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1 Introduction

In this paper we are interested in an initial boundary value problem for a mathematical model
in ferromagnetism. The physical context is the following. A piece of ferromagnet is supposed to
be a regular bounded open set Ω in R3. The magnetic state at a point x ∈ Ω at time t is given
by a vector u(t, x) ∈ R3 which belongs to the unit sphere of R3, called the magnetic moment.
The evolution of u is coupled to the evolution of the electromagnetic field

(
E(t, x),H(t, x)

)
in

the whole space R3, by a system of nonlinear partial differential equations.
The first equation is the following Landau-Lifschitz equation in R+

t × Ωx, where ε2 is supposed
to be a constant :





∂tu = u ∧ (H + ε2∆u) − u ∧
(
u ∧ (H + ε2∆u)

)
in [0,+∞[×Ω

∂nu = 0 in [0,+∞[×∂Ω

u|t=0 = u0 .

(1.1)

where n is the unitary outward normal at the boundary ∂Ω.

This equation is coupled with the Maxwell system in R+
t × R3





∂t(H + ū) + curl E = 0

∂tE − curl H = 0

(E,H)|t=0 = (E0,H0).

(1.2)

where ū means the extension of u by 0 outside of R × Ω.

Remark 1.1 In all the paper we take all the physical constants equal to 1, excepted the exchange
coefficient, since their value don’t change the mathematical analysis of the equations.

Furthermore, the solution must satisfy the divergence condition

div (H + ū) = 0, (1.3)

and the constraint
|u(t, x)| = 1, x ∈ Ω, t ≥ 0. (1.4)

A basic observation is that these two last conditions are propagated by the full system, from the
initial conditions. The condition (1.3) is given by the Maxwell equations (1.2), since the first
equation of (1.2) implies that ∂tdiv (H + ū) = 0. The condition (1.3) is then satisfied for all
t ≥ 0 if and only if it is satisfied for t = 0. In other words, condition (1.3) means exactly that
the initial data H0 and u0 satisfy

div (H0 + u0) = 0. (1.5)

The same remark is true for the condition (1.4), assuming however that u is regular enough,
since the equation (1.1) implies ∂t(|u(t, x)|2) = 0.

The existence of global weak solutions for the system (1.1), (1.2) was established by A. Visintin in
[32], and for another form of the system (equivalent for regular enough solutions) by G. Carbou
and P. Fabrie in [8].
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In this paper, we first prove the existence and uniqueness of regular enough solutions for the
system (1.1), (1.2). The solutions obtained are local in time. This result is stated in section 2.
The section 3 is concerned with the question of the asymptotic behavior of the solution of (1.1)-
(1.2) as ε > 0 tends to 0. ¿From a formal point of view, the system obtained when ε = 0, is
equivalent to a first order semilinear symmetric hyperbolic system, which is known to admit
local piecewise regular solutions (Sobolev regularity) discontinuous across the boundary R×∂Ω,
which is a characteristic hypersurface of constant multiplicity for this hyperbolic system. This
hyperbolic system has a very particular structure and admits global solutions as proved by Joly,
Métivier and Rauch in [19]. We prove here two new results. First, a solution (u0, E0,H0) of the
limit hyperbolic system being given on [0, T ], we show that under some natural assumptions,
this solution is limit of a family of solutions (uε, Eε,Hε) of (1.1)-(1.2). The other result is that
if u0 satisfy the additional condition ∂nu

0(0, .)|∂Ω = 0, the solution of (1.1)-(1.2) with initial
data (u0

|t=0, E
0
|t=0,H

0
|t=0) converges to (u0, E0,H0) as ε goes to 0. To obtain this results, we

perform an asymptotic expansion in ε and bring to the fore a boundary layer of characteristic
size ε, and amplitude ε, localized closed to ∂Ω. As it is classical in BKW method, we have to
suppose that the limit solution (u0, E0,H0) is very regular on each side of Ω (Sobolev piecewise
regularity).

Notation. In all the paper, we will note Hm := (Hm)3 = (Wm,2)3 the usual Sobolev spaces of
functions with values in R3, and Lp := (Lp)3 the usual Lebesgue spaces with values in R3.

2 A local existence result for a fixed ε > 0

Let us introduce some notations. For T > 0, let us call A(T ) the set of functions

u ∈ L2
(
[0, T ];H3(Ω)

)
∩ C

(
[0, T ];H2(Ω)

)
∩ C1

(
[0, T ];H1(Ω)

)

such that ∂tu ∈ L2
(
[0, T ];H2(Ω)

)
and ∂2

t u ∈ L2([0, T ] × Ω).
Concerning the regularity of the electromagnetic field, we will use the following classical space

Hcurl := {v ∈ L2(R3; R3) such that curl v ∈ L2(R3; R3)}

equiped with the natural norm ‖v‖L2 +‖curl v‖L2 . The main result of the section is the following.

Theorem 2.1 Let ε > 0 be fixed. Let u0 ∈ H3(Ω) satisfying |u0| = 1, ∂nu0|∂Ω = 0. Let
(E0,H0) ∈ Hcurl × Hcurl. Assume that div (H0 + ū0) = 0. Then there exists T > 0 and a unique
solution (u,E,H) to the problem (1.1), (1.2), such that u ∈ A(T ), and

E,H ∈ C1
(
[0, T ];L2(R3)

)
∩ C

(
[0, T ] : Hcurl

)
.

Furthermore, |u| = 1 in [0, T ] × Ω and div (H + ū) = 0 for all t ∈ [0, T ].

This theorem will be deduced from theorem 4.1 below, which is proved in section 5.

3 Asymptotic analysis as ε → 0

In this section, we are interested in the behavior of the local solution described in theorem 2.1, as
ε tends to 0. This is a natural question of current interest in the modelisation of micromagnetism.
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Let us consider the system formally obtained when ε = 0, on a time interval ]0, T [, which writes





∂tu
0 = u0 ∧H0 − u0 ∧ (u0 ∧H0) in ]0, T [×Ω

∂t(H
0 + u0) + curl E = 0 in ]0, T [×R3

∂tE
0 − curl H0 = 0 in ]0, T [×R3

(3.1)

Note that the first equation holds in ]0, T [×Ω, and that no boundary condition is needed on
]0, T [×∂Ω for u0. This system satisfies as the original (1.1)-(1.2) system, the propagation prop-
erties of |u0(t, x)| and div (H0 + u0) in the sens that the relations

|u0(t, x)|2 = 1,∀x ∈ Ω,∀t ∈ [0, T ]

div (H0 + u0) = 0,∀t ∈ [0, T ]
(3.2)

hold if and only if they are satisfied at t = 0.
Now, since the principal part of the first equation is the field ∂t, it follows that (u0,H0, E0) ∈ L∞

loc

satisfies system (3.1) in the sens of distributions if and only if (V 0 := u0,H0, E0) satisfies the
following semilinear first order symmetric hyperbolic system in the domain ]0, T [×R3:





∂tV
0 = V 0 ∧H0 − V 0 ∧ (V 0 ∧H0)

∂tH
0 + curl E = −V 0 ∧H0 + V 0 ∧ (V 0 ∧H0)

∂tE
0 − curl H0 = 0

(3.3)

For this system, the hypersurface R × ∂Ω is characteristic (of constant multiplicity). Hence, it
admits classical piecewise regular (Sobolev) solutions discontinuous across R × ∂Ω ([26], [28],
[29], [27]). More precisely, if m ∈ N, and if we call Ω′ := R3\Ω, let us denote by p−Hm(Ω) the
space of functions v ∈ L2(R3) such that v|Ω ∈ Hm(Ω) and v|Ω′ ∈ Hm(Ω′). The space p−Hm(Ω)
is endowed with the natural norm ‖v|Ω‖Hm(Ω) + ‖v|Ω′‖Hm(Ω′). As before, we use the notation
p−Hm(Ω) when the function is valued in R3. For any given m, it is a consequence of the theory
of discontinuous solutions of hyperbolic semilinear systems ([26], [28], [29], [27]) that the system
(3.1) has solutions which satisfy

u0, E0,H0 ∈ C1
(
[0, T ], p−Hm(Ω)

)
, (3.4)

for some T > 0. For m big enough (m > 3/2), and inside this class of functions, it is equivalent
to solve system (3.1) with initial datas

u0
|t=0 = u0

0, E
0
|t=0 = E0

0 , H
0
|t=0 = H0

0 , (3.5)

or to solve the system (3.3) with initial conditions

V 0
|t=0 = u0

0, E
0
|t=0 = E0

0 , H
0
|t=0 = H0

0 . (3.6)

In this paper we consider such solutions of system (3.1) which satisfy

u0, E0,H0 ∈ C1
(
[0, T ], p−H5(Ω)

)
, (3.7)
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for some T > 0. Our result in this section is that such a solution is actually the limit of a
sequence of solutions of original system (1.1)-(1.2) as ε goes to zero. In order to state the result,
let us introduce a function ϕ ∈ C∞(R3,R) such that Ω = {ϕ > 0}, Ω′ = {ϕ < 0}, ∂Ω = {ϕ = 0}
and normalized such that |∇ϕ(x)| = 1 for all x in a neighborood V of ∂Ω. This implies that
ϕ(x) = dist(x, ∂Ω) on V ∩ Ω.

Theorem 3.1 Assume that (u0,H0, E0) satisfies the system (3.1), (3.2) and the condition (3.7),
for some T > 0. Then the following holds.

1. There exists a family of initial datas (uε
0,H

ε
0 , E

ε
0)ε>0 satisfying the assumptions of theorem

2.1 such that the corresponding solution (uε,Hε, Eε) of (1.1) − (1.2) given by theorem 2.1
exists on [0, T ] and converges to (u0,H0, E0) in C

(
[0, T ],L2(Ω) × L2(R3) × L2(R3)

)
, as

ε→ 0.

2. If u0 := u0
|t=0 satisfies ∂nu0|∂Ω = 0. Then, the solution (uε,Hε, Eε) of (1.1) − (1.2)

given by theorem 2.1 with initial data (u0
|t=0,H

0
|t=0, E

0
|t=0) exists on [0, T ] and converges to

(u0,H0, E0) in C
(
[0, T ],L2(Ω) × L2(R3) × L2(R3)

)
, as ε→ 0.

3. In both cases (1 et 2) there exists a boundary layer profile V(t, x, z) ∈ C([0, T ],H 4(Ω) ⊗
H4([0,+∞[) such that:





uε(t, x) = U 0(t, x) + εV(t, x,
ϕ(x)

ε
) + εrε(t, x)

Hε(t, x) = H0(t, x) + εRε
H(t, x)

Eε(t, x) = E0(t, x) + εRε
E(t, x)

with the following uniform estimate

‖rε‖L∞(0,T ;H1) + ‖εrε‖L∞(0,T ;H2) + ‖Rε
H‖L∞(0,T ;Hcurl) + ‖Rε

E‖L∞(0,T ;Hcurl) ≤ C.

Note that in the point 1. the function u0 is not supposed to satisfy any boundary condition, and
in particular the trace u0 := u0

|t=0 is not supposed to satisfy ∂nu
0
|[0,T ]×∂Ω = 0. This comment is

to emphasize the fact that one cannot apply the existence theorem (2.1) with the initial values
u0
|t=0, E

0
|t=0,H

0
|t=0. On the other hand, this is a natural motivation for the point 2..

4 Reduction of the problem

4.1 The modified equation for u.

For regular solutions, the equation (1.1) is equivalent to the following equation (see [9]):

∂tu− ε2∆u− ε2u ∧ ∆u = ε2|∇u|2u+ u ∧H − u ∧ (u ∧H) ( in R × Ω) . (4.1)

Let us introduce some notations. We will note P⊥ the orthogonal projector of L2(R3; R3) onto
the subspace of divergence free vector fields, and P‖ := Id − P⊥. For convenience we will also
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use the notations v⊥ := P⊥v and v‖ := P‖v if v ∈ L2(R3; R3). Using the Fourier transform ̂ in
L2(R3; R3) gives the following expressions

v̂‖ (ξ) = |ξ|−2 〈ξ.v̂(ξ)〉 ξ , v̂⊥(ξ) = −|ξ|−2 ξ ∧ (ξ ∧ v̂(ξ)) (4.2)

where 〈.〉 is the scalar product and ∧ the vectorial product in R3.

The relation (1.3) means that P‖(H) + P‖(ū) = 0. Replacing then H = H⊥ − P‖(ū) in the
Landau-Lifschitz equation (4.1), gives the following equation

∂tu− ε2 ∆u = ε2 ∧ ∆u+ ε2|∇u|2u
− u ∧ P‖(ū) + u ∧

(
u ∧ P‖(ū)

)

+ u ∧H⊥ − u ∧ (u ∧H⊥) .

(4.3)

4.2 The wave equation for H⊥.

In a classical way, we use the Maxwell system to get a scalar wave equation on H⊥, with a right
hand side depending on ū: we apply ∂t to the first equation in (1.2) and take the curl of the
second equation to get

∂2
tH⊥ − ∆H⊥ = −∂2

t P⊥(ū). (4.4)

We are then interested in solving the following non linear system of equations

∂tu− ε2 ∆u = ε2 u ∧ ∆u+ ε2|∇u|2u
− u ∧ P‖(ū) + u ∧

(
u ∧ P‖(ū)

)

+ u ∧ h− u ∧ (u ∧ h) in ]0,∞[×Ω,

(4.5)

∂2
t h− ∆h = −∂2

t P⊥(ū) in ]0,∞[×R3, (4.6)

with boundary condition
∂nu|]0,∞[×∂Ω = 0 (4.7)

and initial conditions for u
u|t=0 = u0 in Ω, (4.8)

and for h

h|t=0 = h0, ∂th|t=0 = h1 in R3. (4.9)

4.3 Initial data and compatibility conditions

A natural question is to express the initial data for H⊥ and ∂tH⊥ in terms of the original data
u0, E0,H0. Concerning H⊥ we just have:

(H⊥)|t=0 = P⊥H0. (4.10)

For ∂tH⊥ we must use the equations. The Maxwell equations imply

∂tH⊥ = −curl E − ∂tP⊥(ū). (4.11)

The modified Landau-Lifschitz equation (4.5) writes

∂tu = F
(
H⊥, u,∇u,∆u,P‖(ū)|Ω

)
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with obvious notations. Let us call

F0 :=
(
F

(
H⊥, u,∇u,∆u,P‖(ū)|Ω

))
|t=0

= F
(
P⊥H0, u0,∇u0,∆u0,P‖(ū0)|Ω

)
.

It follows that (
∂tP⊥(ū)

)
|t=0

= P⊥(F0).

Coming back to equation (4.11) we find the following expression for the initial value of ∂tH⊥,
expressed with the original datas u0, E0,H0:

(∂tH⊥)t=0 = −curl E0 −P⊥(F0). (4.12)

We will solve the wave equation for H⊥ in the space

C
(
0, T ;H1(R3)

)
∩ C1

(
0, T ;L2(R3)

)
,

so we need an initial data for ∂tH⊥ in L2(R3). This requirement will be our first ”compati-
bility condition”. Since u0 ∈ H2(Ω), we see that F0 and also P⊥(F0) are in L2(R3). In view
of relation(4.11) in follows that the condition (∂tH⊥)|t=0 ∈ L2(R3) reduces to the following
necessary compatibility condition

curl E0 ∈ L2(R3). (4.13)

This is the reason why we assume that our initial data E0 belongs to Hcurl.
Let us turn now to the compatibility conditions for u0. The point is that the function ∂tu has
to be in C

(
[0, T ] : H1(Ω)

)
. A necessary compatibility condition is then

∇F0 ∈ L2(Ω) . (4.14)

This condition is always fulfilled when u0 belongs to H3(Ω).

4.4 An existence result and the proof of theorem (2.1).

Let us first state the main theorem of this section.

Theorem 4.1 Let u0 ∈ H3(Ω) such that ∂nu0|∂Ω = 0 and let h0 ∈ H1(R3) and h1 ∈ L2(R3).
There exists T > 0 and a unique solution (u,h) to the system (4.5) · · · (4.9) on ]0, T [×Ω such
that u ∈ A(T ) and

h ∈ C1
(
[0, T ];L2(R3)

)
∩ C

(
[0, T ];H1(R3)

)
. (4.15)

Moreover, if P‖hj = 0 for j = 0, 1,then P‖h(t, .) = 0 for all t ∈ [0, T ].

Assuming for a moment theorem 4.1, we can now give the proof of theorem 2.1. Apply theorem
4.1 with initial datas u0 and h0 := P⊥(H0) and

h1 := curl E0 −P⊥(F0) ∈ L2(R3).

This gives a function u ∈ A(T ) and a function h, with regularity (4.15) satisfying P‖h = 0,
because of the last observation in theorem 4.1. Now, one can solve the Maxwell hyperbolic
system (1.2) with ∂tū in the right hand side





∂tH + curl E = ∂tū

∂tE − curl H = 0

(E,H)|t=0 = (E0,H0).

(4.16)
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Since ∂t(ū) = (∂tu) is in L2([0, T ] × R3) it follows that this equation has a unique solution
(H,E) ∈ C

(
[0, T ];L2(R3; R6)

)
.

Let us consider now the wave equation (4.4) satisfied by H⊥. Observing that the initial values
(H⊥)|t=0 and (∂tH ⊥)|t=0 are the same as the initial data h0 and h1 (since of relation (4.12)),
we deduce that H⊥ = h. Now, the fact that H belongs to C

(
[0, T ];Hcurl

)
is a consequence of

the following lemma.

Lemma 4.1 A function v given in L2(R3) belongs to Hcurl if and only if v⊥ is in H1(R3). In
such a case, it satisfies the inequality

c−1 ‖curl v‖L2(R3) ≤ ‖∇v⊥‖L2(R3) ≤ c ‖curl v‖L2(R3) ,

for some c > 0 independent of v.

Proof.

We write v = v‖ + v⊥ and by Fourier transform on R3, ̂(curl v)(ξ) = iξ ∧ v̂(ξ) = iξ ∧ v̂⊥(ξ).
Now, since ξ and v⊥(ξ) are orthogonal vectors, noting |.| the Euclidean norm in R3 we have:

| ̂(curl v)(ξ)| = |ξ| |v̂(ξ)|. Now, using the Parseval-Plancherel equality we obtain the lemma.

Then, as we already observed in section 2, we have

H‖ = −P‖(ū) ∈ C1
(
[0, T ];L2(R3)

)
.

which implies that H = H‖ +H⊥ is also C1 from [0, T ] to L2(R3). Applying the time derivative
∂t to the Maxwell system (4.16) we see that H ′ := ∂tH and E′ := ∂tE, are solutions of





∂tH
′ + curl E′ = ∂2

t u ∈ L2([0, T ] × R3; R3)

∂tE
′ − curl H ′ = 0

(E′,H ′)|t=0 = (−curl E0 − F0, curl H0) ∈ L2(R3; R6) ,

(4.17)

which implies that ∂tE (and also ∂tH, which is already known) is in C
(
[0, T ];L2(R3)

)
. It remains

to prove that curl E belongs to C
(
[0, T ];L2(R3)

)
. This follows from the first equation of the

Maxwell system
curl E = ∂tū− ∂tH

because of the regularity of H and u. This proves theorem 2.1.

The next section is devoted to the proof of theorem 4.1.

5 Proof of Theorem 4.1

For the proof of theorem 4.1 we use a priori estimates on a Galerkin approximation. The
approximation space is based on the eigenspaces of the Laplacian on the domain

D(∆) = {u ∈ H2(Ω) such that ∂nu|∂Ω = 0}.

Let’s call Πn the usual orthogonal projector on the finite dimensional invariant subspace built
on the first n eigenspaces.

8



Our goal is to establish a priori estimates, uniform in n on the solution (un,hn) of the following
non linear problem (where we note simply (u,h) instead of (un,hn)):

∂tu− ε2 ∆u = Πn

(
ε2 ∧ ∆u+ ε2|∇u|2u

)

− Πn

(
u ∧ P‖(ū) + u ∧

(
u ∧ P‖(ū)

) )

+ Πn

(
u ∧ h− u ∧ (u ∧ h)

)
in ]0,∞[×Ω ,

(5.1)

∂2
t h− ∆h = −∂2

t P⊥(ū) in ]0,∞[×R3 , (5.2)

with boundary condition
∂nu|]0,∞[×∂Ω = 0 (5.3)

and initial conditions

u|t=0 = Πnu0 in Ω, (h, ∂th)|t=0 = (h0,h1) in R3. (5.4)

5.1 Technical lemmas and notations

For m ≥ 0, We will note Hm(Ω) = Wm,2(Ω) the usual Sobolev space, and we will note ‖.‖m the
usual norm

‖v‖m :=
∑

|α|≤m

‖∂α
x v‖L2(Ω) .

We will denote by Hm(Ω) := Hm(Ω; R3) and will still denote ‖.‖m the corresponding norm on
Hm(Ω). We will also use the corresponding notations with R3 in place of Ω. We will use many
times the following lemma (see [1], [2], [31]).

Lemma 5.1 Let Ω be a regular open subset of R3. On the linear space

V := {u ∈ H2(Ω) such that ∂nu|∂Ω = 0},

the norms ‖u‖H2 and ‖u‖L2 + ‖∆u‖L2 are equivalent. On the subspace H3(Ω) ∩ V, the norms
‖u‖H3 and ‖u‖H2 + ‖∇∆u‖L2 are equivalent.

The following result is also very useful in the study of ferromagnetism equations, and a proof
can be found in [9] and [10].

Lemma 5.2 Let m ≥ 0 and p ∈]1,∞[. The mapping u →
(
P‖(ū)

)
|Ω

is continuous from

Wm,p(Ω) into Wm,p(Ω). The same is true with P⊥.

Let us also recall that H1(Ω) is continuously embedded in L6(Ω) ([1], [2]).

5.2 Estimates on h

Let us begin with the classical estimate for the wave equation, obtained by taking the scalar
product of the equation with ∂th.

We get:
1

2

d

dt

(
‖∂th‖2

L2 + ‖∇h‖2
L2

)
≤ ‖P⊥(∂2

t ū)‖L2 ‖∂th‖L2

≤ ‖∂2
t u‖L2 ‖∂th‖L2 .

(5.5)
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In order to get also an estimate on ‖h‖L2 , we add to this estimate the obvious inequality

1/2
d

dt
(‖h‖2

L2) ≤ ‖h‖L2‖∂th‖L2 . This gives the following energy inequality:

1

2

d

dt

(
‖h‖2

L2 + ‖∂th‖2
L2 + ‖∇h‖2

L2

)
≤ (‖h‖L2 + ‖∂2

t u‖L2) ‖∂th‖L2 . (5.6)

In view of the right hand side of this estimate, we are lead to look for estimates on time
derivatives of u in order to control the term ‖∂2

t u(s)‖L2(Ω). This is an important difference with
the ”quasistatic case” as treated for example in [9] and [10].

5.3 Estimation on ‖u(t)‖L2

Taking the scalar product of the equation with u, and integrating by parts gives

1

2

d

dt
‖u(t)‖L2 + ε2‖∇u(t)‖2

L2 ≤ ε2‖u(t)‖2
L∞‖∇u(t)‖2

L2 (5.7)

5.4 Estimation on ‖∇u(t)‖L2

Let us write the equation (5.1) in the form:

∂tu− ε2∆u = ε2Πn

(
χ(u) ∧ ∆u

)
+ Πnf , (5.8)

where
f = ε2|∇u|2u+ u ∧

(
h −P‖(ū)

)
+ u ∧

(
u ∧ (P‖(ū) − h)

)
.

Let us form the scalar product of the equation and ∆u, in L2(Ω). Integrating once by parts we
obtain

1

2

d

dt
‖∇u(t)‖2

L2 + ε2‖∆u(t)‖2
L2 ≤ ‖f‖L2 ‖∆u(t)‖L2 . (5.9)

We control ‖f‖L2 as follows.

‖f‖L2 ≤ ε2‖|∇u|2u‖L2+‖u ∧
(
h−P‖(ū)

)
‖L2

+‖u∧
(
u ∧ (P‖(ū) − h)

)
‖L2

≤ ε2 ‖u(t)‖L∞‖∇u(t)‖L∞‖∇u(t)‖L2

+
(
‖u(t)‖L∞ + ‖u(t)‖2

L∞

)(
‖u(t)‖L2 + ‖h(t)‖L2

)
.

(5.10)

By Sobolev embedding of H2(Ω) in L∞(Ω) we get

‖f(t)‖L2 ≤ ε2‖u(t)‖2
H2 ‖u(t)‖H3

+ c
(
‖u(t)‖H2 + ‖u(t)‖2

H2

) (
‖u(t)‖L2 + ‖h(t)‖L2

)
.

(5.11)

We obtain then the following estimate:

1

2

d

dt
‖∇u(t)‖2

L2+ε
2‖∆u(t)‖2

L2 ≤ c ‖u(t)‖3
H2 ‖u(t)‖H3

c
(
‖u(t)‖2

H2 + ‖u(t)‖3
H2

) (
‖u(t)‖L2 + ‖h(t)‖L2

)
.

(5.12)
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5.5 Estimation on ‖∆u(t)‖L2

Taking the scalar product of the equation 5.8 with ∆2u, and integrating by part. We obtain the
inequality

1

2

d

dt
‖∆u‖2

L2 + ε2 ‖∇∆u‖2
L2 ≤ ε2 ‖∇

(
u
)
∧ ∆u‖L2 ‖∇∆u‖L2 + ‖∇f‖L2‖∇∆u‖L2

≤ c ‖ |∇u| |∆u| ‖L2 ‖u‖H3 + ‖∇f‖L2‖u‖H3

≤ c ‖∇u‖L6 ‖∆u‖L3 ‖u‖H3 + ‖∇f‖L2 ‖u‖H3

(5.13)

with a constant c independant of u.

Let us recall the Sobolev embedding

‖u‖L6(Ω) ≤ c ‖u‖H1(Ω) . (5.14)

By interpolation betwen L2 and L6 we deduce from (5.14) the inequality

‖u‖L3(Ω) ≤ c ‖u‖1/2
L2 ‖u‖1/2

H1(Ω)
. (5.15)

Using (5.14), (5.15) we obtain

1

2

d

dt
‖∆u‖2

L2 + ε2 ‖∇∆u‖2
L2 ≤ c ‖u‖3/2

H2 ‖u‖3/2
H3 + ‖∇f‖L2 ‖u‖3 (5.16)

We estimate ‖∇f‖L2 in the following way.

‖∇f‖L2 ≤ ε2‖ |∇u|3 ‖L2 + ε2‖ |u| |∇u| |D2u| ‖L2

+ ‖ |∇u| |P‖(u) − h| ‖L2 + ‖ |u| |∇
(
P‖(ū)

)
−∇h| ‖L2

+ ‖|u||∇u||P‖(ū) − h|‖L2 + ‖ |u|2 |∇
(
P‖(ū)

)
−∇h| ‖L2

≤ ε2 ‖∇u‖3
L6 + ε2 ‖u‖L∞ ‖∇u‖L3 ‖D2u‖L6

+ ‖∇u‖L3 (‖u‖L6 + ‖h‖L6) + ‖u‖L∞ (‖u‖H1 + ‖h‖H1)

+ ‖u‖L∞ ‖∇u‖L3 (‖u‖L6 + ‖h‖L6) + ‖u‖2
L∞ (‖u‖H1 + ‖h‖H1) .

(5.17)

Now, using again the inequalities (5.14) and (5.15), we obtain

‖∇f‖L2 ≤ ε2 c ‖u‖3
H2 + c ‖u‖L∞ ‖u‖3/2

H2 ‖u‖1/2
H3

+ c ‖u‖H2 (‖u‖H1 + ‖h‖H1) + ‖u‖L∞ (‖u‖H1 + ‖h‖H1)

+ c ‖u‖H2‖u‖L∞ (‖u‖H1 + ‖h‖H1) + ‖u‖2
L∞ (‖u‖H1 + ‖h‖H1) .

(5.18)

Using then the Sobolev embedding of H2(Ω) in L∞(Ω), we obtain

‖∇f‖L2 ≤ c (‖u‖2
H2 + ‖u‖3

H2) + c (‖u‖H2 + ‖u‖2
H2) ‖h‖H1

+ c ‖u‖5/2
H2 ‖u‖1/2

H3 .
(5.19)

We have then the following estimate:

1

2

d

dt
‖∆u‖2

L2 + ε2 ‖∇∆u‖2
L2 ≤

c ‖u‖3/2
H2 ‖u‖3/2

H3 + c (‖u‖2
H2 + ‖u‖3

H2) ‖u‖H3

+ c (‖u‖H2 + ‖u‖2
H2) ‖h‖H1‖u‖H3 + c ‖u‖5/2

H2 ‖u‖3/2
H3 .

(5.20)
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5.6 Estimations on ∂tu

Applying ∂t to the equation (5.1) we obtain

∂2
t u− ε2 ∆∂tu = ε2Πn

(
∂tu ∧ ∆u+ u ∧ ∂t∆u

)

+ ε2Πn

(
2(∇u.∇∂tu)u + |∇u|2∂tu

)

− Πn

(
∂tu ∧ P‖(ū) + u∧P‖(∂tū)

)

+ Πn

(
∂tu ∧

(
u ∧ P‖(ū)

)
+ u ∧

(
∂tu ∧ P‖(ū)

)

+u ∧
(
u ∧ P‖(∂tū)

) )
+ Πn

(
∂tu ∧ h+u ∧ ∂th

)

− Πn

(
∂tu ∧ (u ∧ h) − u ∧ (∂tu ∧ h) − u ∧ (u ∧ ∂th)

)

(5.21)

with boundary condition
∂n(∂tu)|]0,∞[×∂Ω = 0. (5.22)

This equation has the form

∂2
t u− ε2∆∂tu = ε2Πn(u ∧ ∆∂tu) + Πng (5.23)

where g does not contain the term ∆∂tu.

Taking the scalar product of the equation with ∂tu, and performing the usual inegrations by
parts, gives the following inequality :

1

2

d

dt

(
‖∂tu‖2

L2

)
+ ε2 ‖∂t∇u‖2

L2 ≤ + cε2 ‖∂tu‖L2 ‖∆∂tu‖L2 + ‖∂tu‖L2 ‖g‖L2 . (5.24)

Taking the scalar product of the equation with ∆∂tu and using one integration by parts, gives
the estimate

d

dt

(
‖∇∂tu(t)‖2

L2

)
+ ε2 ‖∆∂tu(t)‖2

L2 ≤ ‖g(t)‖L2 ‖∆∂tu‖L2 . (5.25)

Taking the scalar product of the equation with ∂2
t u we obtain in the same way, the following

inequality:

ε2
d

dt

(
‖∇∂tu(t)‖2

L2

)
+ ‖∂2

t u(t)‖2
L2 ≤

ε2c ‖∆∂tu(t)‖L2 ‖∂2
t u(t)‖L2 + ‖g(t)‖L2 ‖∂2

t u(t)‖L2 .
(5.26)
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Now, we control ‖g(t)‖L2 in the following way.

‖g(t)‖L2(Ω) ≤ ε2‖∂tu ∆u‖L2 + 2ε2 ‖u∇u∇∂tu‖L2

+ ε2‖∂tu |∇u|2‖L2 + ‖∂tuP‖(ū)‖L2 + ‖uP‖(∂tū)‖L2

+ 2‖u ∂tuP‖(ū)‖L2 + ‖|u|2 P‖(∂tū)‖L2 + ‖∂tuh‖L2

+ ‖∂tuh‖L2 + ‖u ∂th‖L2 + 2‖u ∂tuh‖L2 + ‖|u|2 ∂th‖L2

≤ ε2‖∂tu‖L6‖∆u‖L3 + 2ε2‖u‖L∞‖∇u‖L6‖∇∂tu‖L3

+ ε2‖∂tu‖L6‖∇u‖2
L6 + c (1 + 2‖u‖L∞)‖∂tu‖L6‖u‖L3

+ c (‖u‖L∞ + ‖u‖2
L∞)‖∂tu‖L2 + (‖u‖L∞ + ‖u‖2

L∞)‖∂th‖L2

+ (1 + 2‖u‖L∞)‖∂tu‖L6‖h‖L3 .

(5.27)

We obtain the following estimate, with a knew constant c:

‖g(t)‖L2(Ω) ≤ ε2c‖∂tu‖H1‖u‖1/2
H2 ‖u‖1/2

H3 + c‖u‖2
H2‖∂tu‖1/2

H1 ‖∂tu‖1/2
H2

+ε2c‖∂tu‖H1‖u‖2
H2 + c(1 + 2‖u‖H2) ‖∂tu‖H1‖u‖H1

+c(‖u‖H2 + ‖u‖2
H2) ‖∂tu‖L2 + c(‖u‖H2 + ‖u‖2

H2)‖∂th‖L2

+ c(1 + 2‖u‖H2 ) ‖∂tu‖H1‖h‖H1 .

(5.28)

Now, adding inequalities (5.24) + (5.25)+
1

λ
(5.26), and chosing λ big enough, we “absorb”

in left hand side the term ‖∂2
t u‖L2‖∆∂tu‖L2 . We also absorb the term ‖∆∂tu‖L2 in factor of

‖∂tu‖L2 , and we obtain the following estimate:

1

2

d

dt

(
‖∂tu‖2

L2 + 2(1 +
ε2

λ
)‖∇∂tu‖2

L2

)
+
ε2

4
‖∆∂tu‖2

L2 +
1

2λ
‖∂2

t u‖2
L2 ≤

c2ε2‖∂tu‖2
L2 +

(
‖∂tu‖L2 + ‖∆∂tu‖L2 +

1

λ
‖∂2

t u‖L2

)
‖g‖L2 .

(5.29)

which is satisfied for any λ ≥ λ0 with a λ0 big enough.

5.7 End of the proof

Recall that u = un, and h = hn Let us call Q(t) = Qn the quantity

Q(t) := ‖u(t)‖2
L2 + ‖∇u(t)‖2

L2 + ‖∆u(t)‖2
L2+

+ ‖∂tu‖2
L2 + 2(1 +

ε2

λ
)‖∇∂tu‖2

L2 + ‖h‖2
H1 .

(5.30)
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Adding the previous estimates we derive the following inequality, (to simplify, we have written
Q, u and h, in place of Qn(t), un(t) and hn(t)):

1

2

dQ

dt
+ c (‖u‖H3 + ‖∆∂tu‖H2 + ‖∂2

t u‖L2)2 ≤

A(Q) +B(Q)(‖u‖2
H3 + ‖∆∂tu‖H2 + ‖∂2

t u‖L2).
(5.31)

where A, B are some polynomial functions, c is some positive constant, all independent of n.
Absorbing in the left hand side the term

(‖u‖H3 + ‖∆∂tu‖H2 + ‖∂2
t u‖L2)2

and noting F = 2A+B, we obtain the inequality

dQ

dt
+ c (‖u‖H3 + ‖∆∂tu‖H2 + ‖∂2

t u‖L2)2 ≤ F (Q). (5.32)

It remains to control that the family of initial values Qn(0) is uniformly bounded with respect to
n. Here is the place where the compatibility conditions appear. Because of the regularity of the
initial datas u0 and h0, the quantity Qn(0) is uniformly bounded if and only if ‖∇∂tun(0)‖L2 is
uniformly bounded. The equation (5.1) implies that

(∂tun)|t=0 = ΠnF 0,n , (5.33)

with
F 0,n

χ := ε2 ∆u0,n + ε2u0,n ∧ ∆u0,n + ε2|∇u0,n|2u0,n

− u0,n ∧ P‖(u0,n) + u0,n ∧
(
u0,n ∧ P‖(u0,n)

)

+ u0,n ∧ h0,n − u0,n ∧ (u0,n ∧ h0,n) .

(5.34)

We know that h0 ∈ H1(R3) and u0 ∈ H3(Ω). This implies that h0,n and u0,n are respectively
uniformly bounded in H1(R3) and H3(Ω), which also implies that u0,n and ∇u0,n are bounded

in L∞(Ω). It follows that F
0,n

χ is uniformly bounded in H1(R3), which implies that Qn(0) is
uniformly bounded. The theorem 4.1 is now a classical consequence of the estimate (5.32).

6 BKW method for Theorem 3.1

The aim of this section is to work out the limit as ε goes to zero of the solution of (1.1). To
perform this result we bring to the fore a small amplitude boundary layer induced by the Neuman
boundary condition. The analysis follows the usual steps: first we construct an approximate
solution by a BKW type analysis of the boundary layer, and second we justify the this asymptotic
expansion, proving at the same time the existence of the exact solution and the asymptotic
expansion.

6.1 Formal asymptotic expansion

We first recall the reduced system we have to study, and we introduce some notations.
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(1)
∂tu

ε − ε2∆uε = ε2uε|∇uε|2 + ε2uε ∧ ∆uε − uε ∧Hε

+uε ∧ (uε ∧Hε) − uε ∧ hε + uε ∧ (uε ∧ hε) in Ω,

(2) ∂nu
ε = 0 on ∂Ω

(3) ∂2
t h

ε − ∆hε = −∂2
t P⊥(ūε) = −∂2

t (ūε + Hε) in R3

(4) div (uε + Hε) = 0 in Ω, div Hε = 0 in cΩ

(5) curl Hε = 0 in R3.

(6.1)

Let us recall that the function ϕ ∈ C∞(Rd,R) satisfies

Ω = {x, ϕ(x) > 0}, ∂Ω = {x, ϕ(x) = 0}

and |∇ϕ(x)| ≡ 1 in a neighbourhood V of ∂Ω. With this definition ∇ϕ(x) define the inward uni-
tary normal at the point x ∈ ∂Ω, and ∂n extends to all R3 as the vector field ∂n ≡ −∑

(∂jϕ) ∂j .
In particular, ∂nϕ = −1 on V.
In the spirit of BKW method, we seek uε on the following form:

uε(t, x) = U 0(t, x,
ϕ(x)

ε
) + εU1(t, x,

ϕ(x)

ε
) + · · · .

We split U i(t, x, z) as U i(t, x) + Ũ i(t, x, z), where U i(t, x, z) = limz→+∞U i(t, x, z). Moreover

we suppose that for any α ∈ N5, lim
z→+∞

∂αŨ i(t, x, z) = 0. To be more precise we distinguish

Hε
int = Hε

|Ω from Hε
ext = Hε

|cΩ
and we write

Hε
int(t, x) = H0

int(t, x,
ϕ(x)

ε
) + εH1

int(t, x,
ϕ(x)

ε
) + · · · ,

and

Hε
ext(t, x) = H0

ext(t, x) + εH1
ext(t, x) + · · · ,

that is there is no boudary layer outside Ω (this fact may be shown by formal expansion but for
sake of simplicity we suppose it a priori).

The transmission conditions on H read

[H · n] = u · n on ∂Ω,

[H ∧ n] = 0 on ∂Ω,
(6.2)

where we denote by [f ] the jump of f across ∂Ω.

In the same way we write

hint = h0
int(t, x,

ϕ(x)

ε
) + εh1

int(t, x,
ϕ(x)

ε
) + . . . ,

and
hext(t, x) = h0

ext(t, x) + εh1
ext(t, x) + . . . ,
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with the transmission condition
[h] = 0 on ∂Ω. (6.3)

Order -2 From equation (3) in (6.1) we deduce that h0
int,zz = 0 that is as lim

z→+∞
h̃0

int(t, x, z) = 0

h̃0
int = 0, (6.4)

Order -1 The boundary condition (2) in (6.1) yields

Ũ0
z = 0 at z = 0, for x ∈ ∂Ω

Now, from (4) in (6.1)

∇ϕ ·
(
H0

int,z + U0
z

)
= 0,

∇ϕ ∧H0
int,z = 0.

¿From these two previous equation, we deduce that

H̃0
int = −(Ũ0 · n)n (6.5)

The equation (3) in (6.1) gives h1
int,zz = 0, and so

h̃1
int = 0. (6.6)

Order 0 We now write (1) in Equation (6.1) at the order 0 and we obtain

∂tU
0 − U0

zz = |U0
z |U0 + U0 ∧ U0

zz + U0 ∧ (H0
int + h0

int)

−U0 ∧ (U0 ∧ (H0
int + h0

int))

(6.7)

and
∂nU

0 + ∂nϕU
1
z = 0 (6.8)

from the boundary conditions. To obtain the equation satisfied by U 0 we perform the limit as
z → +∞ in the above equation, and we find:

∂tU0 = U0 ∧
(
H0

int + h0
int

)
− U0 ∧

(
U0 ∧

(
H0

int + h0
int

))
(6.9)

Substracting the previous equation from (6.7), we obtain as h̃0
int = 0 :

∂tŨ0 − Ũ0
zz =|Ũ0

z |2
(
Ũ0 + U0

)
+

(
Ũ0 + U0

)
∧ U0

zz

+ Ũ0 ∧
(
H0

int + h0
int

)
+ U0 ∧ H̃0

int + Ũ0 ∧ H̃0
int + trilinear terms

¿From (6.5) the solution Ũ0 = 0 solves this equation, and by uniqueness argument one obtain:

Ũ0 = 0, H̃0
int = 0. (6.10)
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¿From (4) in (6.1) we have

div H0
ext = 0,

div
(
H0

int + Ū0
)

+ ∇ϕ ·
(
U1

z + H1
int,z

)
= 0,

curl H0
int + ∇ϕ ∧H1

z = 0,

curl H0
ext = 0.

We can now derive the equation satisfied by H0
ext and H0

int

div H0
ext = 0, curl H0

ext = 0

div
(
H0

int + Ū0
)

= 0, curl H0
int = 0,

The transmission conditions follow from (6.2) as according to (6.10) one has H̃0
int = 0.

H0
ext ∧ n = H0

int ∧ n

H0
ext · n =

(
H0

int + U0
)
· n

¿From these last equation we deduce that:

H0
int = P‖(U0)|Ω

H0
ext = P‖(U0)|cΩ

(6.11)

The equation (3) in (6.1) gives

∂2
t h

0
int − ∆h0

int − h2
int,zz = −∂2

t

(
U0 + H0

int

)

∂2
t h

0
ext − ∆h0

ext = ∂2
t H0

ext

Taking the limit as z goes to infinity, we obtain the equation satisfied by h0:

∂2
t h

0 − ∆h0 = −∂2
t

(
Ū0 + H0

)
,

that is,
∂2

t h
0 − ∆h0 = −∂2

t P⊥(U0) (6.12)

¿From the transmission condition (6.2), one has

∇ϕ ·
(
H1

int,z + U1
z

)

∇ϕ ∧H1
int,z = 0.

These previous equations yields to

H̃1
int = −(Ũ1 · n)n (6.13)

Order 1
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The equation (6.1) gives

∂tU
1 − U1

zz = U0 ∧ U1
zz + U0 ∧

(
H1 + h1

)
+ U1 ∧

(
H0 + h0

)

+ trilinear terms

∂nU
1 + ∂nϕU

2
z = 0.

As already done, we obtain the equation satisfied by U 1 performing the limit as z → +∞, and
we find:

∂tU1 =U0 ∧
(
H1

ext + h1
ext

)
+ U1 ∧

(
H0

ext + h0
ext

)

+ trilinear terms

By difference we can write the equation satisfied by Ũ1:

∂tŨ1 − Ũ1
zz = U0 ∧ Ũ1

zz + U0 ∧ H̃1
int+Ũ

1 ∧
(
H0 + h0

)

+ trilinear terms

¿From (4) in (6.1) we have

div H1
ext = 0, div

(
H1

int + Ū1
)

+ ∇ϕ ·
(
U2

z + H2
int,z

)
= 0,

curl H1
int + ∇ϕ ∧H2

z = 0, curl H1
ext = 0.

So the equation satisfied by H1
int and H1

ext reads

div H1
ext = 0, curl H1

ext = 0,

div
(
H1

int + Ū1
)

= 0, curl H1
int = 0.

The transmission conditions follow from (6.2) as according to (6.13) one has H̃1
int = (Ũ1 · n)n.

H1
ext ∧ n = H1

int ∧ n

H1
ext · n =

(
H1

int + U1
)
· n

¿From these last equations one has

H1
int = P‖(U1)|Ω

H1
ext = P‖(U1)|cΩ

(6.14)

As we will see later, we do not need the expression of h1.

6.2 Existence and regularity of the terms of the ansatz

We assume that that the asumptions of theorem 3.1 are satisfied. Let us recall that T > 0 and
u0, E0,H0 are given such that

u0, E0,H0 ∈ C
(
[0, T ], p−H5(Ω)

)

18



solution on the limit system (3.1).
The boundary condition (6.8) needs to be satisfied exactly on the set {ϕ(x) = z = 0} =
∂Ω × [0,∞[. However, we need to extend it in a convenient way to the larger set Ω × [0,∞[,

since the profile Ũ1(t, x, z) depends on x varying in Ω. and not only in ∂Ω. By assumption
u0 ∈ C

(
[0, T ],H5(Ω)

)
, which implies that

∂nu
0
|∂Ω ∈ C

(
[0, T ],H7/2(∂Ω)

)
.

Let us fix a linear continuous lifting

R : H7/2(∂Ω) −→ H4(Ω)

such that Ru|∂Ω = u. The following proposition concerns the the order one profile Ũ1:

Proposition 6.1 There exists Ũ1 : R+ × Ω × R+ −→ R3 such that :

∂tŨ1 − Ũ1
zz = u0 ∧ Ũ1

zz + u0 ∧ H̃1
int + Ũ1 ∧

(
H0 + h0

)
+ trilinear terms

H̃1
int = −

(
Ũ1 · n

)
n

Ũ1
z = R

(
∂nu0

|∂Ω

)
at z = 0

(6.15)

such that
Ũ1 ∈ C1(0, T ;H4(Ω) ⊗H4(R+)).

Moreover, if ∂nu
0(0, .) |∂Ω = 0, the function Ũ1 can be chosen (in a unique way) such that

Ũ1
|t=0 = 0 .

The reason why introducing the lifting R in the boundary conditions, and not taking the simpler
condition

Ũ1
z |z=0 = ∂nu0 , (6.16)

is because of the last assertion of the proposition 6.1. The point is that, when ∂nu
0(0, .)|∂Ω = 0,

the boundary condition (6.16) is compatible with the null initial condition when the parameter

x belongs to ∂Ω, but is not compatible in general when x ∈ Ω since the relation (∂zŨ1
|z=0)|t=0 =

(∂zŨ1
|t=0)|z=0 does not hold in general, the term on the left being ∂nu

0(0, x) while that on the
right is 0. However, the boundary conditions of proposition 6.15, are compatible with the null

initial value for the wished regularity, and for every x in Ω, since in that case (∂zŨ1
|z=0)|t=0 =

R(0) = 0.

Proof: The proof is the same as for Proposition 4.2 in [10].

7 Proof of Theorem 3.1

Let ψ ∈ C∞
0 (R3,R) such that suppψ ⊂ V verifying ψ ≡ 1 on a neighborhood of ∂Ω. Lastly, take

a function Θ ∈ L∞(R+;H4(Ω)) such that ∂nΘ(t, x) = −∂nŨ1(t, x, 0) on R+ × ∂Ω. We write
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(uε,Hε,hε) as

uε(t, x) = U 0(t, x) + εψ(x)Ũ1

(
t, x,

ϕ(x)

ε

)
+ εΘ(t, x) + εvε

r(t, x),

Hε = P‖(u
ε) = P‖(U

0) + εP‖(Θ) + εψH̃1 + εRε + εP‖(v
ε
r),

hε = h0 + εhε
r,

where Rε = P‖

(
ψŨ1

)
− ψH̃1.

We want to prove the following regularity for the remainder term: for all T there exists C such
that :

‖vε
r‖L∞(0,T ;H1) + ‖εvε

r‖L∞(0,T ;H2) + ‖hε
r‖L∞(0,T ;H1) ≤ C.

In a first step we will write the equations satified by the remainder terms.

7.1 Equation satisfied by the remainder term

In the following, we note:

uapp = U0 + εψ Ũ1 + εΘ,

Happ = P‖(U
0) + εψ H̃1 + εP‖(Θ) + εRε

happ = h0

Some straighforward computations show that vε
r solves:

∂tv
ε
r − ε2∆vε

r = T1 + . . . + T12 + F ε on [0, T ] × Ω,

∂nv
ε
r = 0 on ∂Ω,

vε
r(0, x) = 0 on Ω,

(7.1)

where

T1 = ε4vε
r |∇vε

r |2,

T2 = ε3
(
uapp|∇vε

r |2 + 2vε
r(∇uapp,∇vε

r)
)
,

T3 = ε2
(
vε
r |∇uapp|2 + 2uapp(∇vε

r ,∇uapp)
)
,

T4 = ε2vε
r ∧ ∆uapp + ε2uapp ∧ ∆vε

r + ε3vε
r ∧ ∆vε

r ,

T5 = vε
r ∧ (Happ + happ) + uapp ∧ P‖(v

ε
r) + εvε

r ∧ P‖(v
ε
r),

T6 = uapp ∧ hε
r + εvε

r ∧ hε
r,

T7 = −
(
uapp ∧ (uapp ∧ P‖(v

ε
r)) + uapp ∧ (vε

r ∧ (Happ + happ) + vε
r ∧ (uapp ∧ (Happ + happ)

)
,

T8 = −uapp ∧ (uapp ∧ hε
r)

T9 = −ε
(
vε
r ∧ (vε

r ∧ (Happ + happ)) + vε
r ∧ (uapp ∧ P‖(v

ε
r)) + uapp ∧ (vε

r ∧ P‖(v
ε
r))

)
,

T10 = −ε
(
vε
r ∧ (uapp ∧ hε

r) + uapp ∧ (vε
r ∧ hε

r)
)
,

T11 = −ε2vε
r ∧ (vε

r ∧ P‖(v
ε
r)),

T12 = −ε2vε
r ∧ (vε

r ∧ hε
r).
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The term F ε in (7.1) corresponds to

F ε := −ε−1
(
∂tuapp−ε2∆uapp − ε2uapp ∧ ∆uapp − |∇uapp|2uapp

)

− ε−1
(
− uapp ∧ (Happ + happ) + uapp ∧ (uapp ∧ (Happ + happ))

)

In other way, this term reads

F ε = − ∂tΘ + εA1 + εuapp|∇uapp|2 + εuapp ∧A1 + ε2ΨŨ1 ∧ ∆uapp

+ uapp ∧Rε + εŨ1 ∧H1 + εΘ ∧ Ũ1 − uapp ∧ (uapp ∧Rε)

− εU0 ∧
(
(ũ1 + Θ) ∧ H̃1

)
− ε(ũ1 + Θ) ∧ (U 0 ∧ H̃1)

− ε(Ũ1 + Θ) ∧
(
(Ũ1 + Θ) ∧ P‖(U

0)
)
− ε2(ũ1 + Θ) ∧

(
(Ũ1 + Θ) ∧ H̃1

)
,

with

A1 =∆uapp −
1

ε
ΨŨ1

zz

=∆U0 + ψ∆ϕŨ1
z + 2(∇ψ,∇ϕ)Ũ1

z + 2ψ(∇ϕ,∇Ũ1
z )

+ ε∆ψŨ1 + εψ∆Ũ1 + 2ε∇ψ∇Ũ1 + ε∆Θ.

Furthermore, we obtain that hε
r satisfies:

∂2hε
r

∂t2
− ∆hε

r = −∂
2P⊥(vε

r)

∂t2
(7.2)

7.2 Estimates for the remainder terms

We will estimate the remainder term using the quantity Q defined by:

Q = ‖vε
r‖2

L2 + ‖∇vε
r‖2

L2 + ‖ε∆vε
r‖2

L2 + ‖∂tv
ε
r‖2

L2 + ‖ε∇∂tv
ε
r‖2

L2 + ‖hε
r‖2

L2 + ‖∂th
ε
r‖2

L2 + ‖∇hε
r‖2

L2

We will first obtain estimates on vε
r with the following

Proposition 7.1 For all η > 0 there exists a constant C(η) such that :

1

2

d

dt

(
‖vε

r‖2
L2 + ‖∇vε

r‖2
L2 + ‖ε∂vε

r‖2
L2

)
+ ε2

(
‖∇vε

r‖2
L2 + ‖ε∂vε

r‖2
L2 + ‖ε2∇∆vε

r‖2
L2

)
≤

η‖ε2∇∆vε
r‖2

L2 + C(η)Q + εC(η)Q9.

The term hε
r will satisfy a wave equation and we will obtain an estimate given by the following:

Proposition 7.2
d

dt

(
‖∂th

ε
r‖2

L2 + ‖∇hε
r‖2

L2

)
≤ ‖∂

2vε
r

∂t2
‖L2Q

1

2 (7.3)

Thus we are lead to estimate wε
r := ∂tv

ε
r and we have:

Proposition 7.3 For η > 0 there exists a constant C(η) such that :

d

dt

(
‖wε

r‖2
L2 + ‖ε∇wε

r‖2
L2

)
+ ‖ε∇wε

r‖2
L2 + ‖ε2∆wε

r‖2
L2 ≤ η‖ε2∆wε

r‖2
L2 + η‖ε2∇∆vε

r‖2
L2

+C(η) + C(η)Q + C(η)ε
1

2 Q5

These technical propositions are proved in the last section.
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7.3 End of the proof of Theorem 3.1

We add the inequalities obtained in lemmas 7.1, 7.2 and 7.3, and we obtain that for η > 0 there
exists a constant C(η) such that

1

2

dQ

dt
+ ‖∇vε

r‖2
L2 + ‖ε∆vε

r‖2
L2 + ‖ε2∇∆vε

r‖2
L2 + ‖ε∇wε

r‖2
L2 + ‖ε2∂wε

r‖2
L2 ≤

3η‖ε2∇∆vε
r‖2

L2 + η‖ε2∂wε
r‖2

L2 + C(η) + C(η)Q +C(η)ε
1

2P (Q) + ‖∂
2vε

r

∂t2
‖L2Q

1

2

(7.4)

Using Equation (8.4) we can estimate
∂2vε

r

∂t2
= ∂tw

ε
r and we obtain that :

‖∂tw
ε
r‖L2 ≤ ‖T ′

1 + . . .+ T ′
12 + F ′

ε‖L2 + ‖ε2∆wε
r‖L2 + ε2‖uapp‖L∞‖∆wε

r‖L2

+ε3‖vε
r‖L∞‖∆wε

r‖L2

≤ η‖ε2∇∆vε
r‖L2 + η‖ε2∆wε

r‖L2 + C(η)
(
1 + Q

1

2 + ε
1

2 Q
5

2

)

+C‖ε2∆wε
r‖L2 + ε

1

2 Q
1

2 ‖ε2∆wε
r‖L2

Hence

‖∂
2vε

r

∂t2
‖L2Q

1

2 ≤ C(η) + C(η)Q + C(η)ε
1

2P (Q) + 2η‖ε2∆wε
r‖2

L2 + 2η‖ε2∇∆vε
r‖2

L2 .

thus using this estimate in (7.4)we obtain that :

1

2

dQ

dt
+ ‖∇vε

r‖2
L2 + ‖ε∆vε

r‖2
L2 + ‖ε2∇∆vε

r‖2
L2 + ‖ε∇wε

r‖2
L2 + ‖ε2∂wε

r‖2
L2 ≤

4η‖ε2∇∆vε
r‖2

L2 + 2η‖ε2∂wε
r‖2

L2 + C(η) + C(η)Q + C(η)ε
1

2P (Q)

We fix then η > 0 such that 4η <
1

2
and we obtain that there exists a constant C and a

polynomial function P such that :

dQ

dt
+ ‖∇vε

r‖2
L2 + ‖ε∆vε

r‖2
L2 + ‖ε2∇∆vε

r‖2
L2 + ‖ε∇wε

r‖2
L2 + ‖ε2∂wε

r‖2
L2 ≤ C + CQ + Cε

1

2P (Q)

This achieves the proof with a classical comparison argument.

8 Proof of the estimates

¿From the regularity results concerning the terms of the ansatz obtained in Section 4 we can
estimate the different parameters in equation (7.1). The proof is the same as that of proposition
5.1 in paper [10].

Proposition 8.1 For any p, 1 < p ≤ +∞, and for any T > 0, there exist some constants Cp

such that for any ε > 0 and all t ∈]0, T ],

‖uapp(t, .)‖W 1,p ≤ Cp,

ε‖D2uapp(t, .)‖Lp ≤ Cp.
(8.1)

22



For any p, 1 < p < +∞, and any T > 0, there exist some constants Cp such that for any ε > 0
and all t ∈]0, T ],

ε2‖∇∆uapp(t, .)‖Lp ≤ Cp. (8.2)

For any p, 1 < p ≤ +∞,and for any T > 0, there exist some constants Cp such that for any
ε > 0 and all t ∈]0, T ],

‖Happ(t, .)‖W 1,p ≤ Cp,

‖F ε(t, .)‖W 1,p ≤ Cp.
(8.3)

8.1 Proof of Proposition 7.1

We recall that we denote by Q the following quantity:

Q = ‖vε
r‖2

L2 + ‖∇vε
r‖2

L2 + ‖ε∆vε
r‖2

L2 + ‖∂tv
ε
r‖2

L2 + ‖ε∇∂tv
ε
r‖2

L2 + ‖hε
r‖2

L2 + ‖∂th
ε
r‖2

L2 + ‖∇hε
r‖2

L2

Lemma 8.1 There exists a constant C such that

1

2

d

dt

(
‖vε

r‖2
L2

)
+ ε2‖∇vε

r‖2
L2 ≤ C +CQ + Cε2Q2

Proof. We multiply (7.1) by vε
r and we obtain that

1

2

d

dt

(
‖vε

r‖2
L2

)
+ ε2‖∇vε

r‖2
L2 ≤

∫

Ω
(T1 + . . . + T12 + F ε) vε

r .

We estimate the right hand side of this inequlity on the following way:
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∣∣∣∣
∫

Ω
T1v

ε
r

∣∣∣∣ ≤ ε4‖vε
r‖2

L∞‖∇vε
r‖2

L2 ≤ C ε2‖vε
r‖2

H1 ‖εvε
r‖2

H2 ≤ Cε2Q2

∣∣∣∣
∫

Ω
T2v

ε
r

∣∣∣∣ ≤ Cε2‖vε
r‖

1/2
L2 ‖vε

r‖
3/2
H1 ‖εvε‖H2 + C ε5/2‖vε

r‖L2 ‖vε
r‖

3/2
H1 ‖εvε‖1/2

H2 ≤ Cε2Q3/2

∣∣∣∣
∫

Ω
T3v

ε
3

∣∣∣∣ ≤ ε2‖vr
ε‖2

L2‖∇uapp‖2
L∞ + 2ε2‖uapp‖L∞‖∇uapp‖L∞‖vr

ε‖L2‖∇vr
ε‖L2 ≤ Cε2Q

∣∣∣∣
∫

Ω
T4v

ε
r

∣∣∣∣ ≤ ε2‖vr
ε‖L2‖∇vr

ε‖L2‖∇uapp‖L∞ ≤ Cε2Q

∣∣∣∣
∫

Ω
T5v

ε
r

∣∣∣∣ ≤ ‖uapp‖L∞‖P‖(v
r
ε)‖L2‖vr

ε‖L2 ≤ CQ

∣∣∣∣
∫

Ω
T6v

ε
r

∣∣∣∣ ≤ ‖uapp‖L∞‖hr
ε‖L2‖vr

ε‖L2 ≤ CQ

∣∣∣∣
∫

Ω
T7v

ε
r

∣∣∣∣ ≤ C‖vr
ε‖2

L2 ≤ CQ

∣∣∣∣
∫

Ω
T8v

ε
r

∣∣∣∣ ≤ ‖uapp‖2
L∞‖hr

ε‖L2‖vr
ε‖L2 ≤ CQ

∣∣∣∣
∫

Ω
T9v

ε
r

∣∣∣∣ ≤ Cε‖vr
ε‖

3

2

L2‖vr
ε‖

3

2

H1 ≤ CεQ
3

2

∣∣∣∣
∫

Ω
T10v

ε
r

∣∣∣∣ ≤ ε‖uapp‖L∞‖hr
ε‖L2‖vr

ε‖2
L4 ≤ CεQ

3

2

∣∣∣∣
∫

Ω
T11v

ε
r

∣∣∣∣ = 0

∣∣∣∣
∫

Ω
T12v

ε
r

∣∣∣∣ = 0

∣∣∣∣
∫

Ω
F εvε

r

∣∣∣∣ ≤ ‖F ε‖L2‖vr
ε‖L2 ≤ C + Q

Summing these estimates and remarking that CεQ
3

2 ≤ CQ + Cε2Q2 we obtain the claimed
result.

Lemma 8.2 There exists a constant C such that

1

2

d

dt

(
‖∇vε

r‖2
L2

)
+ ε2‖∆vε

r‖2
L2 ≤ C + CQ + CεQ2

Proof : we multiply (7.1) by ∆vε
r and we obtain that
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1

2

d

dt

(
‖∇vε

r‖2
L2

)
+ ε2‖∆vε

r‖2
L2 ≤

∫

Ω
(T1 + . . . + T12 + F ε) ∆vε

r .

The terms in T1, T2, T3, T4, T5, T7, T8, T9, T11 and T12 are estimates on the following way:

∣∣∣∣
∫

Ω
T1∆v

ε
r

∣∣∣∣ ≤ ε‖vε
r‖H1‖εvε

r‖3
H2 ≤ CεQ2

∣∣∣∣
∫

Ω
T2∆v

ε
r

∣∣∣∣ ≤ C
√
ε‖vε

r‖
1

2

H1‖εvε
r‖

5

2

H2 + Cε
3

2 ‖vε
r‖

3

2

H1‖εvε
r‖

3

2

H2 ≤ Cε
1

2 Q
3

2

∣∣∣∣
∫

Ω
T3∆v

ε
r

∣∣∣∣ ≤ Cε‖vε
r‖H1‖εvε

r‖H2 ≤ CεQ

∣∣∣∣
∫

Ω
T4∆v

ε
r

∣∣∣∣ ≤ ε2‖vε
r‖L6‖∇∆uapp‖L3‖∇vε

r‖L2 ≤ Cε2Q

∣∣∣∣
∫

Ω
T5∆v

ε
r

∣∣∣∣ ≤ C‖vε
r‖2

H1 + Cε
1

2 ‖vε
r‖

5

2

H1‖εvε
r‖

1

2

H2 ≤ CQ + Cε
1

2 Q
3

2

∣∣∣∣
∫

Ω
T7∆v

ε
r

∣∣∣∣ ≤ C‖vε
r‖2

H1 ≤ CQ

∣∣∣∣
∫

Ω
T9∆v

ε
r

∣∣∣∣ ≤ Cε
1

2 ‖vε
r‖

5

2

H1‖εvε
r‖

1

2

H2 + ε‖vε
r‖3

H1 ≤ Cε
1

2 Q
3

2

∣∣∣∣
∫

Ω
T11∆v

ε
r

∣∣∣∣ ≤ ε‖vε
r‖3

H1‖εvε
r‖H2 ≤ CεQ2

∣∣∣∣
∫

Ω
T12∆v

ε
r

∣∣∣∣ ≤ ε‖vε
r‖2

L6‖hε
r‖L6‖εvε

r‖L2 ≤ CεQ2

For the other terms we perform an integration by parts:
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∫

Ω
T6∆v

ε
r = −

∫
(∇uapp ∧ hε

r + uapp ∧∇hε
r) + ε

∫
(uapp ∧ vε

r ∧ (∇hε
r))∇vε

r

∣∣∣∣
∫

Ω
T6∆v

ε
r

∣∣∣∣ ≤ ‖∇uapp‖L∞‖hε
r‖L2‖∇vε

r‖L2 + ‖uapp‖L∞‖∇hε
r‖L2‖∇vε

r‖L2

+ε‖∇hε
r‖L2‖vε

r‖L6‖∇vε
r‖L3

≤ CQ + Cε
1

2 Q
3

2

∫

Ω
T8∆v

ε
r =

∫
(∇uapp ∧ (uapp ∧ hε

r) + uapp ∧ (∇uapp ∧ hε
r) + uapp ∧ (uapp ∧∇hε

r))∇vε
r

∣∣∣∣
∫

Ω
T8∆v

ε
r

∣∣∣∣ ≤ C‖hε
r‖H1‖∇vε

r‖L2 ≤ CQ

∫

Ω
T10∆v

ε
r = −ε

∫
(∇vε

r ∧ (uapp ∧ hε
r) + vε

r ∧ (∇uapp ∧ hε
r) + vε

r ∧ (uapp ∧∇hε
r))∇vε

r

∣∣∣∣
∫

Ω
T10∆v

ε
r

∣∣∣∣ ≤ ε‖∇uapp‖L∞‖hε
r‖L6‖vε

r‖L6‖∇vε
r‖L3 + ε‖uapp‖L∞‖vε

r‖L6‖‖∇hε
r‖L2‖∇vε

r‖L3

≤ Cε
1

2 Q
3

2

∫

Ω
F ε∆vε

r = −
∫

Ω
∇F ε∇vε

r

∣∣∣∣
∫

Ω
F ε∆vε

r

∣∣∣∣ ≤ ‖F ε‖H1‖vε
r‖H1 ≤ C + Q

We add the previous estimates and we obtain the claimed result.

Lemma 8.3 For any fixed η > 0, there exists a constant C(η) such that

1

2

d

dt

(
‖ε∆vε

r‖2
L2

)
+ ‖ε2∇∆vε

r‖2
L2 ≤ η‖ε2∇∆vε

r‖2
L2 + C(η)Q + εC(η)Q9

Proof : we multiply (7.1) by ε2∆2vε
r and we integrate each term by part. We obtain that :

1

2

d

dt

(
‖ε∆vε

r‖2
L2

)
+ ‖ε2∇∆vε

r‖2
L2 ≤ ε2

∫

Ω
∇ (T1 + . . .+ T12 + F ε)∇∆vε

r

with :
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∣∣∣∣ε2
∫

Ω
∇T1∇∆vε

r

∣∣∣∣ ≤ ε‖εvε
r‖3

H2‖ε2∇∆vε
r‖L2 + ε‖vε

r‖
3

4

H1‖εvε
r‖

9

4

H2‖ε2∇∆vε
r‖L2

+ε‖vε
r‖

3

4

H1‖εvε
r‖

3

2

H2‖ε2∇∆vε
r‖

7

4

L2

≤ η

13
‖ε2∇∆vε

r‖2
L2 + C(η)ε2Q3 + C(η)ε8Q9

∣∣∣∣ε2
∫

Ω
∇T2∇∆vε

r

∣∣∣∣ ≤ Cε
3

2 ‖vε
r‖

1

2

H1‖εvε
r‖

3

2

H2‖ε2∇∆vε
r‖L2 + Cε‖εvε

r‖2
H2‖ε2∇∆vε

r‖L2

+Cε
1

2 ‖εvε
r‖

3

2

H2‖ε2∇∆vε
r‖

3

2

L2 + Cε
5

4 ‖vε
r‖

5

2

H1‖εvε
r‖

5

2

H2‖ε2∇∆vε
r‖L2

+Cε2‖εvε
r‖H2‖ε2∇∆vε

r‖L2 + Cε
3

2 ‖εvε
r‖

1

2

H2‖ε2∇∆vε
r‖L2

≤ η

13
‖ε2∇∆vε

r‖2
L2 + C(η)ε2Q3 + C(η)

∣∣∣∣ε2
∫

Ω
∇T3∇∆vε

r

∣∣∣∣ ≤ ε2‖vε
r‖H1‖ε2∇∆vε

r‖L2 + ε‖vε
r‖L2‖ε2∇∆vε

r‖L2

+Cε‖εvε
r‖H2‖ε2∇∆vε

r‖L2 + Cε‖vε
r‖H1‖ε2∇∆vε

r‖L2

≤ η

13
‖ε2∇∆vε

r‖2
L2 + C(η)ε2Q

∣∣∣∣ε2
∫

Ω
∇T4∇∆vε

r

∣∣∣∣ ≤ C‖vε
r‖H1‖ε2∇∆vε

r‖L2 + Cε‖εvε
r‖H2‖ε2∇∆vε

r‖L2

+Cε‖εvε
r‖2

H2‖ε2∇∆vε
r‖L2 + Cε

1

2 ‖εvε
r‖

3

2

H2‖ε2∇∆vε
r‖L2

≤ η

13
‖ε2∇∆vε

r‖2
L2 + CQ +C(η)ε2Q3 + C(η)

∣∣∣∣ε2
∫

Ω
∇T5∇∆vε

r

∣∣∣∣ ≤ C‖vε
r‖H1‖ε2∇∆vε

r‖L2 + Cε
1

2 ‖vε
r‖

3

2

H1‖εvε
r‖

1

2

H2‖ε2∇∆vε
r‖L2

≤ η

13
‖ε2∇∆vε

r‖2
L2 + C(η)Q + C(η)εQ2
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∣∣∣∣ε2
∫

Ω
∇T6∇∆vε

r

∣∣∣∣ ≤ ‖uapp‖L∞‖∇hε
r‖L2‖ε2∇∆vε

r‖L2 + ‖∇uapp‖L3‖hε
r‖L6‖ε2∇∆vε

r‖L2

+ε‖∇vr
ε‖L3‖hε

r‖L6‖ε2∇∆vε
r‖L2 + ε‖vε

r‖L∞‖∇hε
r‖L2‖ε2∇∆vε

r‖L2

≤ ‖ε2∇∆vε
r‖L2‖∇hε

r‖L2

(
K + ε

1

2 ‖vr
ε‖

1

2

H1‖εvε
r‖

1

2

H2

)

≤ η

13
‖ε2∇∆vε

r‖2
L2 + C(η)Q + C(η)εQ2

∣∣∣∣ε2
∫

Ω
∇T7∇∆vε

r

∣∣∣∣ ≤ ‖ε2∇∆vε
r‖L2

(
‖uapp‖2

W 1,∞ + ‖happ‖2
W 1,∞ + ‖Happ‖2

W 1,∞

)
‖vε

r‖H1

≤ η

13
‖ε2∇∆vε

r‖2
L2 + C(η)Q

∣∣∣∣ε2
∫

Ω
∇T8∇∆vε

r

∣∣∣∣ ≤ ‖ε2∇∆vε
r‖L2

(
‖uapp‖2

L∞‖∇hε
r‖L2 + ‖uapp‖2

W 1,∞‖hε
r‖L2

)

≤ η

13
‖ε2∇∆vε

r‖2
L2 + C(η)Q

∣∣∣∣ε2
∫

Ω
∇T9∇∆vε

r

∣∣∣∣ ≤ ‖ε2∇∆vε
r‖L2 (ε‖vε

r‖L6‖∇(happ + Happ)‖L6 + ε‖vε
r‖L6‖∇vε

r‖L3‖happ + Happ‖L∞

+ε‖vε
r‖2

L6‖∇uapp‖L6 + ε‖vε
r‖L6‖∇vε

r‖L3‖uapp‖L∞

)

≤ η

13
‖ε2∇∆vε

r‖2
L2 + C(η)εQ2

∣∣∣∣ε2
∫

Ω
∇T10∇∆vε

r

∣∣∣∣ ≤ ε‖ε2∇∆vε
r‖2

L2‖uapp‖W 1,∞ (‖∇hε
r‖L2‖vε

r‖L∞ + ‖∇vε
r‖L3‖hε

r‖L6 + ‖vε
r‖L6‖hε

r‖L2)

≤ η

13
‖ε2∇∆vε

r‖2
L2 + C(η)εQ

5

2

∣∣∣∣ε2
∫

Ω
∇T11∇∆vε

r

∣∣∣∣ ≤ ε‖ε2∇∆vε
r‖L2ε2‖∇vε

r‖L6‖vε
r‖2

L6

≤ η

13
‖ε2∇∆vε

r‖2
L2 + C(η)ε2Q3

∣∣∣∣ε2
∫

Ω
∇T12∇∆vε

r

∣∣∣∣ ≤ ε‖ε2∇∆vε
r‖L2

(
ε2‖hε

r‖L6‖∇vε
r‖L6‖vε

r‖L6 + ε2‖vε
r‖2

L∞‖∇hε
r‖L2

)

≤ η

13
‖ε2∇∆vε

r‖2
L2 + C(η)ε2Q3
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∣∣∣∣ε2
∫

Ω
∇F ε∇∆vε

r

∣∣∣∣ ≤ ‖ε2∇∆vε
r‖L2‖F ε‖H1

≤ η

13
‖ε2∇∆vε

r‖2
L2 + C(η)

Adding up these estimates we conclude the proof of Proposition 8.3.

Proof of Proposition 7.1:

Adding up the estimates obtained in the Lemmas 8.1, 8.2 and 8.3 we conclude the proof of
Proposition 7.1.

8.2 Proof of Proposition 7.2

We multiply (7.2) by hε
r and integrating on R3, and using that

∥∥∥∥
∂2P⊥(vε

r)

∂t2

∥∥∥∥
L2

=

∥∥∥∥P⊥(
∂2vε

r

∂t2
)

∥∥∥∥
L2

≤
∥∥∥∥
∂2vε

r

∂t2

∥∥∥∥
L2

we conclude the proof of Proposition 7.2.

8.3 Proof of Proposition 7.3

We denote wε
r = ∂tv

ε
r . We derivate (7.1) with respect to t and we obtain that

∂tw
ε
r − ε2∂wε

r = T ′
1 + . . .+ T ′

12 + F ′
ε + ε2uapp ∧ ∆wε

r + ε3vε
r ∧ ∆wε

r (8.4)

where we denote T ′
i = ∂tTi for i 6= 4 and T ′

4 = ∂tT4 −
(
ε2uapp ∧ ∆wε

r + ε3vε
r ∧ ∆wε

r

)
(these two

last term will be treated in a special way as we will see later).

We estimate the L2 norm of each term of the right handside in the following way :

Lemma 8.4 For η > 0 there exists a constant C(η) such that

‖T ′
1 + . . .+ T ′

12 + F ′
ε‖L2 ≤ η

3
‖ε2∇∆vε

r‖L2 +
η

3
‖ε2∆wε

r‖L2 + C(η)
(
1 + Q

1

2 + ε
1

2 Q
5

2

)

Proof : we have the following estimates :
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T ′
1 = ε4

(
wε

r|∇vε
r |2 + 2vε

r∇wε
r∇vε

r

)

‖T ′
1‖L2 ≤ ε4‖wε

r‖L6‖∇vε
r‖2

L6 + 2ε4‖vε
r‖L∞‖∇wε

r‖L3‖∇vε
r‖L6

≤ ε‖εwε
r‖H1‖εvε

r‖2
H2 + ε‖vε

r‖
1

2

H1‖εvε
r‖

3

2

H2‖εwε
r‖

1

2

H1‖ε2∂wε
r‖

1

2

L2 + ε
3

2 ‖vε
r‖

1

2

H1‖εvε
r‖

3

2

H2‖εwε
r‖H1

≤ εQ
3

2 + εQ
5

4 ‖ε2∂wε
r‖

1

2

L2

T ′
2 = ε3

(
∂tuapp|∇vε

r |2 + 2uapp∇vε
r∇wε

r + 2wε
r∇uapp∇vε

r + vε
r∇∂tuapp∇vε

r + evε
r∇uapp∇wε

r

)

‖T ′
2‖L2 ≤ ε3

(
‖∂tuapp‖L6‖∇vε

r‖2
L6 + 2‖uapp‖L∞‖∇vε

r‖L6‖∇wε
r‖L3 + 2‖wε

r‖L6‖∇uapp‖L6‖∇vε
r‖L6

+‖vε
r‖L∞‖∇∂tuapp‖L2‖∇vε

r‖L∞ + 2‖vε
r‖L∞‖∇uapp‖L6‖∇wε

r‖L3)

≤ CεQ + Cε
1

2 Q
3

4 ‖ε2∆wε
r‖

1

2

L2 + CεQ
3

4 ‖ε2∇∆vε
r‖

1

2

L2
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T ′
3 = ε4

(
wε

r|∇uapp|2 + 2vε
r (∇∂tuapp · ∇uapp) + 2∂tuapp∇vε

r∇uapp

+2uapp∇wε
r∇uapp + 2uappv

ε
r∇∂tuapp)

‖T ′
3‖L2 ≤ ε4

(
‖wε

r‖L6‖∇uapp‖2
L6 + 2‖vε

r‖L∞‖∇∂tuapp‖L3‖∇uapp‖L6 + 2‖∂tuapp‖L6‖∇vε
r‖L6‖∇uapp‖L2

+2‖uapp‖L∞‖∇wε
r‖L3‖∇uapp‖L6 + 2‖uapp‖L∞‖vε

r‖L∞‖∇∂tuapp‖L2)

≤ CQ
1

2 + Cε
1

2 Q
1

4 ‖ε2∆wε
r‖

1

2

L2

T ′
4 = ε2 (wε

r ∧ ∆uapp + vε
r ∧ ∆∂tuapp + ∂tuapp ∧ ∆vε

r + εwε
r ∧ ∆vε

r)

‖T ′
4‖L2 ≤ ε2 (‖wε

r‖L∞‖∆uapp‖L2 + ‖vε
r‖L∞‖∆∂tuapp‖L2 + ‖∂tuapp‖L∞‖∆vε

r‖L2 + ε‖wε
r‖L∞‖∆vε

r‖L2)

≤ CεQ
1

2 +Cε
1

2 Q
3

4 ‖ε2∆wε
r‖

1

2

L2 + Cε
1

2 Q

T ′
5 = wε

r ∧Happ + vε
r ∧ ∂tHapp + ∂tuapp ∧ P‖(v

ε
r) + uapp ∧ ∂tP‖(v

ε
r) + εwε

r ∧ P‖(v
ε
r) + εvε

r ∧ ∂tP‖(v
ε
r)

‖T ′
5‖L2 ≤ ‖wε

r‖L2‖Happ‖L∞ + ‖vε
r‖L6‖∂tHapp‖L3 + ‖∂tuapp‖L∞‖vε

r‖L2 + ‖uapp‖L∞‖wε
r‖L2

+ε‖wε
r‖L3‖vε

r‖L6 + ε‖vε
r‖L6‖wε

r‖L3

≤ CQ
1

2 + Cε
1

2 Q

T ′
6 = ∂tuapp ∧ hε

r + uapp ∧ ∂th
ε
r + εwε

r ∧ hε
r + εvε

r ∧ ∂th
ε
r

‖T ′
6‖L2 ≤ ‖∂tuapp‖L∞‖hε

r‖L2 + ‖uapp‖L∞‖∂th
ε
r‖L2 + ε‖wε

r‖L3‖hε
r‖L6 + ε‖vε

r‖L∞‖∂th
ε
r‖L2

≤ CQ
1

2 + ε
1

2 Q

T ′
7 = ∂tuapp ∧ (uapp ∧ P‖(v

ε
r)) + uapp ∧ (∂tuapp ∧ P‖(v

ε
r)) + uapp ∧ (uapp ∧ ∂tP‖(v

ε
r))

+∂tuapp ∧ (vε
r ∧ (happ + Happ)) + uapp ∧ (wε

r ∧ (happ + Happ))

+uapp ∧ (vε
r ∧ ∂t(happ + Happ))
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‖T ′
7‖L2 ≤ ‖∂tuapp‖L∞‖uapp‖L∞‖vε

r‖L2 + ‖uapp‖L∞‖∂tuapp‖L∞‖vε
r‖L2 + ‖uapp‖L∞‖uapp‖L∞‖wε

r‖L2

+‖∂tuapp‖L∞‖vε
r‖L2‖happ + Happ‖L∞ + ‖uapp‖L∞‖wε

r‖L2‖happ + Happ‖L∞

+‖uapp‖L∞‖vε
r‖L2‖∂t(happ + Happ)‖L∞

≤ CQ
1

2

T ′
8 = ∂tuapp ∧ (uapp ∧ hε

r) + uapp ∧ (∂tuapp ∧ hε
r) + uapp ∧ (uapp ∧ ∂th

ε
r)

‖T ′
8‖L2 ≤ 2‖∂tuapp‖L∞‖uapp‖L∞‖hε

r‖L2 + ‖uapp‖2
L∞‖∂th

ε
r‖L2

≤ CQ
1

2

T ′
9 = ε (wε

r ∧ (vε
r ∧ (happ + Happ)) + vε

r ∧ (wε
r ∧ (happ + Happ)) + vε

r ∧ (vε
r ∧ ∂t(happ + Happ))

+wε
r ∧ (uapp ∧ P‖(v

ε
r)) + vε

r ∧ (∂tuapp ∧ P‖(v
ε
r)) + vε

r ∧ (uapp ∧ ∂tP‖(v
ε
r))

+∂tuapp ∧ (vε
r ∧ P‖(v

ε
r)) + uapp ∧ wε

r ∧ P‖(v
ε
r)) + uapp ∧ (vε

r ∧ ∂t(P‖(v
ε
r)))

)

‖T ′
9‖L2 ≤ ε

(
2ε‖wε

r‖L3‖vε
r‖L6‖happ + Happ‖L∞ + ‖vε

r‖2
L6‖∂t(happ + Happ)‖L6

+ 2‖wε
r‖L3‖uapp‖L∞‖vε

r‖L6 + 2‖vε
r‖L3‖∂tuapp‖L∞‖vε

r‖L6 + 2‖vε
r‖L6‖uapp‖L∞‖wε

r‖L3)

≤ Cε
1

2 Q

T ′
10 = ε (wε

r ∧ (uapp ∧ hε
r) + vε

r ∧ (∂tuapp ∧ hε
r) + vε

r ∧ (uapp ∧ ∂th
ε
r)

+ ∂tuapp ∧ (vε
r ∧ hε

r) + uapp ∧ (wε
r ∧ hε

r) + uapp ∧ (vε
r ∧ ∂th

ε
r))

‖T ′
10‖L2 ≤ 2ε (‖wε

r‖L3‖uapp‖L∞‖hε
r‖L6 + ‖vε

r‖L3‖∂tuapp‖L∞‖hε
r‖L6 + ‖vε

r‖L∞‖uapp‖L∞‖∂th
ε
r‖L2)

≤ Cε
1

2 Q

T ′
11 = ε2

(
wε

r ∧ (vε
r ∧ P‖(v

ε
r)) + vε

r ∧ (wε
r ∧ P‖(v

ε
r)) + vε

r ∧ (vε
r ∧ ∂tP‖(v

ε
r))

)

‖T ′
11‖L2 ≤ 3ε2‖wε

r‖L6‖vε
r‖2

L6

≤ CεQ
3

2

T ′
12 = ε2 (wε

r ∧ (vε
r ∧ hε

r) + vε
r ∧ (wε

r ∧ hε
r) + vε

r ∧ (vε
r ∧ ∂th

ε
r))

‖T ′
12‖L2 ≤ ε2 (2‖wε

r‖L6‖vε
r‖L6‖h‖L2 + ‖vε

r‖L∞‖∂th
ε
r‖L2)

≤ CεQ
3

2

In addition we know that ‖∂tF
ε‖L2 ≤ C.
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Adding up these estimates, and using Young inequality for the terms ‖ε2∆wε
r‖L2 and ‖ε2∇∆vε

r‖L2 ,
we conclude the proof of Lemma 8.4.

Proof of Proposition 7.3

Multiplying (8.4) by wε
r , and using Proposition 8.4 we obtain that

d

dt
‖wε

r‖2
L2 + ‖ε∇wε

r‖2
L2 ≤

(
η
3‖ε2∇∆vε

r‖L2 + η
3‖ε2∆wε

r‖L2 + C(η)
(
1 + Q

1

2 + ε
1

2 Q
5

2

))
‖wε

r‖L2

+ε2‖uapp‖L∞‖∆wε
r‖L2‖wε

r‖L2 + ε3‖vε
r‖L6‖wε

r‖L3‖∆wε
r‖L2

≤ C(η) + C(η)Q + 2η‖ε2∂wε
r‖2

L2 + 2η‖ε2∇∆vε
r‖2

L2 + ε
1

2 Q3

We multiply then (8.4) by ε2∆wε
r, we remark that :

∫

Ω

(
ε2uapp ∧ ∆wε

r + ε3vε
r ∧ ∆wε

r

)
∆wε

r = 0.

Thus we obtain that :

d

dt
‖ε∇wε

r‖2
L2 + ‖ε2∆wε

r‖2
L2 ≤ η

3
‖ε2∇∆vε

r‖L2‖ε2∆wε
r‖L2 +

η

3
‖ε2∆wε

r‖2
L2

+C(η)
(
1 + Q

1

2 + ε
1

2 Q
5

2

)
‖ε2∆wε

r‖L2

≤ η

3
‖ε2∆wε

r‖2
L2 +

η

3
‖ε2∇∆vε

r‖2
L2 + C(η)Q + C(η)ε

1

2 Q5

We add up these two inequalities and that concludes the proof of Proposition 7.3.
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[18] L. Hörmander, The analysis of linear Partial Differential Operators III, Springer-Verlag,
1985.

[19] J.-L. Joly, G. Métivier, J. Rauch, Global solutions to Maxwell equations in a ferromagnetic
medium, Ann. Henri Poincaré 1, (2000), 307-340.
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