Impact of reactive bromine chemistry in the troposphere
R. Von Glasow, R. Von Kuhlmann, M. G. Lawrence, U. Platt, P. J. Crutzen

To cite this version:

HAL Id: hal-00295566
https://hal.archives-ouvertes.fr/hal-00295566
Submitted on 8 Dec 2004

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Impact of reactive bromine chemistry in the troposphere

R. von Glasow1,2, R. von Kuhlmann3,4, M. G. Lawrence3, U. Platt2, and P. J. Crutzen2,3

1Institute for Environmental Physics, Universität Heidelberg, Germany
2Center for Atmospheric Sciences, Scripps Institution of Oceanography, University of California, San Diego, USA
3Atmospheric Chemistry Division, Max-Planck-Institut für Chemie, Mainz, Germany
4now at: German Aerospace Center (DLR), Bonn-Oberkassel, Germany

Received: 28 June 2004 – Published in Atmos. Chem. Phys. Discuss.: 24 August 2004
Revised: 2 December 2004 – Accepted: 7 December 2004 – Published: 8 December 2004

Abstract. Recently several field campaigns and satellite observations have found strong indications for the presence of bromine oxide (BrO) in the free troposphere. Using a global atmospheric chemistry transport model we show that BrO mixing ratios of a few tenths to 2 pmol mol⁻¹ lead to a reduction in the zonal mean O₃ mixing ratio of up to 18% in widespread areas and regionally up to 40% compared to a model run without bromine chemistry. A lower limit approach for the marine boundary layer, that does not explicitly include the release of halogens from sea salt aerosol, shows that for dimethyl sulfide (DMS) the effect is even larger, with up to 60% reduction of its tropospheric column. This is accompanied by dramatic changes in DMS oxidation pathways, reducing its cooling effect on climate. In addition there are changes in the HO₂ : OH ratio that also affect NOₓ and PAN. These results imply that potentially significant strong sinks for O₃ and DMS have so far been ignored in many studies of the chemistry of the troposphere.

1 Introduction

In the last two decades reactive halogens have been identified as important reactants in the troposphere (see e.g. von Glasow and Crutzen (2003) for an overview). BrO has been found in the boundary layer during polar ozone depletion events (ODEs) (Hausmann and Platt, 1994), over salt lakes (Hebestreit et al., 1999; Stutz et al., 2002; Höninger et al., 2004), and in the marine boundary layer (MBL) (Leser et al., 2003; Saiz-Lopez et al., 2004) and also in volcanic plumes (Bobrowski et al. (2003), N. Bobrowski, pers. comm.). Satellite observations showed the widespread presence of BrO in the troposphere outside the polar regions (Wagner and Platt, 1998; Pundt et al., 2000; Fitzenberger et al., 2000; Wagner et al., 2001; Van Roozendael et al., 2002; Richter et al., 2002; Hollwedel et al., 2003) with global background vertical columns of about 1–3×10¹³ molec cm⁻², corresponding to BrO mixing ratios of 0.5–2 pmol mol⁻¹ if uniformly mixed in the troposphere. Comparisons with balloon and ground based measurements in mid and high northern latitudes (between 42 and 68° N, Harder et al. (1998); Fitzenberger et al. (2000); Van Roozendael et al. (2002)) as well as the diurnal variation of ground based BrO column measurements (Van Roozendael et al., 2002) indicated that the tropospheric BrO was mainly located within the free troposphere (FT). Direct evidence for free tropospheric BrO in the Arctic comes from balloon (Fitzenberger et al., 2000) and high-altitude aircraft observations (McElroy et al., 1999). Such observations have not been made yet at lower latitudes. Although most evidence indicates that the measured BrO is located in the FT, these data do not exclude contributions from the MBL. Ongoing work is estimating tropospheric vertical columns of BrO from satellite data but it is expected to yield reliable data only in the polar regions or other regions of strongly elevated BrO (J. Hollwedel, pers. comm.).

Halogens affect ozone by directly destroying it and by reducing its production. The main destruction cycle is (the numbers in parentheses refer to the numbering of the reactions in Table 2):

\[
\begin{align*}
O_3 + Br & \rightarrow BrO + O_2 \quad (Br1) \\
BrO + HO_2 & \rightarrow HOBr + O_2 \quad (Br7) \\
HOBr + h_v & \rightarrow OH + Br \quad (Br16)
\end{align*}
\]

I net: \(O_3 + HO_2 + h_v \rightarrow 2O_2 + OH\)

Uptake of HOBr is an alternative route for reaction (Br16) which cycles Br back to the gas phase. The simplest catalytic ozone production cycle is:

\[
\begin{align*}
CO + OH & \rightarrow CO_2 + HO_2 \\
HO_2 + NO & \rightarrow OH + NO_2
\end{align*}
\]

© 2004 Author(s). This work is licensed under a Creative Commons License.
\[
\begin{align*}
\text{NO}_2 + h\nu & \rightarrow \text{NO} + \text{O} \\
\text{O} + \text{O}_2 & \rightarrow \text{O}_3
\end{align*}
\]

This is being “shortcut” by cycle I which converts \(\text{HO}_2\) back to \(\text{OH}\) without oxidizing \(\text{NO}\) to \(\text{NO}_2\). The net effect on odd oxygen (=O\(_x\)) is therefore to destroy one molecule of \(O_x\) (=BrO) instead of producing one (=NO\(_2\)) where \(O_x\) is defined based on Crutzen and Schmailzl (1983) as \(O_x = \text{O}_3+\text{O}+\text{O}^1\text{D})+\text{NO}_2+2\text{NO}_3+3\text{N}_2\text{O}_5+\text{HNO}_4+\text{ClO}_2+2\text{Cl}_2\text{O}_2+2\text{OClO}+\text{BrO} \). Another “shortcut” occurs in the \(\text{NO}_x\) cycle:

\[
\text{BrO} + \text{NO} \rightarrow \text{Br} + \text{NO}_2 \quad \text{(Br9)}
\]

As both \(\text{BrO}\) and \(\text{NO}_2\) are members of the \(O_x\) family, this cycle oxidizes \(\text{NO}\) to \(\text{NO}_2\) without changing the sum of \(O_x\) (see also discussion in e.g. Stutz et al. (1999); Platt and Höningler (2003)). Reaction (Br 9), however, does not lead to a change of the \(O_x\) to \(\text{NO}_2\) ratio on a global scale as explained in Sect. 3.4.

In this study we examine the potential effects of the presence of 0.5–2 pmol mol\(^{-1}\) of \(\text{BrO}\) on the photochemistry (mainly ozone and DMS) in the (free) troposphere and discuss where we should focus our future research in this field. We describe the model and the source scenarios that we used in Sect. 2 and will discuss the implications for tropospheric chemistry in Sect. 3 focussing on \(O_3\), \(\text{HO}_x\), \(\text{NO}_x\), and DMS. In Sect. 4 we conclude and list future research needs.

2 Model description and source scenarios

For this study we used the three-dimensional chemical transport model MATCH-MPIC (Lawrence et al., 1999; von Kuhlmann et al., 2003) which includes a comprehensive treatment of tropospheric gas phase chemistry including nonmethane hydrocarbons. We added reactions relevant for bromine processing and bromine-related ozone destruction and the oceanic sources of DMS after Kettle et al. (1999) and its destruction by \(\text{OH}\), \(\text{NO}_x\), \(\text{BrO}\), and \(\text{Br}\). The additional reactions are listed in Table 2. Wet and dry deposition are included as a function of the Henry’s law constant of the respective compounds.

The actual sources for the tropospheric inorganic bromine (\(\text{Br}_{\text{inorg}}\)) are still poorly constrained. They include downward transport from the stratosphere in mid to high latitudes, “spillout” and uplifting from polar surface ODEs, upward transport from the marine boundary layer, volcanoes, organohalogens (e.g. \(\text{CH}_3\text{Br}, \text{CH}_3\text{Br}_2, \text{CHBBr}_3, \) and \(\text{CHB}_2\text{Cl})\) which are broken down by photolysis and/or reaction with \(\text{OH}\), release of inorganic halogens by biomass burning as shown in laboratory experiments (B. Keene, pers. comm.), or other, so far unidentified processes. Many of these sources will have a seasonal cycle which we do not take into account in this exploratory study. To sustain a tropospheric mixing ratio of \(\text{Br}_{\text{inorg}}\) of about 3 pmol mol\(^{-1}\) and assuming a \(\text{Br}_{\text{inorg}}\) lifetime of 1–2 weeks in the FT a global source of \(2.5\times10^{18}\) mol mol\(^{-1}\) s\(^{-1}\) or about 5.6–11 \(\times10^7\) molec cm\(^{-2}\) s\(^{-1}\) would be needed. It is likely that the total source is actually composed of several of the aforementioned sources.

To reproduce the previously mentioned mixing ratios of \(\text{BrO}\) in the FT we tested four different hypothetical source scenarios (see Table 1): “tropics”, “high lat”, “const”, and “strat” which reflect different possible source types/regions, namely the tropics, high latitudes, a source constant with latitude, and only downward flux of inorganic bromine from the stratosphere plus photochemical breakdown of \(\text{CH}_3\text{Br}\). We have chosen this set of model runs to study the differences in the impacts related to these spatial distributions of \(\text{BrO}\). Except for the case “strat” we do not differentiate in any of these scenarios between the possible sources that we have mentioned above. As no good global data on the different source processes is available we cannot derive source scenarios that explicitly take the spatial coverage of single sources into account. Furthermore, the scarcity of observational data does not allow us to chose one of these scenarios as a “best guess”.

For the scenario “tropics” we used the simplified reaction:

\[
\text{Br}_{\text{org}} + \text{OH} \rightarrow \text{Br} + \text{products} \quad \text{(Br20)}
\]

with a generic organic bromine compound \(\text{Br}_{\text{org}}\) (with fixed mixing ratio of 30 pmol mol\(^{-1}\) Br) as bromine source, constituting a bromine source of about 100 molec cm\(^{-3}\) s\(^{-1}\) at a temperature of \(T=250\) K and an OH concentration of \(10^6\) molec cm\(^{-3}\). The OH dependence ensures a direct coupling with the photochemistry and makes this bromine source most important in the tropics where OH concentrations are highest.

The bromine source of the scenario “high lat” is independent of photochemistry and increasing with latitude, corresponding to a dominance of downward transport from the stratosphere and spillout from polar surface ODEs. We used \(F_{\text{high lat}}=(15+0.5\phi)\frac{M(\phi)}{M_0(\phi)}\) molec cm\(^{-3}\) s\(^{-1}\), where \(\phi\) is the latitude in degrees and \([M]\) and \([M_0]\) the concentration of air molecules at current altitude and at the surface, respectively.

In the scenario “const” the source is also independent of photochemistry but constant with latitude, \(F_{\text{const}}=34\frac{M(\phi)}{M_0(\phi)}\) molec cm\(^{-3}\) s\(^{-1}\). In scenarios “high lat” and “const” no time dependence of the bromine source was assumed, whereas the dependence on [OH] in scenario “tropics” leads to a diurnally and seasonally varying bromine source.

The scaling with the concentration of air molecules in scenarios “high lat” and “const” ensures that the \(\text{Br}_{\text{inorg}}\) source is constant with altitude in mixing ratio (mol mol\(^{-1}\) s\(^{-1}\)) but obviously not in concentration (molec cm\(^{-3}\) s\(^{-1}\)). Due to different chemical regimes and washout rates the impact and
Table 1. Overview of scenarios used in this study.

<table>
<thead>
<tr>
<th>scenario</th>
<th>heterogeneous bromine reactions</th>
<th>description</th>
</tr>
</thead>
<tbody>
<tr>
<td>high lat</td>
<td>$k'{het}=10.0 \times k{het}(\gamma=0.1)$</td>
<td>Br source increases with latitude</td>
</tr>
<tr>
<td>high lat, slow recyc.</td>
<td>off</td>
<td>Br source increases with latitude</td>
</tr>
<tr>
<td>high lat, no recyc.</td>
<td>off</td>
<td>Br source increases with latitude</td>
</tr>
<tr>
<td>const</td>
<td>$k'{het}=10.0 \times k{het}(\gamma=0.1)$</td>
<td>Br source constant with latitude</td>
</tr>
<tr>
<td>tropics</td>
<td>$k'{het}=10.0 \times k{het}(\gamma=0.1)$</td>
<td>Br source decreases with latitude</td>
</tr>
<tr>
<td>strat</td>
<td>off</td>
<td>Br downward transport from stratosphere plus decomposition of CH$_3$Br no bromine</td>
</tr>
</tbody>
</table>

a see explanation in text, the effective gamma for these runs is approx. $\gamma=0.5$.

Table 2. Bromine reactions.

<table>
<thead>
<tr>
<th>no.</th>
<th>reaction</th>
<th>n</th>
<th>A [$(\text{cm}^{-3})^{-\gamma} \cdot \text{s}^{-1}$]</th>
<th>$-E_a/R$ [K]</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Br 1</td>
<td>Br+O$_3$$\rightarrow$BrO+O$_2$</td>
<td>2</td>
<td>1.7×10^{-11}</td>
<td>800</td>
<td>Sander et al. (2003)</td>
</tr>
<tr>
<td>Br 2</td>
<td>Br+H$_2$O\rightarrowHBr+O$_2$</td>
<td>2</td>
<td>1.5×10^{-11}</td>
<td>600</td>
<td>Sander et al. (2003)</td>
</tr>
<tr>
<td>Br 3</td>
<td>Br+CH$_4$$\rightarrow$HBr+CH$_2O_2$</td>
<td>2</td>
<td>5.0×10^{-14}</td>
<td></td>
<td>Singh and Zimmerman (1992)</td>
</tr>
<tr>
<td>Br 4</td>
<td>Br+HCHO\rightarrowHBr+CO+HO$_2$</td>
<td>2</td>
<td>1.7×10^{-11}</td>
<td>800</td>
<td>Sander et al. (2003)</td>
</tr>
<tr>
<td>Br 5</td>
<td>Br+CH$_3$OOH\rightarrowCH$_3$OH+HBr</td>
<td>2</td>
<td>2.6×10^{-12}</td>
<td>1610</td>
<td>Mallard et al. (1993)</td>
</tr>
<tr>
<td>Br 6</td>
<td>Br+BrNO$_3$$\rightarrowBr_2$+NO$_3$</td>
<td>2</td>
<td>4.9×10^{-11}</td>
<td></td>
<td>Orlando and Tyndall (1996)</td>
</tr>
<tr>
<td>Br 7</td>
<td>Br+OH+O$_2$$\rightarrow$HOBr+O$_2$</td>
<td>2</td>
<td>3.4×10^{-12}</td>
<td>540</td>
<td>Sander et al. (2003)</td>
</tr>
<tr>
<td>Br 8</td>
<td>Br+OH+O$_2$$\rightarrow$HOBr+0.28 Br+0.28 HO$_2$+HCHO</td>
<td>2</td>
<td>5.7×10^{-12}</td>
<td></td>
<td>Aranda et al. (1997)</td>
</tr>
<tr>
<td>Br 9</td>
<td>Br+NO$_2$$\rightarrow$Br+NO</td>
<td>2</td>
<td>8.8×10^{-12}</td>
<td>260</td>
<td>Sander et al. (2003)</td>
</tr>
<tr>
<td>Br 10</td>
<td>Br+NO$_2$$\rightarrow$BrNO</td>
<td>2</td>
<td>b</td>
<td></td>
<td>Sander et al. (2003)</td>
</tr>
<tr>
<td>Br 11</td>
<td>Br+O$_3$+BrO\rightarrow1.62 Br$_2$+Br$_2$O$_2$</td>
<td>2</td>
<td>2.95×10^{-12}</td>
<td>40</td>
<td>based on Sander et al. (2003), 2 channels (different T-dependence) combined</td>
</tr>
<tr>
<td>Br 12</td>
<td>HBr+OH\rightarrowBr+H$_2$O</td>
<td>2</td>
<td>1.1×10^{-11}</td>
<td></td>
<td>Sander et al. (2003)</td>
</tr>
<tr>
<td>Br 13</td>
<td>BrNO$_3$$\rightarrow$Br+NO$_2$</td>
<td>1</td>
<td>b</td>
<td></td>
<td>Orlando and Tyndall (1996)</td>
</tr>
<tr>
<td>Br 14</td>
<td>Br+hv\rightarrowBr+O$_2$</td>
<td>1</td>
<td>c</td>
<td></td>
<td>DeMore et al. (1997)</td>
</tr>
<tr>
<td>Br 15</td>
<td>Br$_2$+hv\rightarrow2 Br</td>
<td>1</td>
<td>c</td>
<td></td>
<td>Hubinger and Nee (1995)</td>
</tr>
<tr>
<td>Br 16</td>
<td>HOB+hv\rightarrowBr+OH</td>
<td>1</td>
<td>c</td>
<td></td>
<td>Ingham et al. (1999)</td>
</tr>
<tr>
<td>Br 17</td>
<td>BrNO$_3$+hv\rightarrowBr+NO$_3$</td>
<td>1</td>
<td>c</td>
<td></td>
<td>DeMore et al. (1997)</td>
</tr>
<tr>
<td>Br 18</td>
<td>HOBr+HBr\rightarrowBr$_2$(+)</td>
<td>2</td>
<td>$-$</td>
<td></td>
<td>see text</td>
</tr>
<tr>
<td>Br 19</td>
<td>Br+NO$_2$$\rightarrow$HOBr (+)</td>
<td>1</td>
<td>$-$</td>
<td></td>
<td>see text</td>
</tr>
<tr>
<td>Br 20</td>
<td>Br$_{org}$+OH\rightarrowBr (+)</td>
<td>2</td>
<td>1.7×10^{-11}</td>
<td>1215</td>
<td>assumed, only for “tropics”, [Br$_{org}$]=30 pmol mol$^{-1}$</td>
</tr>
<tr>
<td>Br 21</td>
<td>CH$_3$Br+OH\rightarrowBr (+)</td>
<td>2</td>
<td>1.7×10^{-11}</td>
<td>1215</td>
<td>Atkinson et al. (2003), only for “strat”</td>
</tr>
</tbody>
</table>

n is the order of the reaction, a two reactions combined, b special rate functions (pressure dependent), c photolysis rates calculated online, d simplified final products of importance for HO$_x$ chemistry included. The rate coefficients are calculated with $k=A \times \exp(-E_a/RT)$.
lifetime and therefore “steady state” mixing ratio is dependent on altitude and latitude.

The only bromine sources in scenario “strat” are downward flux of inorganic bromine from the stratosphere and decomposition of CH$_3$Br (with a constant mixing ratio of 10 pmol mol$^{-1}$) in the troposphere by reaction with OH. To calculate the downward flux we used fixed concentrations of inorganic bromine in the stratosphere (dependent on altitude and season) as a boundary condition, the data are taken from a two-dimensional stratospheric model (Brihl et al., 1998; WMO, 2003). As explained by von Kuhlmann et al. (2003) a factor of 0.5 has to be used to improve the stratosphere-troposphere exchange of O$_3$ in the model. In the scenario “strat” we applied the same ratio for the downward flux of inorganic bromine.

If only gas phase reactions are included, the cycling of HOBr, HBr, and BrNO$_3$ is rather slow and the resulting BrO concentrations are small. It was shown in many studies, however, that very efficient cycling of inorganic bromine occurs on and within aerosol particles (see e.g. overview by von Glasow and Crutzen (2003) and references therein). Our simplified approach for the heterogeneous reactions is:

\[
\text{HOBr} + \text{HBr} \xrightarrow{\text{het}} \text{Br}_2 (+\ldots) \quad (\text{Br18})
\]

\[
\text{BrNO}_3 \xrightarrow{\text{het}} \text{HOBr} (+\ldots) \quad (\text{Br19})
\]

based on detailed reaction cycles (Fan and Jacob, 1992; Abbatt, 1994; Vogt et al., 1996; Sander et al., 1999; Fickert et al., 1999). In the current model version no aqueous phase species are considered, therefore we listed only the gas phase products, other products are assumed to be taken up reversibly by the aerosol. We used the approach of the reaction of HOBr with HBr on aerosol surfaces because of the high solubility of HBr, a possible enrichment of bromide on the aerosol surface (Jungwirth and Tobias, 2002), and the already mentioned high reaction probabilities on aerosols. Note that reaction (Br19) constitutes loss of NO$_X$ for the gas phase (see discussion in Sect. 3.4). We used the heterogeneous reaction rates as calculated by Dentener and Crutzen (1993) (based on Langner and Rodhe (1991)) that were derived based on climatological monthly mean values for all meteorological parameters (e.g. relative humidity), a reaction probability of $\gamma=0.1$, and taking gas phase diffusion limitations into account. To investigate the implications of bromine recycling on aerosol we repeated scenario “high lat” without aerosol recycling (“no recycling”) and a 10 times faster recycling rate ($k'_{het}=10.0 \times k_{het}(\gamma=0.1)$) which approximately corresponds to $\gamma=0.5$ for the size distribution chosen by Dentener and Crutzen (1993). Very high reaction probabilities of the involved bromine species have been observed on different substrates (Sander et al., 2003), and, as explained below, the results with faster heterogeneous reaction rates yield better agreement with the available information on BrO tropospheric vertical columns, therefore we used the higher recycling rate k'_{het} for all scenarios except for “high lat, no recycling” and “high lat, slow recycling”.

Many details of the bromine recycling are still unknown, cycling of HOBr on frozen salt surfaces (Adams et al., 2002) or cirrus clouds, or in stratiform clouds (von Glasow et al., 2002b) are additional routes. If these bromine recycling reactions or other processes that reduce the loss of inorganic bromine are confirmed to be of importance, a smaller source for inorganic bromine would be needed to reproduce the reported BrO mixing ratios.

As already mentioned, the actual recycling of inorganic halogens on aerosols happens in a more complicated way but by using this approach we assume a dependence on the available aerosol surface area and yield BrO mixing ratios that are close to those deduced from satellite observations and balloon measurements (see Sect. 3.1). No aerosol components are transported in the current model version, so potential accumulation effects on the aerosol or a spatial redistribution of bromine by transport/settling of aerosol and time-delayed release of inorganic bromine from the aerosol cannot be simulated in this model version.

A model resolution of 11.25 $\circ \times 11.25$ \circ at the equator (T10) with 28 vertical levels is used. This is sufficiently high to examine the large scale features and the overall effects of bromine especially considering the uncertainties in the source strength and distribution. All scenarios were run for 12 months after a spinup of 16 months each.

3 Results
3.1 Br$_{\text{inorg}}$ distributions

We start by briefly discussing the distribution of bromine species in the different scenarios before we explain the impacts of bromine on other trace gases focusing on the free troposphere. As explained in the previous section we use artificial in situ sources for bromine in order to analyze the atmospheric response based on different latitudinal distributions of bromine. These sources do not explicitly take sea salt aerosol into account, therefore the bromine levels in the boundary layer in all runs – and all related consequences for photochemistry – are lower limits. This setup was chosen because the main purpose of this study is to investigate effects in the free troposphere and to provide lower limit estimates for the boundary layer. Ongoing work deals with the explicit treatment of sea salt aerosol chemistry on a global scale.

Total tropospheric Br$_{\text{inorg}}$ levels in all scenarios are about 1–6 pmol mol$^{-1}$ (see e.g. Fig. 1 for scenario “high lat”) except for run “strat” where they are below 1 pmol mol$^{-1}$. In scenarios with a faster recycling rate compared to runs with slower or no recycling Br$_{\text{inorg}}$ increases by more than 200% in regions with high wet deposition rates, i.e. the tropics but also in southern mid latitudes in altitudes of 900 to 500 hPa. Faster recycling implies higher BrO : Br$_{\text{inorg}}$ and
Fig. 1. Zonally and annually averaged mean of the Br\textsubscript{inorg} mixing ratio (in pmol mol-1) resulting from our source scenario “high lat”. The ordinate is the σ-level multiplied by 1000 which is approximately the pressure in hPa and the abscissa is latitude in degrees. Note that 24h averages are plotted. Seasalt aerosol is not explicitly included as a source therefore boundary layer values are lower limits.

Fig. 2. Zonally and annually averaged mean of the ratio of BrO to Br\textsubscript{inorg} resulting from our source scenario “high lat”. The ordinate is the σ-level multiplied by 1000 which is approximately the pressure in hPa and the abscissa is latitude in degrees. Note that 24h averages are plotted.

$\text{Br}_2 : \text{Br}_{\text{inorg}}$ values and therefore less deposition as these two species are relatively insoluble. HBr and BrNO\textsubscript{3} (and HOBr), on the other hand, get washed out rapidly. In the “tropics” scenario Br\textsubscript{inorg} mixing ratios in the tropics are up to 5 pmol mol-1 and only around 2 pmol mol-1 in high latitudes whereas in the case “high lat” they are less than 2 pmol mol-1 in the tropics and up to 5 pmol mol-1 in high latitudes. In the scenario “const” the numbers are similar.
to “high lat” with a smaller but discernable increase from the tropics to higher latitudes (see explanation below). In all scenarios Br\textsubscript{inorg} mixing ratios increase with altitude (see below). Assuming photochemical steady state we calculated the lifetime of Br\textsubscript{inorg} that is between 10 and 25 days for the free troposphere in case “high lat, fast recycling” (see Fig. 3). The influence of the recycling of bromine on aerosols on the Br\textsubscript{inorg} lifetime is decreasing with altitude and is strongest below about 400 hPa. In case “fast recycling” the Br\textsubscript{inorg} lifetime is about 20% to 130% higher than in case “slow
Fig. 5. Zonally and annually averaged mean of the BrO mixing ratio (in pmol mol\(^{-1}\)) resulting from our source scenario “tropics”. The ordinate is the \(\sigma\)-level multiplied by 1000 which is approximately the pressure in hPa and the abscissa is latitude in degrees. Note that 24h averages are plotted. Seasalt aerosol is not explicitly included as a source therefore boundary layer values are lower limits.

Fig. 6. Zonally and annually averaged mean of the BrO mixing ratio (in pmol mol\(^{-1}\)) resulting from our source scenario “strat”. The ordinate is the \(\sigma\)-level multiplied by 1000 which is approximately the pressure in hPa and the abscissa is latitude in degrees. Note that 24h averages are plotted.

recycling” and even 50% to 230% higher than in case “no recycling”.

The zonally averaged annual mean mixing ratio of BrO (24 h average) is less than 0.5 pmol mol\(^{-1}\) in all scenarios for most of the troposphere and reaches 2 pmol mol\(^{-1}\) only in the upper troposphere especially in scenario “tropics” (see Figs. 4, 5, and 6). It increases with altitude and southern latitude. The BrO distribution in the “const” and “tropics”
Annually averaged tropospheric vertical column of BrO (in molec cm$^{-2}$) for the scenario “high lat”. We used the WMO definition for the determination of the tropopause. Note that 24 h averages are plotted. The ordinate is latitude in degrees and the abscissa is longitude in degrees.

Figure 7. Annually averaged tropospheric vertical column of BrO (in molec cm$^{-2}$) for the scenario “high lat”. We used the WMO definition for the determination of the tropopause. Note that 24h averages are plotted. The ordinate is latitude in degrees and the abscissa is longitude in degrees.

runs is latitudinally more uniform than that of case “high lat”. This latitudinal pattern in the scenario “high lat” follows roughly the trend in Br$_{\text{inorg}}$ but the zonally averaged ratio of BrO to Br$_{\text{inorg}}$ (24 h average) also increases with altitude and with latitude (in all runs) with values of 0.05 near the surface increasing to 0.3 at the top of the troposphere (see Fig. 2). This is mainly due to an increase in solar radiation and therefore shorter lifetimes of HOBr and BrNO$_3$. This trend is present in all scenarios but the increase with altitude is faster in runs with higher recycling rates because the faster recycling increases the lifetime of Br$_{\text{inorg}}$. Another factor is the increase in Br$_2$:Br$_{\text{inorg}}$ and a decrease in HOBr:Br$_{\text{inorg}}$ with altitude which increases the relative contribution of BrO because the photolysis rate for Br$_2$ is greater than that for HOBr and increases Br$_{\text{inorg}}$ with altitude by a reduction in the washout of Br$_{\text{inorg}}$ because of differences in solubility of Br$_2$ and HOBr.

It has been shown with a one-dimensional model (von Glasow et al., 2002a) that the difference of the wavelength dependence of O$_3$ \rightarrow O(1D) and Br$_2$ photolysis leads to a diurnal variation of BrO with small morning and afternoon peaks if HIO$_2$ is the main sink, and a broad diurnal variation with a small peak at noon if NO$_2$ is the main sink. These two types of diurnal variations are found in our 3D model results as well.

Figures 7 and 8 show the vertically integrated tropospheric column density (using the WMO definition of the tropopause) of BrO for the scenarios “high lat” and “tropics”, respectively, with values of about 0.5–1 \times 1013 molec cm$^{-2}$ in the tropics and up to 2.4 \times 1013 molec cm$^{-2}$ in higher latitudes. The large gradient in the tropopause height in the subtropics leads to a maximum in the vertical column of BrO in that region. The maximum values are reached only in the subtropics, whereas in most parts of the troposphere the model BrO vertical columns are somewhat smaller than the tropospheric vertical BrO columns of <1–3 \times 1013 molec cm$^{-2}$ that were derived from comparisons of satellite, balloon, and ground measurements (Pundt et al., 2000; Van Roozendael et al., 2002; Richter et al., 2002). For this reason, the results presented here should be regarded as a conservative estimate of the overall effects of bromine chemistry in the free troposphere and, as mentioned before, a lower limit for the boundary layer.

The inorganic bromine levels in scenario “strat” are by far too small to explain the observed tropospheric vertical columns which in this run are only 0.5–2 \times 1012 molec cm$^{-2}$. The annually and zonally averaged 24 h mixing ratios of BrO are less then 0.25 pmol mol$^{-1}$ in the troposphere (see Fig. 6). This implies that downward flux of stratospheric inorganic bromine and decomposition of CH$_3$Br are not sufficient as
source for free tropospheric inorganic bromine. They would either have to be increased by about a factor of 5–7 or additional sources of reactive bromine have to be active.

3.2 Effect on ozone

The runs with bromine levels that reproduce the observations best lead to a notable decrease in O_3. Even in the runs with smallest BrO mixing ratios of only a few tenths of a pmol mol$^{-1}$ (scenario “high lat, no recycling” and “strat”, see Fig. 11) the annually and zonally averaged difference to the run without bromine chemistry is of the order of several percent. In the case “high lat, slow recycling” with higher BrO mixing ratios it is already 5–10% throughout the troposphere, whereas in the run with BrO mixing ratios that are closest to the values deduced from satellite and balloon observations (“high lat”) the difference in zonal mean O_3 mixing ratio compared to the run without bromine chemistry is 6–18% (see Fig. 9). Maximum regional differences are up to 40% in the austral summer high latitudes. These numbers imply that there might be an important O_3 destruction mechanism in the troposphere that has been neglected so far.

Even though the mixing ratio and distribution of Br$_{\text{inorg}}$ and BrO differ among the different scenarios, the overall vertical and latitudinal distribution of the effect on O_3 remains similar in all discussed runs, namely that O_3 destruction is strongest in the FT of the southern hemisphere. It is smallest near the ground in northern mid latitudes. This is due to smaller sensitivities of the photochemistry to perturbations when high O_3 sources and sinks are present as is the case in the polluted regions compared to a greater sensitivity in the more pristine FT in the southern hemisphere where photochemical sources and sinks for O_3 are smaller. In scenario “tropics” the maximum of the difference in zonally averaged O_3 (up to 20% less O_3 compared to a run without bromine chemistry, see Fig. 10) is shifted from higher latitudes towards 50–30° S and strongest in magnitude compared to all other presented cases. Nevertheless, even in this case the main pattern with highest differences in O_3 in the southern FT remains the same.

Table 3. Tropospheric burdens of O_3 and DMS in Tg.

<table>
<thead>
<tr>
<th>scenario</th>
<th>O_3 burden</th>
<th>DMS burden</th>
</tr>
</thead>
<tbody>
<tr>
<td>high lat</td>
<td>157.0</td>
<td>4.612</td>
</tr>
<tr>
<td>tropics</td>
<td>147.5</td>
<td>4.787</td>
</tr>
<tr>
<td>strat</td>
<td>172.2</td>
<td>5.848</td>
</tr>
<tr>
<td>nohal</td>
<td>174.6</td>
<td>6.249</td>
</tr>
</tbody>
</table>
Compared to the run without bromine chemistry, the tropospheric burden of O$_3$ (see Table 3) is reduced in scenarios “high lat”, “tropics”, and “strat” by 10%, 15%, and 3%, respectively. The ozone loss by reaction (Br7) equals approximately 28% of the dry deposition in run “high lat”.

3.3 Effect on HO$_x$

The reaction $\text{BrO} + \text{HO}_2 \rightarrow \text{HOBr}$ destroys HO$_2$ and the subsequent photolysis of HOBr releases OH. Both processes are acting in the direction of an increase of the OH to HO$_2$.

Fig. 9. Ratio of O$_3$ in scenario “high lat” to O$_3$ in scenario “no hal”. The numbers are zonally and annually averaged. The ordinate is the σ-level multiplied by 1000 which is approximately the pressure in hPa and the abscissa is latitude in degrees. Note that 24h averages are plotted.

Fig. 10. Ratio of O$_3$ in scenario “tropics” to O$_3$ in scenario “no hal”. The numbers are zonally and annually averaged. The ordinate is the σ-level multiplied by 1000 which is approximately the pressure in hPa and the abscissa is latitude in degrees. Note that 24h averages are plotted.
Fig. 11. Ratio of O$_3$ in scenario “strat” to O$_3$ in scenario “no hal”. The numbers are zonally and annually averaged. The ordinate is the σ-level multiplied by 1000 which is approximately the pressure in hPa and the abscissa is latitude in degrees. Note that 24h averages are plotted.

Fig. 12. Ratio of OH:HO$_2$ in scenario “high lat” to OH:HO$_2$ in scenario “no hal”. The numbers are zonally and annually averaged. The ordinate is the σ-level multiplied by 1000 which is approximately the pressure in hPa and the abscissa is latitude in degrees. Note that 24h averages are plotted.

This shift is highest in the upper FT with up to 50% and 40% in the southern and northern high latitudes, respectively, in the scenario “high lat” (compared to the ratio in the run without bromine, see Fig. 12). In mid and low latitudes this effect is less than 10%. As mentioned in the introduction, this shift implies less O_3 production because in the reactions

\[\text{BrO} + \text{HO}_2 \rightarrow \text{HOBr} + \text{O}_2 \quad \text{(Br7)} \]
\[\text{HOBr} + h\nu \rightarrow \text{OH} + \text{Br} \quad \text{(Br16)} \]
HO₂ gets cycled back to OH without oxidizing NO to NO₂. Furthermore reaction Br7 destroys O₃ because BrO is part of the odd oxygen family. The decrease in HO₂ concentrations compared to scenario “no hal” is up to 10% in runs “high lat” and “tropics” with the strongest effect in the free troposphere. In the run “high lat” it is most pronounced at high latitudes whereas it is more uniform with latitude in the run “tropics”.

The OH concentration increases in the upper FT by more than 20% compared to the run without bromine chemistry but this is contrasted by small relative decreases in OH in the tropics. Most OH, however, is located in the tropics where the reduction in O₃ is strong enough to reduce OH, so that the change in global mean OH concentrations (calculated weighted with CH₄ as well as with air mass after Lawrence et al. (2001)) is only for the “tropics” scenario on the order of 1–2%. For the other runs it is virtually indiscernible from scenario “no hal”. The lifetime of CH₄ is almost unchanged compared to “no hal” in all runs but “tropics” where it increased from 9.62 years to 9.83 years, again only 2% so that these effects are negligible.

H₂O₂ decreases with latitude and altitude compared to the run without bromine chemistry (see Fig. 13). This is caused by the decrease in HO₂ which is the main precursor for H₂O₂. The decrease in H₂O₂ in the tropics is a few percent in scenario “high lat” and 5–10% in scenario “tropics” but more than 20% in the high latitude free troposphere. The reduction is therefore larger than that in HO₂, because the formation rate of H₂O₂ in reaction

\[
\text{HO}_2 + \text{HO}_2 \rightarrow \text{H}_2\text{O}_2 + \text{O}_2
\]

is quadratic in HO₂. The decrease in H₂O₂ can be of importance for atmospheric chemistry because the gas phase is the main source for aqueous H₂O₂ which is the most important oxidant for S(IV) to S(VI) in the aqueous phase. A reduction in H₂O₂ would reduce the formation rates of particulate sulfate which, however, can possibly be compensated by HOBBr (and HOCl) as aqueous phase oxidants as explained e.g. in von Glasow and Crutzen (2004).

3.4 Effect on nitrogen oxides

The runs including bromine chemistry also show changes in the NOₓ mixing ratios in mid and high latitudes and especially in the FT. In the scenario “high lat” NOₓ concentrations are up to 25% smaller than in the run without bromine chemistry. In the lower troposphere, especially in the tropics, NOₓ increases by a few percent. These changes are approximately correlated with changes in HO₂ and anticorrelated with changes in peroxy acetyl nitrate (PAN) and OH. This is caused by an increase in the formation of PAN from the peroxy acetyl (PA) radical which is caused by a decrease in HO₂ that destroys PA.

A decrease in NOₓ concentrations reduces the photochemical production of O₃. This highlights that the difference in O₃ in our model runs is a combination of increased O₃ destruction by bromine and reduced O₃ production due to less NOₓ (indirectly caused by bromine) stressing the importance to consider all elements of the chemical system.

As already mentioned in the introduction, the reaction BrO + NO → Br + NO₂ reduces the production rate of O₃ by oxidizing NO to NO₂ without changing the sum of odd oxygen. In the model results, however, the ratio of NO to NO₂ decreases only in the uppermost troposphere in high latitudes and in the stratosphere. In most of the troposphere the ratio increases compared to a run without bromine chemistry. (see Fig. 14). This is caused by decreases in the O₃ and HO₂ concentrations which are crucial for the steady state ratio of NO to NO₂ and which cannot be compensated by the presence of less than 2 pmol mol⁻¹ BrO (see e.g. Brasseur et al. (1999)).

\[
\frac{[NO]}{[NO_2]} = j(NO_2) \times \left(k_{NO+O_3}[O_3] + k_{HO_2+NO}[HO_2] \\
+ k_{CH_3O_2+NO}[CH_3O_2] + k_{BrO+NO}[BrO] \right)^{-1}
\]

The ratio of BrNO₃ to Brₓ is highest in northern mid latitudes near the ground, the highest BrNO₃ mixing ratios are found near the tropopause, they are less than 0.5 pmol mol⁻¹ in most of troposphere in all runs except for “tropics” where they can reach up to 1 pmol mol⁻¹ in the tropical mid troposphere. The contribution of BrNO₃ to NOₓ is less than 0.5%. The heterogenous reaction of BrNO₃ produces particulate NOₓ⁻ (see Sander et al. (1999)) and therefore contributes to the loss of NOₓ. This NOₓ loss by the heterogeneous reaction of BrNO₃ is about 4.5 and 10% of the NOₓ loss by reaction NO₂ + OH → HNO₃ in the runs “high lat” and “tropics”, respectively.

3.5 Effect on DMS

Another very important result of our study is the impact of BrO on DMS chemistry with a strong reduction of its mixing ratio and a drastic change in its oxidation pathways. DMS is emitted by marine organisms and is the main natural source for reactive sulfur in the marine atmosphere. The main sinks of DMS are usually thought to be reaction with OH and NO₃, however, the reaction of DMS with BrO can be a significant sink as well (Toumi, 1994). In the cloudy MBL an increase in DMS oxidation by BrO leads to the production of more DMSO which is rapidly taken up by clouds. This reduces the DMS to SO₂ conversion efficiency, which is indicative of the potential for formation of new cloud condensation nuclei (CCN), but increases the size of already present CCN by the formation of particulate sulfur (methyl sulfonic acid and sulfate) (von Glasow et al., 2002b; von Glasow and Crutzen, 2004). This and other feedbacks like increased drizzle formation due to larger CCN would lead to a reduction in cloud
albedo. Boucher et al. (2003) performed a sensitivity study with a global model assuming a constant daytime BrO mixing ratio of 1 pmol mol$^{-1}$ in the MBL and found a reduction of the tropospheric DMS burden by about 30%.

In our model runs the tropospheric DMS burden is reduced due to the reaction DMS + BrO by 26%, 23%, and 6% in scenarios “high lat”, “tropics”, respectively (see Table 3). The vertical columns of DMS mixing ratios (dominated by the MBL) are reduced by 3–30% in run “high lat,
Fig. 15. Ratio of the vertical column of DMS for the scenario “high lat” to scenario “no hal” (annually averaged). The ordinate is latitude in degrees and the abscissa is longitude in degrees. Seasalt aerosol is not explicitly included as a source for BrO therefore the reductions in DMS are lower limits.

Fig. 16. Ratio of the vertical column of DMS for the scenario “tropics” to scenario “no hal” (annually averaged). The ordinate is latitude in degrees and the abscissa is longitude in degrees. Seasalt aerosol is not explicitly included as a source for BrO therefore the reductions in DMS are lower limits.

no recycling” with the smaller values close to the equator. In runs “high lat” and “tropics” the difference to “no hal” in many regions is more than 10%, and it is especially high in the regions with highest DMS fluxes and mixing ratios, the Southern Ocean (Kettle et al., 1999) as evident from Figs. 15 and 16. The spatial distribution of the DMS differences in the model is caused by a latitudinal gradient in BrO with annually averaged 24h mean mixing ratios in the boundary layer of 0.05 (0.4) pmol mol$^{-1}$ in the tropics and 0.3 (0.1) pmol mol$^{-1}$ in high latitudes for scenario “high lat
(“tropics”). Note that DMS mixing ratios are highest in the MBL where our bromine source approach will likely underestimate BrO mixing ratios because we did not include explicitly sea salt aerosol as a source for reactive halogens, so these results are lower limits. The main conclusion from this result is that the global importance of bromine chemistry for the oxidation of DMS should be investigated in more detail.

The main difference of our study to that by Boucher et al. (2003) is, that they assumed a constant daytime BrO mixing ratio of 1 pmol mol⁻¹ everywhere in the MBL whereas in our model runs the 24 h average mixing ratio of BrO in the MBL is only 0.1–0.3 pmol mol⁻¹ in “high lat” and less than 0.05 pmol mol⁻¹ in runs “high lat, no recycling” and “strat”. Again we want to stress that these BrO mixing ratios have to be regarded as lower limits.

The previously discussed increases in DMS oxidation, the shift in its oxidation products, and the changes in resulting new particle formation and growth of existing aerosol particles have the potential to dramatically alter our understanding of the DMS – CCN – climate connection. Moreover, some estimates of the DMS flux from the ocean rely on a comparison with atmospheric models to calculate the photochemical loss rate of DMS without taking oxidation by BrO into account, implying that DMS fluxes from these studies might be underestimating the real fluxes (see also discussion in von Glasow and Crutzen (2004)).

4 Conclusions and future research needs

Our results show that even small levels of reactive bromine can greatly disturb tropospheric chemistry. Bromine related reactions strongly reduce ozone mixing ratios by up to 18% in zonal, annual mean values and up to 40% regionally. Furthermore, they also change the mixing ratios and speciation of the HOₓ and NOₓ chemical families. This highlights that both the photochemical production and destruction of Oₓ is perturbed by the presence of reactive bromine. A lower limit approach for BrO in the marine boundary layer, that does not explicitly treat the release of halogens from sea salt aerosol, showed that the mixing ratios of DMS in the MBL are strongly reduced due to the presence of BrO which in turn also leads to changes in the final products of the sulfur oxidation with potentially drastic changes for the cloud condensation nuclei population in the MBL.

While there is a substantial body of evidence for the presence of relevant levels of tropospheric BrO this needs to be supported with more direct and indirect measurements in all parts of the troposphere. In our model the widespread impact of bromine on tropospheric chemistry is caused by BrO mixing ratios that are around the detection limit of current instruments. For these reasons it is highly desirable to improve the detection limits, especially the sensitivity of space-borne instruments to BrO in the MBL to yield global coverage.

A first step to improve our knowledge about the global distribution of reactive bromine in the troposphere would be to conduct airborne studies in the free troposphere to check whether BrO is present at lower latitudes as well or if it is confined to high latitudes where it could already be directly measured.

An additional focus of future research in this field should be to investigate the contribution, spatial and temporal distribution of the different sources to global tropospheric bromine levels.

Acknowledgements. We thank C. Brühl for providing results from his 2D stratosphere model that we used to calculate the downward flux of bromine for the “strat” case. Many thanks to the reviewers, R. Sander, B.-M. Sinnhuber, and R. J. Salawitch for helpful comments on the ACPD version. This project was in part funded by the Deutsche Forschungsgemeinschaft DFG, Project GL353/1, MarHal.

Edited by: P. Monks

References

SRef-ID: 1680-7324/acp/2003-3-49.
Atmos. Chem. Phys., 4, 2481–2497, 2004
R. von Glasow et al.: Bromine in the troposphere

