
HAL Id: hal-00295307
https://hal.science/hal-00295307

Submitted on 18 Jun 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

First observations of noctilucent clouds by lidar at
Svalbard, 78°N

J. Höffner, C. Fricke-Begemann, F.-J. Lübken

To cite this version:
J. Höffner, C. Fricke-Begemann, F.-J. Lübken. First observations of noctilucent clouds by lidar at
Svalbard, 78°N. Atmospheric Chemistry and Physics, 2003, 3 (4), pp.1101-1111. �hal-00295307�

https://hal.science/hal-00295307
https://hal.archives-ouvertes.fr


Atmos. Chem. Phys., 3, 1101–1111, 2003
www.atmos-chem-phys.org/acp/3/1101/ Atmospheric

Chemistry
and Physics

First observations of noctilucent clouds by lidar at Svalbard, 78◦ N
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Abstract. In summer 2001 a potassium lidar was installed
near Longyearbyen (78◦ N) on the north polar island of Spits-
bergen which is part of the archipelago Svalbard. At the same
place a series of meteorological rockets (“falling spheres”,
FS) were launched which gave temperatures from the lower
thermosphere to the stratosphere. The potassium lidar is ca-
pable of detecting noctilucent clouds (NLCs) and of mea-
suring temperatures in the lower thermosphere, both un-
der daylight conditions. In this paper we give an overview
on the NLC measurements (the first at this latitude) and
compare the results with temperatures from meteorological
rockets which have been published recently (Lübken and
Müllemann, 2003). NLCs were observed from 12 June (the
first day of operation) until 12 August when a period of bad
weather started. When the lidar was switched on again on
26 August, no NLC was observed. The mean occurrence
frequency in the period 12 June – 12 August (“lidar NLC pe-
riod”) is 77%. The mean of all individual NLC peak altitudes
is 83.6 km (variability: 1.1 km). The mean peak NLC alti-
tude does not show a significant variation with season. The
average top and bottom altitude of the NLC layer is 85.1 and
82.5 km, respectively, with a variability of∼1.2 km. The
mean of the maximum volume backscatter coefficientβmax
at our wavelength of 770 nm is 3.9×10−10/m/sr with a large
variability of ±3.8×10−10/m/sr. Comparison of NLC char-
acteristics with measurements at ALOMAR (69◦ N) shows
that the peak altitude and the maximum volume backscatter
coefficient are similar at both locations but NLCs occur more
frequently at higher latitudes.

Simultaneous temperature and NLC measurements are
available for 3 flights and show that the NLC layer occurs
in the lower part of the height range with super-saturation.
The NLC peak occurs over a large range of degree of satura-
tion (S) whereas most models predict the peak atS = 1. This
demonstrates that steady-state considerations may not be ap-
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plicable when relating individual NLC properties to back-
ground conditions. On the other hand, the mean variation of
the NLC appearance with height and season is in agreement
with the climatological variation of super-saturation derived
from the FS temperature measurements.

1 Introduction

Noctilucent clouds (NLCs) have been observed since more
than 100 years in the upper summer mesosphere at polar and
midlatitudes (Leslie, 1885; Gadsden and Schröder, 1989).
The appearance of NLCs is closely connected to the very
low temperatures in the summer mesopause region and is
therefore indirect evidence for the peculiar seasonal variation
of the thermal structure in the upper atmosphere (“cold” in
summer and “warm” in winter) (von Zahn and Meyer, 1989;
Lübken et al., 1996; L̈ubken, 1999). It was stated some years
ago that the occurrence frequency of NLCs has increased in
the last decades (Gadsden, 1998) and that this is perhaps re-
lated to anthropogenic changes (Thomas et al., 1989). More
recently, however, it has been pointed out that this increase
is presumably due to a bias in the data base and that there is
in fact no trend present (Kirkwood and Stebel, 2003), which
is in line with the observation that temperatures in the high
latitude summer mesopause region do not show a long term
trend (L̈ubken, 2000). Whether or not NLCs are an indica-
tor for long term trends in the upper atmosphere can only be
solved if we better understand the physical processes leading
to NLCs and their relationship to the background conditions
such as temperature and water vapor concentration.

The experimental investigation of NLCs has been signifi-
cantly improved by lidars, which can now detect them even
during full daylight (Hansen et al., 1989; von Zahn et al.,
1998; Fricke-Begemann et al., 2002). A series of NLC ob-
servations at different locations, different wavelengths, and
different observational setups has become available in the
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Fig. 1. Measurements of the K lidar on 31 July 2001. The potassium
number density is shown in color contour from green to red, and
the BSC from the NLC is shown in color contour from purple to
blue (see color code at right margin). The maximum BSC observed
around 5:00 UT was 20.8·10−10/m/sr. The vertical line indicates
the launch time of the falling sphere ROFS07.

last years (von Cossart et al., 1999; Alpers et al., 2000;
Chu et al., 2001; Thayer et al., 2002; Baumgarten et al.,
2002). These observations have significantly improved our
knowledge about the nature of NLCs and have initiated var-
ious model studies to better understand the microphysical
processes leading to their genesis including the dependence
on background conditions varying with time, height, lati-
tude, and longitude (Jensen and Thomas, 1988; Garcia, 1989;
Fritts et al., 1993; Klostermeyer, 1998; Berger and von Zahn,
2002; Rapp et al., 2002). A critical test of some of these
models comes from observations of NLCs at different lati-
tudes which (if greater than approximately 60◦) is only pos-
sible with lidars since the sky is too bright to observe NLCs
by the naked eye.

In this paper we report on the first observations of NLCs
by a potassium lidar on Svalbard (78◦ N). These observations
will be compared with measurements of the thermal structure
in the upper mesosphere region by means of meteorological
rockets (“falling spheres”, FS). First results of these flights
have been published in Lübken and M̈ullemann (2003) and
some comparison with NLC and PMSE (polar mesosphere
summer echoes) has been presented in Lübken et al. (2002).
In the next section we describe the experimental techniques,
namely the detection of NLCs with lidar, and the tempera-
ture measurements by meteorological rockets. In Sect. 3 we
present the experimental data relevant to NLCs. A compar-
ison of our results with measurements at other latitudes and
the geophysical implications are discussed in Sect. 4.

2 Experimental techniques

2.1 K lidar

The mobile potassium resonance lidar of the IAP was de-
signed to measure atmospheric temperatures and potassium
abundance in the mesopause region (80–105 km). With a
narrowband alexandrite laser the K(D1) resonance line at
769.9 nm is probed scanning the laser wavelength by a few
pm over the Doppler broadened absorption line. From the
spectral shape of the effective backscatter coefficient vertical
profiles of air temperature and potassium density are derived.
The instrument is described in more detail by von Zahn and
Höffner (1996). Since November 2000 the lidar is provided
with a Faraday anomalous dispersion optical filter for day-
light rejection (Fricke-Begemann et al., 2002) which allows
operation under polar summer conditions. The lidar was in-
stalled in spring 2001 at 78.23◦ N, 15.39◦ E, near Longyear-
byen, a small town on the north polar island of Spitsbergen
which is part of the archipelago Svalbard.

Potassium lidar profiles are retrieved every 2 min and at
200 m intervals vertically. At altitudes between approx-
imately 35 km and 120 km the lidar records the photons
backscattered from air molecules, from the K layer, and from
aerosols. A NLC is detected as an enhanced signal (relative
to the background noise and the air molecule signal) which
does not vary when the laser frequency is tuned over the
potassium resonance line. The NLC is quantified by deter-
mining the volume backscatter coefficient (BSC) which is
defined as:

βNLC(z, λ) = nNLC(z) ·
dσ(180◦)

d�

∣∣∣∣
NLC

(1)

where nNLC is the number density of NLC particles and
dσ(180◦)

d�

∣∣∣
NLC

is the effective cross section for backscatter by

an individual NLC particle for a specific NLC particle size
distribution and the applied wavelength of 770 nm. An ex-
pression analogous to Eq. (1) applies for scattering on air
molecules (βm). In practice the backscatter coefficient is cal-
culated from the backscatter ratioRNLC(z) and fromβm by:

βNLC(z) = (RNLC(z) − 1) · βm(z) (2)

where the backscatter ratioRNLC(z) is determined from the
backscatter signals

RNLC(z) =
S(z)

Sm(z)
. (3)

S(z) is the total signal (molecular plus NLC) after subtraction
of the background, andSm(z) is the backscatter signal from
the molecules. The molecular backscatter coefficientβm(z)

in Eq. (2) is calculated as follows: Between 40 and 60 km the
backscatter signalS = Sm (there are no aerosols or K atoms
at these heights) is normalized to the molecular backscatter
signal, i. e. Sm = c · βm, which is calculated from the air
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densities taken from CIRA-1986 (Fleming et al., 1990). The
constantc constrainsβm(z) at NLC altitudes. The NLC sig-
nal can be distinguished from the backscatter by K atoms as it
is constant in wavelength. Thus the backscatter coefficients
for both can be determined simultaneously. The ability to
separate a NLC from the K layer depends on the strength of
the NLC relative to the potassium signal. Generally, a strong
K signal reduces the sensitivity to detect a NLC, and vice
versa. For example, a NLC with a volume backscatter coef-
ficient of 1·10−10/m/sr can be detected in a K layer with a
density of up to∼7/cm3.

In Fig. 1 the NLC and the potassium number densities on
31 July 2001, are shown. The potassium layer spreads over
a height range of approximately 85–100 km and is clearly
separated from the NLC. The NLC layer is present nearly
permanently after 01:00 UT. The maximum BSC (βmax) ap-
pears at a fairly constant altitude of∼83 km with a root-
mean-square (RMS) variability of±0.9 km. At 05:09 UT
the maximum BSC of 20.8·10−10/m/sr is detected at an alti-
tude of 82.3 km. At the lidar wavelength of 770 nm this BSC
corresponds to a Rayleigh signal originating from∼45.5 km
altitude. The NLC lasted in total for more than 11 h and faded
at the end of the observation period which was due to bad
weather. Prior to the statistical analysis presented in the next
sections we have applied a vertical and temporal filtering of
±200 m and±10 min to the data.

2.2 Falling spheres and the ROMA campaign

In summer 2001 a field campaign was conducted close
to Longyearbyen. The campaign was part of the ROMA
(“Rocket borne Observations in the Middle Atmosphere”)
project. From 16 July to 14 September 2001, a series of 30
small meteorological rockets were launched from a mobile
launcher installed close to Longyearbyen. Here we concen-
trate on temperature measurements employing the “falling
sphere” (FS) technique which is described in detail elsewhere
(Schmidlin, 1991; L̈ubken et al., 1994). This technique gives
densities and horizontal winds in an altitude range from ap-
proximately 95 down to 30 km. Temperatures are obtained
by integrating the density profile assuming hydrostatic equi-
librium. A summary of temperatures and densities, and a
list of flight dates and labels is presented by Lübken and
Müllemann (2003). It should be noted, that the tempera-
ture at the top of the FS profile was taken from K lidar tem-
perature measurements as the ‘start temperature’ T◦ in the
FS data reduction procedure (see Lübken and M̈ullemann,
2002, for more details). The K lidar and the rocket launcher
were only∼3 km apart from each other but the actual falling
sphere measurements are made at a horizontal distance of ap-
proximately 40–50 km from the launcher. The availability of
the K temperatures significantly improves the FS tempera-
ture accuracy in the upper part of the profiles. For example, a
typical uncertainty of the K lidar temperatures at∼95 km is
±10 K which includes natural variability and the horizontal

Fig. 2. Daily mean observation statistics for NLC detection by the
K lidar on Spitsbergen. Upper panel: total hours of observation and
hours with NLCs (shaded). Lower panel: occurrence frequency of
NLCs. Days with little observation time (less than 1 h) are marked
by crosses only (no vertical bar). Ignoring these days, 3 mean values
have been calculated (horizontal lines): one for the entire period and
one each for the period 12 June – 4 July and 12 July – 12 August,
respectively.

difference of the actual measurements. An uncertainty in T◦

of ±10 K reduces to±4, 0.8 and 0.2 K at 90, 85, and 80 km,
respectively. A typical overall uncertainty in temperature at
83 km is±4 K, including errors in T◦ and instrumental ef-
fects. The height-dependent sphere reaction time-constant
causes a smoothing of the density, temperature, and wind
profiles. The smallest scales detectable are typically 8, 3,
and 0.8 km at 85, 60, and 40 km, respectively.

3 Observations

3.1 Noctilucent clouds

We have analyzed all available backscatter profiles for NLC
and found the first occurrence on the first observation day

www.atmos-chem-phys.org/acp/3/1101/ Atmos. Chem. Phys., 3, 1101–1111, 2003
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Table 1. Details of the NLCs observed by K lidar in Spitsbergen in the summer of 2001

dd mo obs-h NLC-h % z-NLC z-top z-bot BSC

12 6 3.14 1.23 39 84.1 84.8 83.1 2.1
14 6 1.51 0.43 28 83.4 84.2 82.7 0.9
15 6 0.83 0.00 0 — — — —
17 6 2.82 0.00 0 — — — —
18 6 11.63 11.54 99 83.6 85.1 82.7 3.7
25 6 0.59 0.59 100 86.1 87.3 84.7 3.2
26 6 8.00 7.03 88 83.3 84.5 82.6 5.6
28 6 2.14 0.58 27 82.5 82.8 82.3 2.3
29 6 0.98 0.93 94 84.2 84.8 83.6 1.4
3 7 0.97 0.97 100 84.8 87.3 82.6 2.3
4 7 13.83 10.76 78 83.7 85.3 82.7 4.5

12 7 7.07 7.07 100 83.7 85.6 82.3 10.9
15 7 5.75 2.84 49 83.5 85.1 82.8 4.3
16 7 0.76 0.00 0 — — — —
23 7 4.94 2.90 59 83.3 84.9 82.4 5.5
24 7 7.52 7.11 95 85.2 86.2 84.3 1.2
26 7 17.87 14.22 80 83.2 84.8 82.2 2.6
27 7 2.51 2.20 88 83.3 84.2 82.4 1.0
31 7 14.59 12.86 88 83.2 84.6 82.2 3.3
1 8 0.46 0.46 100 83.4 84.1 82.8 3.8
2 8 3.07 1.30 42 81.6 82.4 80.8 6.2
3 8 9.66 9.66 100 83.8 86.1 82.6 2.5
5 8 2.02 2.02 100 84.1 85.9 82.0 1.3
6 8 23.19 16.53 71 83.5 84.9 82.3 4.1
7 8 21.81 14.25 65 83.6 85.3 82.3 4.1
8 8 13.81 11.60 84 83.2 84.7 82.0 4.1
9 8 0.41 0.41 100 83.6 85.7 82.6 8.1

11 8 1.88 1.85 98 83.1 84.8 82.1 1.8
12 8 0.76 0.76 100 83.6 84.9 83.2 1.2

dd=day; mo=month; obs-h=total observation hours; NLC-h=hours with NLC;
%=occurence rate; z-NLC=mean NLC peak altitude; z-top=top of NLC;
z-bot=bottom of NLC; BSC=volume backscatter coefficient [10−10/m/sr]

(12 June) and the last on 12 August. Note, that the lidar
was out of operation for a significant part of the campaign
because of bad weather. The first measurements after 12 Au-
gust were made on 26 August and no NLC was observed. In
the following we will refer to the time period 12 June until
12 August as the “lidar NLC period”. The total number of
observing hours in the lidar NLC period was 184.5 h (5894
profiles) and noctilucent clouds were detected during 142.1 h
(4549 profiles), i.e. during 77% of the time. We have ana-
lyzed the NLC layers in time slots of 24 h centered around
midnight. The result of this analysis is presented in Table 1.
As can be seen from Fig. 2 the daily mean occurrence rate
varies between 0% (no NLC) and 100% (permanent NLC).
Ignoring days with little observation time (i.e. less than 1 h)
the scatter of the occurrence rates is±30%. We have ana-
lyzed the daily mean occurrence rates in two subsets, namely
in the period 12 June – 4 July, and 12 July – 12 August,
respectively. There are 8 days with little observation time

(less than 1 hour). Ignoring these days we find mean occur-
rence rates of 51% and 80% with a RMS variability of±34%
and±19%, respectively. We have also examined the occur-
rence frequency in a different manner, namely by summing
up all times with and without NLC in the first and second
subset (no pre-calculation for each day). Now, the total oc-
currence rates are more equal in both subsets: 74% compared
to 78%. While strong NLCs (peak BSC>5×10−10/m/sr) are
evenly distributed (18/19%), medium NLCs (BSC 2–5) are
more frequent in the first period (38/25%) and the occurence
of weak NLCs increases (18/35%). At least part of this in-
crease is probably due to the fact that the performance of the
K lidar was improved throughout the campaign and the solar
elevation is lowered which led to a sensitivity increase by a
factor of 2–3. We note that more days of observations are
available in the second half of the NLC season.

In Fig. 3 the daily mean NLC peak altitudes are shown.
Ignoring days where the observation period is less than 1 h

Atmos. Chem. Phys., 3, 1101–1111, 2003 www.atmos-chem-phys.org/acp/3/1101/
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Fig. 3. Daily mean NLC peak altitudes versus month. The crosses
indicate the mean altitude of maximum volume backscatter coeffi-
cientβmax (circles if observation time is less than 1 h). The thick
error bars present the RMS variability ofβmax and the thin verti-
cal lines indicate the upper-most and lower-most appearance of the
NLC layer during that particular day. The solid horizontal lines give
the mean altitudes for the entire period and for the subsets described
in the text, respectively. The dashed line is the straight line fitted to
theβmax values.

the average NLC peak altitude determined from the daily
means is 83.4 km. The mean of all individual NLC peak
altitudes (without pre-averaging) is 83.6 km, i.e. practically
the same value. This demonstrates that the daily mean al-
titudes are representative for the entire data set. The RMS
variation of the mean NLC altitude is 1.1 km. The median
of the daily NLC peak altitudes is 83.5 km, i.e. very simi-
lar to the mean. The distribution of all individual NLC peak
altitudes is shown in Fig. 4. The width of the distribution
(FWHM) corresponding to a normal distribution is 2.8 km.
We have fitted a Gaussian separately to the lower and upper
part of the distribution keeping the maximum value at an al-
titude of 83 km fixed. We find half widths (FWHM) of 1.9
and 3.5 km, respectively. This indicates that the NLC peak
altitudes extend to somewhat higher altitudes above the mean
(compared to below). For comparison with measurements at
other latitudes we have also determined the centroid altitudes
(zc =

∑
(β · z)/

∑
β) of each NLC profile. The mean of all

these centroid altitudes is of 83.7±1.0 km. Furthermore, we
have calculated the “center of half width” defined in Fiedler
et al., 2002 and arrive at a mean value of 83.6 km (RMS vari-
ability is 1.1 km), again close to the mean of the NLC peak
altitudes.

We have analyzed the NLC data in the two subsets men-
tioned above and found the mean of the individual NLC peak
altitudes at 83.6±0.9 km and 83.5±1.2 km, respectively.
This indicates that there is no significant NLC height dif-
ference in these subsets which is also evident from the slope

Fig. 4. Histogram of NLC peak altitudes normalized to 100% for
maximum occurrence. The solid vertical lines indicate the mean
and the RMS variability of the NLC peak altitudes, respectively.

of a straight line fitted to the daily mean peak altitudes in
Fig. 3 which is small (−0.10 km/month) and not significant
(uncertainty:±0.25 km/month). For each NLC profile we
have determined the uppermost (“top”) and the lowermost
(“bottom”) altitude of the NLC layer. The average top and
bottom altitude calculated from all individual NLC profiles
is 85.1 and 82.5 km, respectively (RMS variation:∼1.2 km).
The mean layer thickness (FWHM) is 1.7 km (variability:
0.9 km).

The upper edge of the NLC layer is always located be-
low the lower edge of the potassium layer, as in the exam-
ple of Fig. 1. There is no case of a NLC reaching above
the lower edge of the potassium layer or appearing (with
β >10−10/m/sr) inside. This suggests that there are no
very weak NLC present inside the K layer which we could
have missed due to the somewhat reduced sensitivity to de-
tect NLCs inside the K layer. We therefore argue that our
statistics on the altitude and occurrence distribution for weak
NLCs is not influenced by the decreased sensitivity inside the
K layer.

We have also analyzed the statistical properties of the max-
imum volume backscatter coefficient (βmax) at our wave-
length of 770 nm. The meanβmax for the entire season de-
termined from all individual NLC profiles (ignoring profiles
with no NLC) is 3.9×10−10/m/sr with a large RMS variabil-
ity of nearly 100%. Again, we have analyzed the NLC data
in the two subsets mentioned above and found mean values
for βmax of 4.1 and 3.8 with a RMS variability of 3.0 and 4.1,
respectively (all values in units of 10−10/m/sr). This implies
that there is no significant change of the maximum BSC in
these subsets. We note that the measurement of the maxi-
mum BSC does not depend on the lidar sensitivity as long
asβmax is significantly above the detection threshold. With
the increased sensitivity of the lidar (see above) more weak

www.atmos-chem-phys.org/acp/3/1101/ Atmos. Chem. Phys., 3, 1101–1111, 2003
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Fig. 5. Scatter plot of the maximum volume backscatter coefficient
βmax versus peak altitude for all individual profiles (upper panel).
The solid horizontal lines indicate the mean and the RMS variability
of the NLC peak altitudes. In the lower panel the peak altitudes
are averaged in BSC bins of width 0.4·10−10/m/sr. The vertical
lines indicate the variability in each bin. Two straight lines have
been fitted (thick solid lines in lower panel) namely forβmax values
smaller and larger than 3, respectively.

NLCs are included in the statistics and a somewhat lower
mean value is expected for the second subset.

Another characteristic of NLC layers that can be compared
with models is the distribution ofβmax with altitude. For
example, from steady state considerations of NLC growth
and sedimentation it is sometimes taken for granted that the
strongest NLCs occur at lowest heights. In Fig. 5a we present
a scatter plot of all individualβmax values versus peak alti-
tudes. Indeed, there is a weak tendency for brighter NLCs
to occur at lower altitudes and this trend varies withβmax.
To arrive at more quantitative results we have averaged the
peak altitudes inβmax-bins of 0.4×10−10/m/sr and have fit-
ted two straight lines, namely for smallβmax values (up to
3) and for largerβmax(see Fig. 5b). At smallβmax values the
slope of a regression line is−0.58±0.08. The slope at larger

Table 2. Simultaneous measurements by K lidar and falling spheres
during ROMA, 2001

flight date, time potassium lidar period NLC
label (UT) dates and times (UT)

(ROFS03) 22 Jul. 12:20 22 Jul 23:48–23 Jul 19:47 yes
(ROFS05) 25 Jul. 10:00 25 Jul 14:31–26 Jul 14:37 yes
ROFS07 31 Jul. 09:00 30 Jul 16:11–31 Jul. 12:00 yes
ROFS09 02 Aug. 18:00 02 Aug 08:24–02 Aug 21:45 yes
ROFS10 06 Aug. 09:38 05 Aug 09:52–08 Aug 01:54 yes
ROFS18 27 Aug. 10:45 26 Aug 09:37–28 Aug 02:00 no

The K lidar time period may include a few hours of data
interruption due to bad weather. For ROFS03 and ROFS05 the K

lidar measurements took place a few hours prior to launch.

βmaxvalues is very small (−0.023±0.008) but still statisti-
cally significant (all numbers are in the physical dimensions
of Fig. 5).

3.2 NLCs and falling sphere temperatures

Simultaneous K lidar measurements and FS temperature pro-
files are available for 4 flights, where during 3 of these flights
a NLC was detected (see Table 2). Two more flights, namely
ROFS03 and ROFS05, took place a few hours prior to the
closest K lidar measurements and will therefore not be con-
sidered in the following discussion. In Fig. 6 we present
the temperature profile from ROFS10 and the correspond-
ing NLC profile averaged for±1 h around the rocket launch.
Furthermore, two frost point temperature profilesTfrost are
shown using water vapor mixing ratio profiles from two dif-
ferent models, namely from K̈orner and Sonnemann (2001)
(K&S) and from von Zahn and Berger (2003) (vZ&B). The
latter is a 3-dimensional model which includes the effect of
freeze drying, i.e. the redistribution of water vapor due to ice
particles being formed in the vicinity of the mesopause, and
evaporating at lower altitudes. At very high latitudes the two
H2O profiles are rather similar up to∼85 km (difference is
less than a factor of 2) but deviate by a factor of up to 10
at the mesopause (see Fig. 9 in von Zahn and Berger, 2003).
As can be seen from Fig. 6 the actual temperatures are lower
thenTfrost in an extended altitude range from approximately
82 to 91 km (depending on [H2O]) indicating that it is cold
enough at these heights for ice particles to grow or to exist.
The NLC in Fig. 6 appears at the bottom of the height range
where the actual temperatures are smaller thanTfrost. We
will come back to a comparison of NLCs and temperatures
in Sect. 4.1

Atmos. Chem. Phys., 3, 1101–1111, 2003 www.atmos-chem-phys.org/acp/3/1101/
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Fig. 6. Temperature profile from flight ROFS10 launched on 6 Au-
gust at 09:38 UT (black line) and the NLC volume BSC averaged
for ±1 h around the rocket launch (purple line; upper abscissa).
The two blue dashed lines indicate frost point temperaturesTfrost
using model water vapor mixing ratios from Körner and Sonne-
mann (2001) and from von Zahn and Berger [2003], respectively.
For comparison the profile from FJL-JGR99 for 69◦ N is presented
(red dashed line).

4 Discussion

4.1 NLCs and the degree of saturation

In Fig. 7 two more temperature profiles and the correspond-
ing NLC layers are shown, namely from flights ROFS07
and ROFS09. As in Fig. 6 there are various height ranges
with super-saturation (Tatm<Tfrost) in the upper mesosphere,
but the NLC appears only in the lower part of these height
ranges. We have calculated the degree of saturation (S) at
the NLC peak and at the top and the bottom of the layer.
The results of these calculations are presented in Table 3. To
demonstrate the uncertainty of these values due to the un-
known water vapor profile we have determined two S values
using water vapor values from K&S and vZ&B, respectively.
As noted before the two model profiles are rather similar up
to ∼85 km and deviate substantially above. Subsequently,
the effect on theS values depends on altitude and is substan-
tial (more than a factor of 3) only for the NLC top altitude
during flight ROFS09. TheS values depend strongly on tem-
perature (T ), i.e. any error inT results in comparatively large

Table 3. Temperatures in the NLC layer

ROFS07 ROFS09 ROFS10

ztop [km] 84.5 87.3 84.5
temperature [K] 143 121 136
S(K&S) 1.5 1500 13
S(vZ&B) 1.0 140 6

zpeak [km] 82.5 84.5 82.6
βmax [10−10/m/sr] 4.8 3.3 7.3
temperature [K] 149 127 144
S(K&S) 0.5 380 2.3
S(vZ&B) 0.7 180 2.8

zbottom [km] 80.7 82.9 81.1
temperature [K] 157 137 152
S(K&S) 0.1 18 0.4
S(vZ&B) 0.1 21 0.4

S(K&S) is the degree of saturation using water vapor mixing ratios
from Körner and Sonnemann (2001).
S(vZ&B) is the degree of saturation using water vapor mixing ratios
from von Zahn and Berger (2003).

errors inS. For example, at NLC altitudes an uncertainty in
temperature of 2–3 degrees (a typical value at 83 km; see
above) corresponds to an uncertainty inS by a factor of 2.

Some of theS values in Table 3 are smaller than one even
if we take into account the uncertainties inS discussed above.
This suggests that the particles should disappear due to evap-
oration. We would like to note, however, that even in a sit-
uation of under-saturation it will take some time before an
ice particle disappears. For example, withS = 0.5 and a
radius of 20 nm it takes several hours before the ice particle
has completely evaporated (Gadsden, 1981).

As can be seen from Table 3 the degree of saturation at the
NLC peak varies substantially and differs significantly from
S = 1. In a simplistic picture one would expect that NLC
particles achieve their largest size and produce largest BSC
at theS = 1 level since they grow in theS > 1 regime while
sedimenting through the atmosphere. However, model stud-
ies of microphysical processes controlling the generation of
NLCs in the presence of gravity waves have shown that (for
long period gravity waves) the NLC peak coincides with the
S = 1 level only very seldom and values larger and smaller
thanS = 1 will occur. Rapp et al. (2002) found values in
the range of aboutS = 0.2 toS = 10. Our observations sup-
port this finding even if we take into account the uncertainties
about the actualS value discussed above.

For flight ROFS07 a major part of the NLC is located in a
region of under-saturation in particular at the bottom of the
layer at 80.7 km. We note that large enhancements of water
vapor up to 10-15 ppmv have been observed in this altitude
range by the HALOE instrument on UARS, though at lower
latitudes Summers et al. (2001). This enhancement is pre-
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Fig. 7. Same as Fig. 6 but for flights ROFS07 (left panel) and ROFS09 (right panel). The launch dates and times are given in the plots.

sumably caused by the “freeze drying” effect mentioned ear-
lier We can certainly not exclude that the local water vapor
concentration during flight ROFS07 deviated largely from
the model values. For flight ROFS09, very largeS values are
found in the entire NLC layer. We conclude that the range
of S values in the NLC layer varies greatly and can be larger
and smaller than one.

As can also be seen from Table 3 there is no obvious
correlation between the degree of saturation and the maxi-
mum volume backscatter coefficientβmax. The peak BSC
varies only little and is largest in a case of moderate super-
saturation (S = 2 for flight ROFS10). This again supports
the statement that arguments derived from steady-state as-
sumptions may not be applicable when relating individual
NLC properties to the background thermal field. On the other
hand, the mean variation of the NLC appearance with height
and season is in agreement with the climatological variation
of super-saturation derived from the FS temperature mea-
surements (see Fig. 4 in Lübken and M̈ullemann, 2003). This
is true even if we consider the uncertaintyS caused by the
unknown water vapor concentration discussed above. At the
end of our lidar NLC period (12 August, i.e. when measure-
ments had to be terminated due to bad weather) temperatures
are still low enough for super-saturation. When the lidar was
started again on 26 August temperatures had just become too
high for super-saturation and indeed no NLC was observed.

The maximumS values deduced from the FS climatology
occur around 87–88 km and reach values of 26, 3, and 0.2
for 15 August, 23 August, and 1 September, respectively, us-
ing H2O values from K&S. Similar values for the model of
vZ&B can not be given because this model depends not on
season. This indicates that at 26 August (time = 8.84) clima-
tological temperatures are too high for the creation of NLCs.
We conclude that there is a very close correspondence of the
general morphology of NLCs and the local thermal structure
over Spitsbergen allowing for super-saturation, in spite of the
large time constants (hours) which are associated with large
horizontal transport distances (Berger and von Zahn, 2002).

In summary, NLCs appear in the lower part of the height
range of super-saturation but details of their morphology
(BSC, layer width etc.) do not depend on the local thermal
structure. This is in line with model results which suggest
that it can take several hours before an ice particle reaches
a size detectable by lidar (Berger and von Zahn, 2002; Rapp
et al., 2002). During this time the particle is carried hundreds
of kilometers by the mean wind and the background con-
ditions relevant for ice particle formation, e.g. temperatures
and vertical winds, have most likely varied. On the other
hand, the mean variation of the NLC appearance with height
and season is in nice agreement with the climatological vari-
ation of the thermal structure in the upper mesosphere.
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4.2 Comparison of NLCs with other latitudes

The characteristics of NLCs observed by the R/M/R-lidar
at ALOMAR (69◦ N) have recently been summarized by
Fiedler et al. (2002) based on data from 5 summer seasons.
Technical details of the lidar are described in von Zahn et al.
(2000). Although our statistics are poorer compared to ALO-
MAR we will now compare the main NLC features at both
sites. The analysis of Fiedler et al. was performed in 5 time
periods of 15 days each. Our lidar NLC period at Spitsber-
gen is best represented by their periods 2–5 (16 June – 15
August).

The NLC occurrence frequency at ALOMAR varies from
year to year and is in the range∼30–50%. This is consid-
erably less compared to Spitsbergen (77%). In the year of
our measurements (2001) the mean occurrence frequency at
ALOMAR is 28% which is less than half compared to Spits-
bergen. To avoid an instrumental bias in these values we
compare the rates derived for NLCs which are stronger than
a threshold ofβmax>4 which is clearly above the detection
limit of the ALOMAR lidar. The occurence rate then ranges
between 20 and 30%, with the lower value observed in 2001.
Using a corresponding threshold ofβmax>1.25 at 770 nm
(see below), which is above our instrumental limit, we obtain
an occurence rate of 61%, again more than twice the value
from 69◦ N. This occurrence increase of NLCs with latitude
is in line with the increase of polar mesospheric cloud (PMC)
frequency observed by satellites (Thomas et al., 1991).

The mean center NLC altitudezc at ALOMAR varies lit-
tle in periods 2–5 and is approximately 83.3 km (variabil-
ity: ±1.2 km) which is very similar to our value of 83.6 km.
The center altitude at ALOMAR has increased since 1997
and reaches∼83.9 km in 2001, thus varying about the value
at Svalbard. Fiedler et al. (2002) find only very little sea-
sonal variation ofzc, again very similar to our observations
at Spitsbergen. The mean width of 1.3 km at ALOMAR is
slightly less compared to Spitsbergen (1.7 km).

The maximum BSC at ALOMAR has decreased since
1997 and reached a mean ofβmax= 9· 10−10/m/sr in 2001.
This value is slightly larger (9.6) if the same time period in
2001 is taken at ALOMAR compared to our campaign period
at Spitsbergen. Please note that there exist large differences
between mean, median and mode values forβmax as is de-
scribed in more detail in Fiedler et al. (2002).

When comparing NLC strengths measured by different li-
dars the wavelength dependence of the backscatter coeffi-
cient must be taken into account. The ratio of the BSCs at
two wavelengths is called “color ratio” and depends strongly
on the particle mode radiusrm and on the size distribution.
We assume a lognormal size distribution of spherical ice par-
ticles with rm = 40 nm and a width ofσ = 1.4. We
then arrive at color ratios of 3.2 and 7.3 for 532 nm/770 nm
and 374 nm/770 nm, respectively. These ratios need to be
applied for the comparison of our results with the R/M/R-
lidar at ALOMAR and the Fe lidar at the South pole (see

later). Taking into account this color ratio the ALOMAR
value of βmax= 9.6 (see above) corresponds to aβmax of
3.0·10−10/m/sr at 770 nm which is slightly but not signif-
icantly less compared to the Spitsbergen mean ofβmax=

3.9·10−10/m/sr. We note that the color ratio varies substan-
tially (from approximately 2.5 – 4.5) if other particle radii
and widths are assumed. Therefore we conclude, that the
brightness of the NLCs at ALOMAR and at Spitsbergen do
not deviate significantly.

In summary, the mean NLC characteristics at two sites
separated by almost 10 degrees in latitude, namely ALO-
MAR at 69◦ N and Spitsbergen at 78◦ N, are similar with re-
spect to the peak altitude and the maximum volume backscat-
ter coefficient, but differ significantly with respect to the oc-
currence frequency (larger at higher latitudes).

Chu et al. (2002) have recently presented NLC results
obtained with their Fe Boltzmann lidar (374 nm) at the
South Pole during the summer seasons of 1999/2000 and
2000/2001. Their coverage of the summer season is simi-
lar to our “lidar NLC period” (12 June to 12 August which
corresponds to day numbers after solstice of−9 and 52, re-
spectively) with a somewhat better coverage at the beginning
of the NLC season. Taking mean values from both years
the centroid altitudezc at the South pole is approximately
85.0 km, i.e. ∼1.3 km higher compared to Spitsbergen. It
should be noted, however, thatzc varies by approximately
1 km in the two years of observations at the South pole. We
do not detect a decrease of NLC altitudes at the end of the
season as stated in Chu et al. (2002). The NLC occurrence
frequency at the South pole is somewhat smaller (67%) com-
pared to Spitsbergen, but the difference is within the natural
variability observed during our NLC season (±28%).

The mean of the maximum backscatter coefficientsβmax
at the South pole is 37·10−10/m/sr at 374 nm. This corre-
sponds to 5.1 at 770 nm taking the color ratio into account
(see above). This is somewhat larger compared to the mean
value at Spitsbergen (3.9). However, the difference is within
the uncertainty of the color ratio caused by the unknown
mean particle radius and size distribution.

5 Conclusion and outlook

We have presented the first lidar observations of noctilucent
clouds at Spitsbergen and have discussed in detail the sta-
tistical properties of the NLC layer height, strength etc. We
have compared these results with the thermal structure of the
background field deduced from falling sphere measurements.
The NLC altitudes and strengths at Spitsbergen are similar to
ALOMAR (10◦ further south) but NLCs are more frequent
at Spitsbergen.

The comparison of FS temperatures and NLCs demon-
strates that arguments derived from steady-state assumption
may not be applicable when relating individual NLC prop-
erties to the background thermal field. On the other hand,
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the mean variation of the NLC appearance with height and
season is in nice agreement with the climatological variation
of the thermal structure in the upper mesosphere. This lo-
cal agreement between the mean appearance of NLCs and
the conditions set by the background atmosphere is important
for comparison with models which take into account the time
constant of hours for the generation of NLC particles and the
corresponding large horizontal transport distances. We will
continue and complete our measurements in the next years to
explore inter-annual variability and improve the statistics of
NLCs at very high latitudes.
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