmonics Y!,m, # ≥ 0, −# ≤ m ≤ #, is an orthonormal basis of H.

In this paper, we shall be concerned with a zero-mean, mean square continu-
ous and real-valued random field X(ξ). We shall assume that X is second-order
stationary, that is E [X(ρξ)X(ρξ′)] = E [X(ξ)X(ξ′)] for all ρ ∈ SO(3). Then
the spherical harmonics coefficients of X, a!,m

def=
〈
X, Y!,m

〉
H, are square inte-

grable random variables which verify E [a!,ma∗!′,m′ ] = δ!,!′δm,m′C! for m,m′ ≥ 0
and al,−m = a∗!,m. The inverse spherical harmonics transform reads: X(ξ) =
∑

!≥0

∑!
m=−! a!,mY!,m(ξ). The last equality holds in the sense that

E
∫

S

∣∣∣∣∣X(ξ)−
L∑

!=0

!∑

m=−!

a!,mY!,m(ξ)

∣∣∣∣∣

2

dξ −→
L→∞

0.

The sequence (C!)!≥0 is called the (angular) power spectrum of X. Let L!

denote the Legendre polynomial of degree # normalized by L!(1) = 2!+1
4π . The

angular power spectrum is linked to the angular correlation of X by the relation∑
!≥0 C!L!(cos θ) = E [X(ξ)X(ξ′)] for all pairs of points such that d(ξ, ξ′) = θ.

The square integrability of X is equivalent to the condition
∑

!≥0(2#+1)C! < ∞.
We shall also assume that X is Gaussian. This additional assumption is

known to be true if and only if the coefficients a!,m, # ≥ 0, m ≥ 0 are independent
(see [3] for the “only if” part). As mentioned in the Introduction, the finite-
dimensional distributions of a Gaussian stationary field are entirely determined
by the second-order characteristics, that is by the angular power spectrum of the
field. For instance, the second-order stationarity is equivalent, under Gaussian
assumption, to the strict stationarity, i.e. for all ρ ∈ SO(3) and ξ1, . . . , ξn ∈ S
the two vectors (X(ρξ1), . . . , X(ρξn)) and (X(ξ1), . . . , X(ξn)) have the same
distribution.

2.2. Sampling on the sphere

In any real-life situation, only discretized versions of X are available, and con-
sequently spherical harmonic coefficients are exactly computable only if X is
L-band-limited, that is all the a!,m = 0, # > L, for some L which depends
essentially on the number of observed points. The discretization of the sphere
and achievement of cubature formulas for geodetic functions is a non-trivial
task. During the last decade it was shown ([17, 18]) that there exists a constant
c0 > 0 such that for all L ∈ N∗ there exists a set (ξk, λk)k∈{1,...,N} ∈ (S×R∗+)N

of cubature points and weights (referred to as a pixelization of order L) with



Faÿ and Guilloux / Spectral estimation on the sphere with needlets 4

the following properties.

For all f ∈
⊕L

!=0
H!,

∫

S
f(ξ)dξ =

∑N

k=1
λkf(ξk) (cubature formula). (1a)

c−1
0 L2 ≤ N ≤ c0L

2. (1b)
c−1
0 L−2 ≤ min

1≤k≤N
λk ≤ max

1≤k≤N
λk ≤ c0L

−2. (1c)

c−1
0 L−1 ≤ sup

ξ∈S
d(ξ, {ξk}k∈{1,...,N}) ≤ c0L

−1. (1d)

c−1
0 L−1 ≤ min

1≤k<k′≤N
d(ξk, ξk′) ≤ c0L

−1. (1e)

The following two lemmas derive straightforwardly from these pixelization prop-
erties. The first one is proved in [1] and the second one follows from a simple
covering argument (see [2, Lemma 5] for a similar statement).

Lemma 1 ([1]). For all M ≥ 3, there exists a constant c > 0 such that for all
L ∈ N∗, ξ ∈ S and for all pixelization of order L we have

∑N

k=1

1
(1 + Ld(ξ, ξk))M

≤ c .

Lemma 2. There exists a constant c > 0 such that for all L ∈ N∗, ξ ∈ S and
δ > c0L−1 and for all pixelization of order L we have

c−1δ2L2 ≤ Card
{
k ∈ {1, . . . , N} : d(ξ, ξk) ≤ δ

}
≤ cδ2L2 .

2.3. Observation model

We are now in position to give a description of our statistical model. Assume
that we observe a noisy and sampled version of low-passed X at successive scales
j, with some missing (or attenuated) data. More precisely, for every j ∈ N, given
some Lj ∈ N∗,

• let (ξj,k, λj,k)k∈{1,...,Nj} be a pixelization of order 4Lj ;
• let Wj : k ∈ {1, . . . , Nj} (→ Wj,k ∈ [0, 1] and σj : k ∈ {1, . . . , Nj} (→ σj,k ∈

R+ be deterministic, known, functions ;
• and let Bj : # ∈ N (→ Bj,! ∈ R such that Bj,! = 1 if # ≤ Lj and Bj,! = 0

if # > 2Lj .

We observe

Yj,k
def= Wj,k [Xj (ξj,k) + Zj,k] , j ∈ N, k ∈ {1, . . . , Nj} (2)

where Zj,k
def= σj,kUj,k and Uj,k, j ∈ N, k ∈ {1, . . . , Nj} is a triangular array of

standard and independent Gaussian random variables and independent of the
process X. The process Xj is defined by

Xj
def=

∑

!≥0

!∑

m=−!

Bj,!a!,mY!,m , a!,m =
〈
X, Y!,m

〉
H . (3)
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In any CMB experiment, some smoothing is induced by the instrumental beam.
Eq (3) is a idealistic version of this low-pass operation.

Without loss of generality, j (→ Lj is supposed non-decreasing. In the follow-
ing, we call Wj the mask. The particular case of Wj taking its values in {0; 1}
corresponds to missing data.

In other words, a single realization of X is considered, but independent and
noisy measures with an increasing spatial resolution are available. This corre-
sponds, for instance, to the observation model of the CMB. The latter is modeled
by astrophysicists as the single realization of a stationary Gaussian process. Its
observation is achieved by more and more precise instruments, involving their
own observation noise, sky coverage and instrumental beam. Full sky map of
moderate resolutions (e.g. maps provided by the WMAP collaboration [5]) and
observations of small and clean patches of the sky at very high resolution (e.g.
maps from ACBAR experiment [19]) are available simultaneously. Cosmologists
aggregate information for those maps to give a large band estimation of the
angular power spectrum.

2.4. Needlets and statistical properties of needlet coefficients

2.4.1. General framework

The needlets are second-generation wavelet frames which were introduced by [18]
(see also [8, 11]). Let us recall below their definition and first properties, the
proofs of which are either referred to existing literature or postponed to Sec-
tion 6.

Start from the fact that the orthogonal projection on H! has a kernel involving
Legendre polynomials, namely

∀f ∈ H, (ΠH!f)(ξ) def=
!∑

m=−!

〈
f,Y!,m

〉
HY!,m(ξ) =

∫

S
L!(ξ · ξ′)f(ξ′)dξ′.

Instead of considering single frequencies #, we shall combine them within fre-
quency bands. For this purpose, define a sequence of functions bj : # ∈ N (→
bj,! ∈ R, j ∈ N, called (frequency) window functions. The window bj is sup-
posed to be supported in [0, L(b)

j ] for some L(b)
j ∈ N. The kernels Ψj : (ξ, ξ′) (→∑

!≥0 bj,!L!(ξ · ξ′) and Λj : (ξ, ξ′) (→
∑

!≥0(bj,!)2L!(ξ · ξ′) have the two follow-
ing obvious properties. First, for all f ∈ H, f(ξ) =

∑
j∈N

∫
S Λj(ξ, ξ′)f(ξ′)dξ′.

Second, Λj(ξ, ξ′) =
∫

S Ψj(ξ, ξ”) Ψj(ξ”, ξ′)dξ”.
The discretization of the above kernels leads to the following spherical func-

tions called needlets. For each scale j ∈ N, given a pixelization (ξj,k, λj,k)k∈{1,...,Nj}

of order at least 2L(b)
j , define

ψj,k(ξ) def=
√

λj,k

∑

!≥0

bj,!L!(ξ · ξk) .
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The needlets ψj,k, j ∈ N, k ∈ {1, . . . , Nj} constitute a frame of H [18, 11] if
for all # ∈ N,

∑
j∈N(bj,!)2 = 1. For any (possibly random) function f in H, the

coefficients
〈
f, ψj,k

〉
H are renormalized for sake of notational simplicity: we shall

handle the needlet coefficients

γj,k
def= (λj,k)−1/2 〈

f, ψj,k

〉
H .

If f is L(b)
J -band-limited, one can compute practically the coefficients γj,k, j ≤ J ,

in the spherical harmonics domain, from the values of f on the cubature points,
as made explicit by the following diagram.

(f(ξk))1≤k≤N
SHT−→ (a!,m)

!≤L(b)
J

×=⇒ (bj,!a!,m)!≤Lj

SHT−1

=⇒ (γj,k)1≤k≤Nj
(4)

The initial pixelization (ξk, λk)1≤k≤N must be of order at least 2L(b)
J . SHT de-

notes spherical harmonics transform, computed from the samples of X and of
the Y!,m’s thanks to (1a). Double arrows denotes J operations.

Since the needlet coefficients at a given scale j depend only on a finite number
of values of the function f , it is possible to generalize this notion to an arbitrary
(possibly random) finite sequence (fk)1≤k≤Nj ∈ RNj . The needlet coefficients of
such sequence are the quantities

(λj,k)−1
Nj∑

p=1

λj,pψj,k (ξj,p) fp =
∑

!≥0

!∑

m=−!

bj,!Y!,m (ξj,k)
Nj∑

p=1

λj,pY!,m (ξj,p) fp.

If fk = f(ξj,k) for some f ∈
⊕Lj

!=0 and ξk are the points of a pixelization of
order at least 2Lj , then the above expressions are equal to γj,k.

Let us give the first properties of the needlet coefficients of a random field at a
given scale j ∈ N. Let X be a stationary field, Xj like in Eq. (3) with Bj,! = 1 if
# ≤ L(b)

j and Bj,! = 0 if # > 2L(b)
j , and (ξj,k, λj,k)1≤k≤Nj a pixelization of order

4L(b)
j . The needlet coefficients of X are denoted ηj,k. They are also the needlet

coefficients of Xj since X and Xj have the same spherical harmonics coefficients
up to the frequency # = L(b)

j . In the presence of an additive noise Zj,k in the
observation of X(ξj,k), the “observed” needlet coefficients computed by (4) from
X + Z write ηj,k + ζj,k, where the coefficients ζj,k are the needlet coefficients of
Z. The next results provide the covariance structure of those coefficients at scale
j. In our model, X and Z are supposed Gaussian. In this case, their needlets
coefficients are Gaussian too.

Proposition 3 ([1]). Denote (C!)!≥0 the power spectrum of X. Its needlet
coefficients ηj,k are centered, with covariances given by

Cov [ηj,k, ηj,k′ ] =
∑

!≥0

(bj,!)
2 C!L!(ξj,k · ξj,k′).
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Proposition 4. Assume Z of the form Zj,k = σj,kUj,k where the Uj,k are un-
correlated, centered and unit variance random variables. The needlet coefficients
ζj,k of Z are centered, with covariances given by

Cov [ζj,k, ζj,k′ ] =
1√

λj,kλj,k′

Nj∑

p=1

(λj,pσj,p)
2 ψj,k(ξj,p)ψj,k′(ξj,p).

2.4.2. B-adic needlets

In this paper we shall fix some constant B > 1 and consider B-adic window
functions.

Assumption 1. There exist M ≥ 3 and a M -differentiable real function a
supported in [−B,B] and identically equal to 1 on [−B−1,B−1] such that

bj,! = b
(
B−j#

)

where b(·) =
√

a(·/B)− a(·).

For such window functions, L(b)
j = Bj+1. These spectral windows are not as

general as those used by [6]. Indeed, it has been shown by [11] that one can
take advantage of the relaxation of the B-adic scheme originally proposed in
the definition of needlets to optimize their non-asymptotic localization proper-
ties. In the following, since we are concerned with asymptotic properties, we
will make use of the B-adic structure of Assumptions 1 and 2, so that the spa-
tial localization property of the needlet takes the convenient form of the next
proposition.

Proposition 5 ([18]). There exists a constant c > 0 which depends only on the
function b such that for all j ∈ N, k ∈ {1, . . . , Nj} and ξ ∈ S,

|ψj,k(ξ)| ≤ cBj

(
1 + Bjd(ξ, ξj,k)

)M .

The stochastic counterpart of this analytical result is that the needlet coef-
ficients of a stationary field are asymptotically uncorrelated as j → ∞, except
for points at a distance of order B−j or less. For this purpose and throughout
this article, we make on the power spectrum of X the same following regularity
assumption as in [1, 14, 13] (and also, in substance, in [15]).

Assumption 2. There exist α > 2 and a sequence of functions gj : [B−1,B] →
R, j ∈ N, such that

C! = #−αgj

(
B−j#

)

for every # ∈ [Bj−1,Bj+1]. Moreover, there exist positive numbers c0, . . . , cM

such that for all j ∈ N, c−1
0 ≤ gj ≤ c0 and for all r ≤ M ,

sup
B−1≤u≤B

∣∣∣∣
dr

dur
gj(u)

∣∣∣∣ ≤ cr .
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Proposition 6 ([1]). Let X be stationary with a power spectrum satisfying
Assumption 2 and ηj,k its needlet coefficients. Then there exist a constant c > 0
such that for all j ∈ N and k, k′ ∈ {1, . . . , Nj}

|Cor [ηj,k, ηj,k′ ]| ≤
c

(
1 + Bjd(ξj,k, ξj,k′)

)M .

Remark. A generalization of this B-adic framework, in a different direction to
the one of [11] can be found in [9, 15, 13]. The authors do not suppose that the
function a (or b) is compactly supported and obtain localization and asymptotic
uncorrelation results similar to Propositions 5 and 6.

3. Estimation results

In this Section, we present a new procedure for the estimation of the angular
power spectrum of X in the model of Eq. (2) based on the needlet coefficients
of Y . The properties of needlets described in Section 2.4 allow to take into
account the local signal-to-noise ratio in the estimation of the (however) global
spectrum. This spatial accuracy is at the cost of a lower frequential precision:
not every value of C! will be estimated, but only the mean values in the bands
defined by the windows bj,!.

3.1. Parameters and estimators

We shall provide below estimators for the parameters

C(j) def= (4π)−1
∑

!≥0

(2# + 1) (bj,!)
2 C!

which are smoothed versions of the power spectrum of X at successive scales. A
comparison of a Riemannian sum to an integral shows that, under Assumption 2,
c1B

j(2−α) ≤ C(j) ≤ c2B
j(2−α) for some c1, c2 > 0.

Following [2, 13, 14], we consider the ’consistency’ of a sequence of estimators
in the high-frequency asymptotics, which implies (contrary to the usual notion
of consistency) a sequence of parameters to estimate. This is made more precise
in the definition below.

Definition. Given a sequence θj of nonzero parameters, a sequence θ̂j of esti-
mators is said consistent if E

(
θj , θ̂j

)
−→
j→∞

0, where

E
(
θj , θ̂j

) def=
E

(
θ̂j − θj

)2

θ2
j

.

The Needlet Spectral Estimators (NSE) are defined by

Ĉ(j) def=
Nj∑

k=1

wj,k

[
(γj,k)2 − (nj,k)2

]
(5)
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with some weights such that
∑Nj

k=1 wj,k = 1 and where

nj,k
def=



 1
λj,k

Nj∑

p=1

(λj,pσj,pψj,k(ξp))
2




1/2

(6)

is the standard deviation of the needlet coefficients of the masked noise (it
follows from Proposition 4 with k = k′ and Wj,kσj,k in place of σj,k). The γj,k’s
are the observed needlet coefficients of Y and nj,k are defined in Eq. (6). The
weights should ideally be designed according to the local noise level and the
local effect of the mask. For this purpose, given a sequence (tj)j∈N in R, let us
define the set of kept coefficients

Kj
def=





k ∈ {1, . . . , Nj} :






Nj∑

p=1

λj,p(1−Wj,p)2(ψj,k(ξj,p))2






1/2

≤ tj





.

As the second-order characteristics of the noise are known, its effect on the
square of the needlet coefficients is completely subtracted in (5). Thus, the bias
of the NSE is caused only by the mask.

Proposition 7. For any choice of weights such that wj,k = 0 for k /∈ Kj, there
exists a constant c such that

∣∣E Ĉ(j) − C(j)
∣∣

C(j)
≤ cBαjtj .

Remark 1. In particular, if Wj ≡ 1 (no mask), then for any choice of weights,
Ĉ(j) is unbiased.

This result is completed by the following one about the variance of Ĉ when
there is no noise.

Proposition 8. Suppose that σj,k = 0 for all k ∈ {1, . . . , Nj} and that wj,k = 0
for k /∈ Kj. Then there exists c > 0 such that

Var
(
Ĉ(j)

)

C2
≤ c






Nj∑

k,k′=1

|wj,kwj,k′ |
(
1 + Bjd(ξj,k, ξj,k′)

)2M +
Njtj
C(j)

+
(

Njtj
C(j)

)2



 .

If the needlets coefficients at a scale j were independent, centered Gaussian
variables with unknown variance C(j) and observed with independent centered
heteroscedastic Gaussian additive errors of variance (nj,k)2, then the Maximum
Likelihood of C(j) would be reached for the value Ĉ(j) given by (5) with weights
wj,k ∝

(
C(j) + (nj,k)2

)−2 (see e.g. [6]). In reality, the uncorrelation of the
needlets coefficients holds only approximately in the sens of Proposition 6. How-
ever, if some previous, possibly rough, estimates for C(j) are available, say C

(j),
the following weights are still meaningful.

wj,k =
1
S

(
C

(j) + (nj,k)2
)−2

1k∈Kj (7)
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where S
def=

∑Nj

k=1

(
C

(j) +
(
nj,k

)2)−21k∈Kj .

3.2. Consistency of the estimators

Suppose that Assumptions 1 and 2 are satisfied. Theorems 1 and 2 below provide
conditions for the consistency of the needlet spectral estimators (5). Theorem 1
deals with generic weights whereas in Theorem 2 we consider weights of the
form (7).

Theorem 1. Assume that

i) the weights wj,k are such that wj,k = 0 for k /∈ Kj and that moreover

∑Nj

k,k′=1

|wj,kwj,k′ |
(
1 + Bjd(ξj,k, ξj,k′)

)M −→
j→∞

0

and

sup
1≤p≤Nj

∑Nj

k,k′=1

|wj,kwj,k′ |
(1 + Bjd(ξj,p, ξj,k))2M (1 + Bjd(ξj,p, ξj,k′))2M

=
j→∞

O
(
B−4j

)
;

ii) the noise verifies

Nj∑

p=1

λj,p(Wj,pσj,p)4 =
j→∞

o
(
B(4−α)j

)
;

iii) the thresholds tj defining the set of kept coefficients are chosen such that

tj =
j→∞

o
(
B−αj

)
.

Then the sequence Ĉ(j) is consistent.

Remark 2. Condition i) prohibits weights which are too much concentrated on
few points k. For instance, thanks to Lemma 1, Condition i) is trivially satisfied
if

max
1≤k≤Nj

|wj,k| =
j→∞

O
(
N−1

j

)
.

Theorem 2. Suppose that the weights follow Eq. (7) and that

i) there exists a constant κ1 > 1 and a sequence rj in R+ such that

(1 + rj)
2

Card {k ∈ Kj : (nj,k)2 ≤ rjC(j)}
=

j→∞
O

(
B−κ1j

)
;

ii) there exists a constant κ2 ∈ R such that

∑N

p=1
λp(Wj,pσj,p)2 =

j→∞
O

(
Bκ2j

)
;
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iii) the thresholds tj defining the set of kept coefficients are such that

tj =
j→∞

o
(
B−αj

)
;

iv) there exists a constant c > 0 such that for all j ∈ N

c−1 C(j) ≤ C
(j) ≤ c C(j) .

Then, for M > max
{

κ2+α
κ1−1 ; 5+α−κ1+κ2

κ1−1

}
, the sequence Ĉ(j) is consistent.

The hypotheses of Theorem 2 can be interpreted in the following way: Con-
dition i) describes a trade-off between an arbitrary upper bound on the noise
variance and the number of observed points under this bound. The noise level
can be as high as wanted (in the – very weak – limit of Condition ii)) in some
regions, provided that it is under control at least in some other regions. An
example is given below. Conditions ii) and iii) are not restrictive, neither is
the condition on the number M of derivatives of a, since one is free to chose
a infinitely differentiable a. On the contrary, Condition iv) assumes a previous
partial knowledge on the parameters C(j) to estimate, which is equivalent to
the knowledge of the parameter α.

Example. Suppose that there exists a δ > 0 such that for each scale j, data
with a noise variance less than

√
Nj are available at least within a spherical disc

of radius δ. More precisely, there exist ξ∗j ∈ S and rj = O
((√

Nj

)β
)
, β < 1

such that for all k with d(ξj,k, ξ∗j ) ≤ δ

• W (ξj,k) = 1
• and σj,k ≤ rjC(j).

Then condition i) is satisfied.

4. Simulations

In this section, we investigate the non-asymptotic numerical performances of
the NSE, in a relatively realistic setting. This is for illustration only, as there
are many free parameters in the models (mask, noise level) that are only asymp-
totically constrained by the previous theory.

4.1. Settings

The constant determining the width of the bands is set to B = 1.25. The
function a of Assumption 1 is designed on [B−1,B] by a polynomial of degree
19 connecting 1 to 0 with M = 9 continuous derivatives, i.e. a(B−1) = 1,
a(B) = 0 and a(r)(B±1) = 0, 1 ≤ r ≤ M . Frequency window functions bj,! and
some of the associated needlets are displayed in Fig. 1.

In the analysis, the first 10 scales (0 ≤ j ≤ 9) are not considered since the
support of the corresponding window functions is of width less or equal than
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Needlet profile, band j=15 Needlet profile, band j=23 Needlet profile, band j=30

Fig 1. Needlets in frequency and spatial spaces. Top: window functions bj,! as functions of
frequency ! (in blue, the three ones corresponding to profiles plotted below). Bottom: Polar
plots of the function θ ∈ [0, 2π[ "→

∑
!≥0

bj,!L!(cos θ) for j = 15, 23 and 30, to illustrate their

localization property.

2. These scales correspond to frequencies # ≤ 8. The range of studied scales is
10 ≤ j ≤ 30.

We use the HEALPix pixelization and associated direct and inverse spherical
harmonic transform [10]. Needlet coefficients are computed from three experi-
ments providing maps at respective HEALPix resolutions nside = 128, 256 and
512 (i.e. the number of cubature points N is 196.608, 786.432 and 3.145.728).

The simulated data are illustrated in Fig. 2. A first “experiment” (hereafter,
A), i.e. a mask an a noise level map, is used for scales 10 ≤ j ≤ 23. The
noise level is reminiscent to the expected level form the forthcoming Planck
experiment of the European Spatial Agency1. Two other experiments (hereafter,
B and C), with synthetic masks and noise-level maps, are used respectively for
scales 23 < j ≤ 26 and 26 < j ≤ 30.

4.2. Results

The distribution on the NSE estimators for first the scales 10 ≤ j ≤ 30 is
estimated by 800 Monte Carlo replicates in the setting of previous section. Fig-
ure 3 illustrates the convergence of the sequence Ĉ(j). The approximate normal
distribution of the estimator is highlighted by the quantile-to-quantile plots of
Figure 4 and the p-values from Anderson-Darling goodness-of-fit test.

1see www.rssd.esa.int/Planck/
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Fig 2. Simulated data. Fist line: WX. Second line: Wσ. Third line: WZ. Fourth line: Y .
The columns correspond to the settings for the three experiments: A (fist column) used for
10 ≤ j ≤ 23; B (second column) used for 23 < j ≤ 26; C (third column) used for 26 < j ≤ 30.
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Fig 4. Distribution of the standardized NSE estimator Ĉ(j) for bands 15, 23 and 30. The p-
values are obtained from the Anderson-Darling and Cramér-von Mises tests of Gaussianity.
At low frequencies, the estimator is significatively skewed.

5. Conclusion

In this work, we have proved the mean-square consistency of a spherical spec-
tral estimator based on the needlet analysis of a stationary field with missing
data and non-homogeneous additive noise. Our model is relatively realistic and
could be enriched to fit the requirement of particular applications. A possible
development of this work is the study of the rate of convergence, limiting law,
efficiency, etc. of those estimators.

Although this has not be stated here for brevity, it must be noticed that this
method allows easy adaptation to a context with longitudinal data, i.e. of the
form

Yj,k,e = Wj,k,e [X (ξj,k) + Zj,k,e] , j ∈ N, k ∈ {1, . . . , Nj}, e ∈ {1, . . . , Ej}.

for some sequence of integer {Ej}j∈N. This generalization of model (2) is of high
importance for practical applications, when for each scale j multiple independent
observations (indexed by e) of the signal of interest are available, such those
provided by the various CMB experiments (see [6] for details).

6. Proofs

In this section, for sake of notational simplicity,

• the sub- and superscripts j are omitted
• for quantities a(j) and b(j) depending on j, a ! b means: ∃c > 0,∀j ∈

N, a(j) ≤ cb(j)
• a . b means: a ! b and b ! a.



Faÿ and Guilloux / Spectral estimation on the sphere with needlets 15

The following fact will be used extensively in the proofs. Let (ξp, λp)1≤p≤N

be a pixelization of order 4Bj+1

N∑

p=1

λpψ
2
k(ξp) =

∫

S
ψ2

k(ξ)dξ = λ−1
k

∑

!,!′≥0

b(B−j#)b(B−j#′)
∫

S
L!(ξk · ξ)L!′(ξk · ξ)dξ

= λ−1
k

∑

!≥0

b2(B−j#)
2# + 1

4π
. λ−1

k Bj
∑

!≥0

b2(B−j#)B−j# . 1 (8)

as
∫

R+
b(x)xdx > 0 and λ−1

k Bj . B−j using (1b)-(1c).

6.1. Proof of Propositions 3 and 4

The four following lines, which can be found in [1, p. 9], are recalled for the
reader’s convenience.

E [ηkηk′ ] = (λkλk′)
−1/2 E

∫∫

S
X(ξ)X(ξ′)ψk(ξ)ψk′(ξ′)dξdξ′

= (λkλk′)
−1/2 E

∫∫

S

∑

!,!′≥0′

!∑

m=−!

!′∑

m′=−!′

a!,ma!′,m′Y!,m(ξ)Y!′,m′(ξ′)ψk(ξ)ψk′(ξ′)dξdξ′

= (λkλk′)
−1/2

∑

!≥0

C!

!∑

m=−!

∫

S
Y!,m(ξ)ψk(ξ)dξ

∫

S
Y!,m(ξ)ψk′(ξ)dξ

=
∑

!≥0

C!b
2
!

!∑

m=−!

Y!,m(ξk)Y!,m(ξk′)

which proves Proposition 3. On the other hand ζk =
∑
!≥0

!∑
m=−!

b!z!,mY!,m(ξk)

where

z!,m
def=

N∑

p=1

λpZpY!,m(ξp)

Thus

Cov [ζkζk′ ] =
∑

!,!′≥0

!∑

m=−!

!′∑

m′=−!′

b!b!′Cov [z!,m, z!′,m′ ]Y!,m(ξk)Y!′,m′(ξk′)

=
∑

!,!′≥0

!∑

m=−!

!′∑

m′=−!′

b!b!′

(
N∑

p=1

λ2
pσ

2
pY!,m(ξp)Y!′,m′(ξp)

)
Y!,m(ξk)Y!′,m′(ξk′)

=
1√

λkλk′

N∑

p=1

λ2
pσ

2
pψk(ξp)ψk′(ξp)
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6.2. Proof of Proposition 7

|E Ĉ − C|
C

=
1
C

∣∣∣∣∣
∑

k∈K

wk

{
Var (γk)− n2

k − C
}
∣∣∣∣∣

=
1
C

∣∣∣∣∣
∑

k∈K

wk {Var (ηk)− C}

∣∣∣∣∣

≤ 1
C

∑

k∈K

wkλ−1
k

∣∣∣∣∣∣
E

(
N∑

p=1

λpWpX(ξp)ψk(ξp)

)2

−E

(
N∑

p=1

λpX(ξp)ψk(ξp)

)2
∣∣∣∣∣∣

=
1
C

∑

k∈K

wkλ−1
k

∣∣∣∣∣E
(

N∑

p=1

λp(1−Wp)X(ξp)ψk(ξp)
N∑

p=1

λp(1 + Wp)X(ξp)ψk(ξp)

)∣∣∣∣∣

≤ 2
C

∑

k∈K

wkλ−1
k




E

(
N∑

p=1

λp(1−Wp)X(ξp)ψk(ξp)

)2

E

(
N∑

p=1

λpX(ξp)ψk(ξp)

)2





1/2

≤ 8πVar (X)
C

∑

k∈K

wkλ−1
k

{
N∑

p=1

λp(1−Wp)2ψ2
k(ξp)

N∑

p=1

λpψ
2
k(ξp)

}1/2

! N

C
t
∑

k∈K

wk

. Bαjt .

In particular, if W ≡ 1, one can take t = 0 in the definition of K and the above
result shows that Ĉ is unbiased.

6.3. Proof of Proposition 8

Define the unobserved coefficients η̃k
def= λ−1/2

k

〈
ψk, X

〉
H .

Var (Ĉ)
C2

=
1

C2

∑

k,k′∈K

wkwk′Cov [η2
k, η2

k′ ] =
2

C2

∑

k,k′∈K

wkwk′Cov 2[ηk, ηk′ ]

=
2

C2

∑

k,k′∈K

wkwk′
{
Cov [η̃k, η̃k′ ]−Cov [η̃k, η̃k′ − ηk′ ]

−Cov [η̃k − ηk, η̃k′ ] + Cov [η̃k − ηk, η̃k′ − ηk′ ]
}2

. 1
C2

∑

k,k′∈K

wkwk′
{
Cov 2[η̃k, η̃k′ ] + Cov 2[η̃k, η̃k′ − ηk′ ]

+ Cov 2[η̃k − ηk, η̃k′ − ηk′ ]
}

. (9)
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For the first term in the r.h.s. of Eq. (9), we use the following bound, proved
in [1].

∑

!≥0

b2
!C!L!(ξk · ξk′)) ! Bj(2−α)

(1 + Bjd(ξk, ξk′))M
. (10)

Thus, with Lemma 1 and using that C . Bj(2−α) and N . B2j

∑

k,k′∈K

wkwk′Cov 2[η̃k, η̃k′ ] =
∑

k,k′∈K

wkwk′
{ ∑

!≥0

b2
!C!L!(ξk · ξk′)

}2

! B2j(2−α)
∑

k,k′∈K

|wkwk′ |
(1 + Bjd(ξk, ξk′))2M

! C2
∑

k,k′∈K

|wkwk′ |
(1 + Bjd(ξk, ξk′))2M

.

For the other terms of the decomposition (9), one can write

Var (η̃k − ηk) = λ−1
k E

(
N∑

p=1

λp(1−Wp)X(ξp)ψk(ξp)

)2

≤ λ−1
k E

(
N∑

p=1

λpX
2(ξp)

N∑

p=1

λp(1−Wp)ψ2
k(ξp)

)

= λ−1
k 4πVar (X)

N∑

p=1

λp(1−Wp)ψ2
k(ξp)

! Nt (11)

thus
∑

k,k′∈K

wkwk′ {Cov [η̃k − ηk, η̃k′ ]}2 ≤
∑

k∈K

wkVar (η̃k − ηk)
∑

k′∈K

wk′Var (η̃k)

! CNt

and
∑

k,k′∈K

wkwk′ {Cov [η̃k − ηk, η̃k′ − ηk′ ]}2 ≤
{ ∑

k∈K

wkVar (η̃k − ηk)
}2

! N2(t)2 .

Putting these terms together establishes Proposition 8.

6.4. Proof of Theorems 1 and 2

We have

E
(
Ĉ

)
=

|E Ĉ − C|2

C2
+

Var (Ĉ)
C2

.
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By Proposition 7, the bias term is bounded by

|E Ĉ − C|
C

! Bαjt

and converges to 0 thanks to Condition iii).
On the other hand

Var (Ĉ)
C2

=
1

C2

N∑

k,k′=1

wkwk′Cov [γ2
k, γ2

k′ ] =
2

C2

N∑

k,k′=1

wkwk′Cov 2[γk, γk′ ]

=
2

C2

∑

k,k′∈K

wkwk′
{
Cov [ηk, ηk′ ] + Cov [ζk, ζk′ ]

}2

. 1
C2

∑

k,k′∈K

wkwk′
{
Cov 2[ηk, ηk′ ] + Cov 2[ζk, ζk′ ]

}
. (12)

From Proposition 8

1
C2

∑

k,k′∈K

wkwk′Cov 2[ηk, ηk′ ] !
N∑

k,k′=1

|wkwk′ |
(1 + Bjd(ξk, ξk′))2M

+
Nt

C
+

(
Nt

C

)2

where Nt
C ! Bαjt −→

j→∞
0 with Condition iii). To establish Theorems 1 and 2 it

suffices now to prove that in both cases

N∑

k,k′=1

|wkwk′ |
(1 + Bjd(ξk, ξk′))2M

−→
j→∞

0 (13)

and
1

C2

∑

k,k′∈K

wkwk′Cov 2[ζk, ζk′ ] −→
j→∞

0 . (14)

Let us consider separately the cases of Theorems 1 and 2.
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6.5. End of proof of Theorem 1

The convergence of Eq. (13) is nothing else but Condition i). To prove (14), use
the Property (1c) and the Cauchy-Schwartz inequality and write

∑

k,k′∈K

|wkwk′ |Cov 2[ζk, ζk′ ] =
∑

k,k′∈K

|wkwk′ |
λkλk′

{ N∑

p=1

λ2
pW

2
p σ2

pψk(ξp)ψk′(ξp)
}2

.
∑

k,k′∈K

|wkwk′ |
{ N∑

p=1

λpW
2
p σ2

pψk(ξp)ψk′(ξp)
}2

!
∑

k,k′∈K

|wkwk′ |
{ N∑

p=1

λpW
4
p σ4

p

}{ N∑

p=1

λp |ψk(ξp)ψk′(ξp)|2
}

!
{ N∑

p=1

λpW
4
p σ4

p

} ∑

k,k′∈K

|wkwk′ |

×B2j
N∑

p=1

1
(1 + Bjd(ξp, ξk))2M (1 + Bjd(ξp, ξk′))2M

=
j→∞

o(C)

with Conditions i) and ii) and Proposition 5.

6.6. End of proof of Theorem 2

The two following remarks will prove useful. First, from Condition iv), (c−1 ∧
1)(C + n2

k) ≤ (C + n2
k) ≤ (c ∨ 1)(C + n2

k) so that

wk .
1
S

(
C + n2

k

)−21k∈K . (15)

Second, using again Condition iv)

S =
∑

k∈K

(
C + n2

k

)−2 ≥
∑

k∈V

(
C + n2

k

)−2 ≥ CardV

(1 + r)2C2 " CardV

(1 + r)2C2
(16)

where
V

def= {k ∈ K : n2
k ≤ rC} . (17)

The convergence of Eq. (13) is established thanks to Conditions i) and iii)
and Lemma 1

N∑

k,k′=1

|wkwk′ |
(1 + Bjd(ξk, ξk′))2M

. 1
S2

∑

k,k′∈K

(C + n2
k)−2(C + n2

k′)
−2

(1 + Bjd(ξk, ξk′))2M

≤ C−4

S2

∑

k,k′∈K

1
(1 + Bjd(ξk, ξk′))2M

! (1 + r)4

(CardV )2
(CardK) −→

j→∞
0
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For the convergence of Eq. (14), note that

Cov [ζk, ζk′ ] .
N∑

p=1

λpW
2
p σ2

pψk(ξp)ψk′(ξp)

where the implicit constant does not depend on k, k′ (Proposition 4 and prop-
erty (1c) of the pixelization). For any constant κ ∈ (0, 1), the value of which
will be fixed later, we have

1
C2

∑

k,k′∈K

wkwk′Cov 2[ζk, ζk′ ] . 1
C2S2

∑

k,k′∈K

(C + n2
k)−2(C + n2

k′)
−2

×
{ N∑

p=1

λpW
2
p σ2

pψk(ξp)ψk′(ξp)
}2

! 1
C2S2

(A1 + A2 + A3 + A4)

with

A1 =
∑

k,k′∈K

d(ξk,ξk′ )≤B−κj

(C + n2
k)−2(C + n2

k′)
−2

{ N∑

p=1

λpW
2
p σ2

pψk(ξp)ψk′(ξp)
}2

A2 =
∑

k,k′∈K

d(ξk,ξk′ )>B−κj

(C + n2
k)−2(C + n2

k′)
−2

{ ∑

p∈D(k,k′)

λpW
2
p σ2

pψk(ξp)ψk′(ξp)
}2

where D(k, k′) def=
{
p : d(ξk, ξp) >

1
2
B−κj and d(ξk′ , ξp) >

1
2
B−κj

}

A3 =
∑

k,k′∈K

d(ξk,ξk′ )>B−κj

(C + n2
k)−2(C + n2

k′)
−2

{
n2

k

∑

p:d(ξk,ξp)≤ 1
2 B−κj

λpψk(ξp)ψk′(ξp)
}2

A4 =
∑

k,k′∈K

d(ξk,ξk′ )>B−κj

(C + n2
k)−2(C + n2

k′)
−2

{ ∑

p:d(ξk,ξp)≤ 1
2 B−κj

λp|W 2
p σ2

p − n2
k|ψk(ξp)ψk′(ξp)

}2
.

Remark. As noticed in Section 3.1, the weights proposed here are linked with
the asymptotic uncorrelation of the needlet coefficients. A1 includes the near-
diagonal terms of the noise covariance in the needlet coefficients domain ; A2,
A3 and A4 include the off-diagonal covariances, for which the localization of
the needlets is crucial. In A2, the “near-disjointness” of the supports of ψk and
ψk′ is only considered sufficiently far away from ξk and ξk′ , while in A3 it is
considered around ξk (or equivalently ξk′). Finally, A4 depends on the regularity
of p (→ σ2

p.

We shall use the fact that: ∀x,C ∈ R+, x2

(C+x2)2 ≤ min
{

x2

C2
1

4C ; 1
x2

}
.

With Cauchy-Schwartz inequality, W ≤ 1 and the properties of the cubature
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points (including Lemma 2) we have

A1 ≤
∑

k,k′∈K

d(ξk,ξk′ )≤B−κj

(C + n2
k)−2(C + n2

k′)
−2

{ N∑

p=1

λpσ
2
pψ2

k(ξp)
}{ N∑

p=1

λpσ
2
pψ2

k′(ξp)
}

=
∑

k∈K

n2
k

(C + n2
k)2

∑

k′∈K

d(ξk,ξk′ )≤B−κj

n2
k′

(C + n2
k′)2

! N2

C2
B−2κj .

Thanks to Eq. (16) and Condition i)

A1

C2S2
! N2 (1 + r)4

(CardV )2
B−2κj . B2j(2−κ1−κ) −→

j→∞
0

provided that
κ > 2− κ1 . (18a)

To give upper bounds on A2 and A3, we use Proposition 5. Define

D(k, k′) def=
{

p : d(ξk, ξp) >
1
2
B−κj and d(ξk′ , ξp) >

1
2
B−κj

}
.

Write

A2 ≤
∑

k,k′∈K

(C + n2
k)−2(C + n2

k′)
−2

×
{ ∑

p∈D(k,k′)

λpW
2
p σ2

pψk(ξp)ψk′(ξp)
}2

!
∑

k,k′∈K

(C + n2
k)−2(C + n2

k′)
−2

×
{
B2j

∑

p∈D(k,k′)

λpW 2
p σ2

p

(1 + Bjd(ξp, ξk))M (1 + Bjd(ξp, ξk′))M

}2

≤
∑

k,k′∈K

(C + n2
k)−2(C + n2

k′)
−2

{ B2j

(1 + 1
2B(1−κ)j)M

N∑

p=1

λpW
2
p σ2

p

}2

≤ S2

(∑N

p=1
λpW

2
p σ2

p

)2

B2j(2−(1−κ)M)

so that, with Eq. (16) and Condition ii),

A2

C2S2
!

(∑N

p=1
λpσ

2
p

)2

B2j(α−(1−κ)M) . B2j(κ2+α−(1−κ)M) −→
j→∞

0
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provided that
M >

κ2 + α

1− κ
. (18b)

Remark now that if d(ξk, ξk′) > B−κj and d(ξ, ξk) ≤ 1
2B−κj then d(ξ, ξk′) ≥

1
2d(ξk, ξk′) so that 1

(1+Bjd(ξ,ξk))(1+Bjd(ξ,ξk′ ))
" 1

1+Bjd(ξk,ξk′ )
. Thus

A3 !
∑

k,k′∈K

d(ξk,ξk′ )>B−κj

n4
k

(C + n2
k)2(C + n2

k′)2
∑

p:d(ξk,ξp)≤ 1
2 B−κj

λp |ψk(ξp)ψk′(ξp)|2

!
∑

k,k′∈K

d(ξk,ξk′ )>B−κj

n4
k

(C + n2
k)2(C + n2

k′)2
B4j

∑

p:d(ξk,ξp)≤ 1
2 B−κj

λp

(1 + Bjd(ξk, ξk′))2M

!
∑

k,k′∈K

n4
k

(C + n2
k)2(C + n2

k′)2
B4jB−j(1−κ)2MB−2κj

≤ N2

C2
B2j(2−(1−κ)M)

and with Condition i),

A3

C2S2
! (1 + r)4

(CardV )2
N2B2j(2−(1−κ)M) . B2j(4−κ1−(1−κ)M) −→

j→∞
0

provided that

M >
4− κ1

1− κ
. (18c)

For the last term A4, we use Condition ii), the same arguments as for A3,
and Lemma 9 which takes advantage of the localization of ψk around point ξk

to compare the local noise level in direct and needlet domains. The estimate
depends on the regularity 0 of σ2.

Lemma 9. Define 0j
def= max

1≤k<k′≤Nj

|(Wj,kσj,k)2−(Wj,k′σj,k′ )
2|

d(ξj,k,ξj,k′ )
. There exist a con-

stant c > 0 such that for all j ∈ N, ε > 0, and k, k′ ∈ {1, . . . , Nj} with
d(ξk, ξk′) ≤ ε,

|(Wj,k′σj,k′)2 − (nj,k)2| ≤ c

{
(nj,k)2

(
1−B

1−M
1+M j

)−1
+ 0j

(
ε + B

1−M
1+M j

)}
.

The proof of Lemma 9 is postponed to the end of the Section. For

M ≥ 1 + κ

1− κ
(18d)
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and using Lemma 9 with ε = 1
2B−κj we get

A4 !
(
1−B

1−M
1+M j

)−2
A3

+02

(
1
2
B−κj + B

1−M
1+M j

)2 ∑

k,k′∈K

d(ξk,ξk′ )>
1
2 B−κj

∑
p:d(ξk,ξp)≤ 1

2 B−κj λp |ψk(ξp)ψk′(ξp)|2

(C + n2
k)2(C + n2

k′)2

! A3 + 02

(
1
2
B−κj + B

1−M
1+M j

)2 ∑

k,k′∈K

1
(C + n2

k)2(C + n2
k′)2

B4jB−j(1−κ)2MB−2κj

! A3

(
1 + 02B−2κj 1

C2

)

as 1−M
1+M < −κ. Note now that under ii) and using (1c) and (1e), we have

0j =
j→∞

O
(
B(κ2+3)j

)
;

and
A4

C2S2
! A3

C2S2
+ B2j(2−κ1+κ2+3+α−(1−κ)M) −→

j→∞
0

provided that

M >
5 + α− κ1 + κ2

1− κ
. (18e)

It remains to see that their exists a κ ∈ (0, 1) satisfying simultaneously the
conditions (18a) to (18e). This is the case if

M > max
{

κ2 + α

κ1 − 1
;

4− κ1

κ1 − 1
;

5 + α− κ1 + κ2

κ1 − 1

}
.

It suffices to take κ ∈ (2− κ1, 1) sufficiently near to 2− κ1 (recall that κ1 > 1).
Finally, remark that any κ1 satisfying i is bounded by 2, then the above condition
on M reduces to the one mentioned in the statement of the Theorem. This
concludes the proof of (14) and Theorem 2.
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Proof of Lemma 9

First, for any δ > 0, using (1b), (1e), (8), 0 ≤ W ≤ 1 and the definition of 0

∣∣W 2
k σ2

k − n2
k

∣∣ =

∣∣∣∣∣W
2
k σ2

k −
1
λk

N∑

p=1

λ2
pW

2
p σ2

pψ2
k(ξp)

∣∣∣∣∣

≤ 1
λk

N∑

p=1

λ2
p

∣∣W 2
k σ2

k −W 2
p σ2

p

∣∣ ψ2
k(ξp) + W 2

k σ2
k

∣∣∣∣∣1−
1
λk

N∑

p=1

W 2
p λ2

pψ
2
k(ξp)

∣∣∣∣∣

!
∑

p:d(ξp,ξk)≤δ

λp|W 2
k σ2

k −W 2
p σ2

p|ψ2
k(ξp)

+
∑

p:d(ξp,ξk)>δ

λp|W 2
k σ2

k −W 2
p σ2

p|ψ2
k(ξp) + W 2

k σ2
k

(
1 +

N∑

p=1

λpψ
2
k(ξp)

)

! 0δ +
Bj

(1 + Bjδ)M

∑

p:d(ξp,ξk)>δ

λp

∣∣W 2
k σ2

k −W 2
p σ2

p

∣∣ + W 2
k σ2

k

! 0

(
δ +

Bj

(1 + Bjδ)M

)
+ W 2

k σ2
k . (19)

Second

n2
k .

N∑

p=1

λpW
2
p σ2

pψ2
k(ξp) = W 2

k σ2
k

N∑

p=1

λpψ
2
k(ξp)−

N∑

p=1

λp

(
W 2

k σ2
k −W 2

p σ2
p

)
ψ2

k(ξp)

= W 2
k σ2

k

N∑

p=1

λpψ
2
k(ξp)−

∑

p:d(ξp,ξk)≤δ

(
W 2

k σ2
k −W 2

p σ2
p

)
ψ2

k(ξp)

−
∑

p:d(ξp,ξk)>δ

(
W 2

k σ2
k −W 2

p σ2
p

)
ψ2

k(ξp)

" W 2
k σ2

k

(
1− Bj

(1 + Bjδ)M

)
− 0

(
δ +

Bj

(1 + Bjδ)M

)
. (20)

Combining Eqs. (19) and (20), one gets, for any k′ with d(ξk, ξk′) ≤ ε

|W 2
k′σ

2
k′ − n2

k| ≤ |W 2
k′σ

2
k′ −W 2

k σ2
k| + |W 2

k σ2
k − n2

k|

! 0ε + 0

(
δ +

Bj

(1 + Bjδ)M

)

+
(

n2
k + 0

(
δ +

Bj

(1 + Bjδ)M

)) (
1− Bj

(1 + Bjδ)M

)−1

= n2
k

(
1− Bj

(1 + Bjδ)M

)−1

+0

[
ε +

(
δ +

Bj

(1 + Bjδ)M

) (
1 +

(
1− Bj

(1 + Bjδ)M

)−1
)]

.
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Particularizing this last expression with δ = B
1−M
1+M j leads to Lemma 9, since we

have, for M ≥ 3, j ≥ 1 and this δ: Bj

(1+Bjδ)M < 1
2 .
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