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1 Introduction

Many economic models deal explicitly with situations in which economic agents
operate through time in deterministic or stochastic environments. The intro-
duction of dynamics inevitably directed the study of formal economic models in
the context of recursive dynamic programs. Recursive methods have proven to
be important tools for analyzing theoretical models with equilibrium outcomes
described by complex dynamics.

A key ingredient of the recursive approach involves the analysis of the asso-
ciated Bellman equation. If the value function solves the Bellman equation, the
associated policy function characterizes the paths that are optimal with respect
to the original program. An important step amounts to show that Bellman’s
maximizing operator has a unique solution in a certain class of functions.

A systematic treatment of the recursive approach can be found in Stokey,
Lucas and Prescott 1989. However, with few exceptions their analysis is based
on contraction techniques and therefore it is restricted to apply in models with
bounded return functions. The approach proposed by Boyd (1990), Becker
and Boyd (1997) and further developed by Durán (2000) resolves partially the
problem of unbounded returns, since it covers models with bounded from below
but unbounded from above return functions. The argument relies on relaxing
boundedness by considering functions that obey a growth condition. It is in
this new space of functions that they obtain the contraction property (weighted
contraction property) for the maximizing operator. Another very interesting
approach has been proposed by Streufert (1990). His idea is based on the no-
tion of biconvergence, a limiting condition ensuring that returns of any feasible
path are sufficiently discounted from above (upper convergence) and sufficiently
discounted from below (lower convergence).

The common critique to the contraction technique in the unbounded case
is based on the following two points: (i) first it is not always obvious to find a
weighted norm to obtain the contraction property of the maximizing operator,
and (ii) the introduction of a weighted norm implies existence and uniqueness
of the solution in a certain space of continuous functions.

The shortcomings of the weighted approach become more serious when we
consider programs with unbounded from below returns, since in those cases
−∞ is a solution to the Bellman equation. This is also a problem in Streufert
(1990), since in cases where a one-stage return of −∞ is admissible, the return
function fails to be lower convergent.

In a first attempt to address the problem of unbounded returns, Alvarez
and Stokey (1998) study a wide class of homogeneous problems. They show
that the principle of optimality applies to problems of this sort. Their method
of proof is based on finding restrictions that bound the growth rates of state
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variables from above along any feasible path, and, for the case where the utility
may attain −∞, from below along at least one feasible path. In their analysis
both decreasing and increasing returns technologies are excluded.

A recent approach to deal with unbounded returns has been proposed by Le
Van and Morhaim (2002). Their argument does not depend on a contraction
mapping technique but rather builds on important insights derived from the
assumptions imposed on the return functions. The method proposed exploits
the well known fact that the value function is a solution to the Bellman equation
(Stokey et al. 1989). Under general conditions on technology, they are able to
show that the value function is upper semicontinuous and satisfies a kind of
transversality condition. Restricting subsequently themselves to the space of
functions satisfying these two properties, they prove that the value function
is the unique solution to Bellman functional equation. The results in Le Van
and Morhaim have been further generalized by Le Van and Vailakis (2005)
to deal with problems with recursive but not necessarily additively separable
preferences.

In a recent paper, Rincón-Zapatero and Rodŕıguez-Palmero (2003) recon-
sidered the contraction approach. But instead of considering the usual normed
space of functions in which the Bellman operator fails to be a contraction, they
focus on metric spaces which are different depending on the characteristics of
the problem. The underlying idea is based on the fact that one can choose
an appropriate metric in the space of continuous functions to make use of the
right properties of the operators and then apply a contraction argument1. The
advantage of the metric approach is that in some cases it implies existence and
uniqueness of the solution to the Bellman equation in the whole class of con-
tinuous functions. This is the case when returns are bounded from below and
when the discounting factor satisfies suitable bounds. However, in models with
returns unbounded from below, the approach limits its scope, since in those
cases uniqueness can only be guaranteed in the appropriate space of functions
that satisfy a kind of transversality condition as was first argued by Le Van and
Morhaim (2002).

Our paper builds on the recent contributions of Le Van-Morhaim and Rincón-
Zapatero and Rodŕıguez-Palmero. Borrowing elements from these two papers
we propose a synthetic frame to the study of dynamic programming prob-
lems with time-additively separable objectives and bounded or unbounded (be-
low/above) returns. The method proposed exploits an emerging class of meth-
ods, called monotone map methods, pioneered in the work of Krasnosel’skii
(1964) and Krasnosel’skii-Zabreiko (1984). The approach is technically simple

1The proposed method in Rincón-Zapatero and Rodŕıguez-Palmero (2003) is based on the

ingenious idea of constructing a special metric space. Unfortunately, a crucial step in their

analysis is not correct. We clarify this point later on.
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and intuitive. It is derived from geometric ideas related to the study of fixed
points for monotone concave operators defined on partially ordered spaces.

Qualitative geometric methods for the investigation of solutions to nonlinear
equations are not new in economics. Previous applications can be found among
others in Coleman (1991, 2000), Kennan (2001), Datta, Mirman and Reffett
(2002), Datta, Mirman, Morand and Reffett (2002) and Morand and Reffett
(2003). The advantage of these methods is that they are constructive and can
therefore be used to translate conditions in existence theorems into conditions
which entail the applicability of various approximation methods.

In order to explain the underlying idea of our approach we follow Kras-
nosel’skii and Zabreiko (1984, section 6.46). Consider the scalar equation
x = φ(x), where φ(x) is a continuous and non-negative function on [0,∞).
Uniqueness of a positive solution is guaranteed if the function φ is strictly con-
cave. In this case φ satisfies φ(tx) > tφ(x) for x > 0 and 0 < t < 1. The
description in terms of those inequalities is very useful since it generalizes in a
natural way to monotone concave operators defined on partially ordered spaces.
It turns out that equations with concave operators defined on partially ordered
spaces show a behavior which is rather similar to scalar equations.

The paper is organized as follows. Section 2 presents a fixed point theo-
rem that is central in our analysis. We state the theorem in an abstract way,
independently of the problem we study, since we believe that it may have a
broader scope and be applied to different situations. Concerning the unique-
ness of a fixed point our results are related to the ones found in Krasnosel’skii
and Zabreiko (1984, Theorems 46.1, 46.2 and 49.2). But their results (applied
to abstract concave operators defined on a cone of a Banach space) are more
difficult and hold under restrictions that we do not need for our analysis. The
existence result is closely related to Knaster-Tarski Theorem. Section 3 contains
our main results. Taking as a starting point the usual form of the maximiz-
ing operator we first define an alternative maximizing operator, defined on the
positive cone of continuous functions, that has a multiplicative form. By con-
struction, the fixed points of the new multiplicative Bellman operator coincide
with the fixed points of the original Bellman operator. We subsequently show
how the aforementioned fixed point theorem can be applied to address the issue
of existence and uniqueness of solutions to the Bellman operator. This is the
subject of subsections 3.1 and 3.2. In terms of the assumptions we impose, we
follow closely Le Van and Morhaim (2002) and Rincón-Zapatero and Rodŕıguez-
Palmero (2003). Our purpose is to show how the theorem can be used to provide
a unified framework that encompasses all the results established by these two
papers. An additional advantage of our approach is that all proofs are worked
out with simple and standard mathematical arguments. Although we do not
provide explicit examples, it should be clear that all applications found in Le
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Van and Morhaim (2002) and Rincón-Zapatero and Rodŕıguez-Palmero (2003)
are particular cases of our setting.

2 A Fixed Point Theorem

Let Y be a topological space. Denote by P+(Y ) the space of functions over Y
with images on R+. Consider the following subset of P+(Y ):

SB+(Y ) =
{
f ∈ P+(Y ) : λf := inf

x∈Y
f(x) > 0 and µf := sup

x∈Y
f(x) <∞

}
.

Theorem 2.1. [Uniqueness] Let T be an increasing operator from P+(Y ) into
P+(Y ) that satisfies the following property:

(P.1) ∀α ∈ (0, 1], ∃γ ∈ (α, 1] such that T (αf) ≥ γTf, ∀f ∈ P+(Y ).

We have the following results:
(i) Property (P.1) is equivalent to property:

(P.2) ∀α > 1, ∃γ ∈ [1, α) such that T (αf) ≤ γTf, ∀f ∈ P+(Y ).

(ii) Given any α ∈ (0, 1) (respectively α > 1) and any function f ∈ P+(Y )
the operator T has at most one fixed point f̂ in the interval [αf, f ] (respectively
in [f, αf ]).

(iii) Let f̂ be a fixed point of the operator T. Assume that there exist a
function f ∈ P+(Y ) and two constants αf ∈ (0, 1), α′f > 1 such that αff ≤ f̂ ≤
α′ff . Then, Tnf → f̂ uniformly on any set K ⊂ Y such that supx∈K f̂(x) <∞.

In particular, if supx∈Y f̂(x) <∞, then Tnf → f̂ uniformly on Y .
(iv) Let A(Y ) be a subset of SB+(Y ). The operator T has at most one fixed

point, denoted f̂ , on the set A(Y ). In addition, for any function f ∈ A(Y ),
Tnf → f̂ uniformly as n→ +∞.

Proof. (i) Let f ∈ P+(Y ) and α > 1. Define the function g : x ∈ Y → αf(x).
Since f = 1

αg, property (P.1) implies that there exists γ ∈ [1, α) such that

T

(
1
α
g

)
≥ 1
γ
T (g).

It follows that T (αf) ≤ γT (f). By the same way we prove easily the converse.
(ii) Let α ∈ (0, 1), f ∈ P+(Y ) and f̂1, f̂2 ∈ P+(Y ) be two fixed points of T

in the interval [αf, f ]. In this case, for any x ∈ Y we have:

αf(x) ≤ f̂1(x) ≤ f(x)

αf(x) ≤ f̂2(x) ≤ f(x).

4



It follows that αf̂1 ≤ f̂2 and αf̂2 ≤ f̂1. Let α∗ = sup{κ > 0 : κf̂1(x) ≤ f̂2(x),
∀x ∈ Y } and α∗∗ = sup{κ > 0 : κf̂2(x) ≤ f̂1(x), ∀x ∈ Y }. If α∗ = α∗∗ = 1, it
follows directly that f̂1 = f̂2. If one of them, say α∗ ∈ (0, 1), then f̂2 = T f̂2 ≥
T (α∗f̂1) ≥ γf̂1 with γ ∈ (α∗, 1]: a contradiction to the definition of α∗. The
uniqueness result in [f, αf ] with α > 1 follows in a similar way.

(iii) If f̂(x) = 0 for any x ∈ Y the claim is true. Assume that there exists
x ∈ Y such that f̂(x) > 0. By hypothesis we have:

1
α′f
f̂ ≤ f ≤ 1

αf
f̂ .

Define the real-valued functions:

φ(t) = max{τ : T (tf̂) ≥ τ f̂} and ψ(t) = min{τ : T (tf̂) ≤ τ f̂}.

Observe that both φ and ψ are non-decreasing. We show that both functions
are continuous. Observe that when f̂(x) > 0 the monotonicity of T implies that
for any t ≥ 1 :

T (tf̂)(x)

f̂(x)
≥ 1.

Moreover, from property (P.1), it follows that for any t < 1 there exists γ(t) ∈
(t, 1] such that:

T (tf̂)(x)

f̂(x)
≥ γ(t) > t.

Observe that:

φ(t) = inf
{x∈Y : bf(x)>0}

T (tf̂)(x)

f̂(x)
.

Let {tn}n∈N be a decreasing sequence such that tn → t. Since φ is non-
decreasing we have:

lim
n→∞

φ(tn) ≥ φ(t).

For any x ∈ Y such that f̂(x) > 0, property (P.2) implies that:

T (tnf̂)(x)

f̂(x)
=
T ( tnt tf̂)(x)

f̂(x)
≤ tn

t

T
(
tf̂

)
(x)

f̂(x)
.

But in this case we have:
φ(tn) ≤

tn
t
φ(t).

Taking the limits as n→∞ we obtain:

lim
n→∞

φ(tn) ≤ φ(t).
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A similar argument can apply in case where {tn}n is an increasing convergent
sequence. It follows that for any arbitrary sequence {tn}n∈N such that tn → t

we have:
lim
n→∞

φ(tn) = φ(t).

The continuity of function ψ can be established in a similar way.
It is obvious that 1 > φ(t) > t, for t < 1 and 1 < ψ(t) < t, for t > 1.

Furthermore, φ(1) = ψ(1) = 1.
Let t0 = 1

α′f
and s0 = 1

αf
. Consider the sequences {tn}n∈N, {sn}n∈N defined

in the following way:

tn = φ(tn−1) and sn = ψ(sn−1).

Observe that tn → 1 and sn → 1. Moreover, since t0f̂ ≤ f ≤ s0f̂ , for any n > 1
we have:

tnf̂ ≤ Tnf ≤ snf̂ .

Let K ⊂ Y. For any x ∈ K, the last inequalities imply that for any n > 1:

∣∣∣Tnf(x)− f̂(x)
∣∣∣ ≤ max{(sn − 1), (1− tn)}f̂(x)

≤ max{(sn − 1), (1− tn)} sup
x∈K

f̂(x).

This proves the claim.
(iv) Let f ∈ A(Y ) ⊆ SB+(Y ). We first show that T has at most one fixed

point f̂ in the interval [0, f ]. Assume that f̂1, f̂2 ∈ A(Y ) are two fixed points of
T in the interval [0, f ]. For any x ∈ Y we have:

f̂1(x)
f(x)

≥
λ bf1
µf

= α bf1
f̂2(x)
f(x)

≥
λ bf2
µf

= α bf2 .
Let α = min{α bf1 , α bf2}. Observe that α ∈ (0, 1) and that the following inequal-
ities are true:

αf ≤ f̂1 ≤ f

αf ≤ f̂2 ≤ f .

A direct application of claim (ii) implies that f̂1 = f̂2.

Assume now that f̂1, f̂2 ∈ A(Y ) are two fixed points of T on A(Y ). Define
the function f : x ∈ Y → f(x) = max{f̂1(x), f̂2(x)}. Observe that f ∈ A(Y )
and that:

0 ≤ f̂1 ≤ f

0 ≤ f̂2 ≤ f .
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Given that T has at most one fixed point f̂ in the interval [0, f ], it follows that
f̂1 = f̂2.. Let f ∈ A(Y ) and f̂ be the fixed point of T on A(Y ). There always
exist αf ∈ (0, 1) and α′f > 1 such that αff ≤ f̂ ≤ α′ff. A direct application of

claim (iii) implies that Tnf → f̂ uniformly as n→ +∞.

The results in Theorem 2.1 do not imply that a fixed point of the operator
T exists. We show below that a fixed point exists provided that the operator T
satisfies some additional conditions. Working in this direction, we assume that
the operator T satisfies the following property:

(P.3) If {fn}n∈N is a sequence in P+(Y ) converging to f ∈ P+(Y ),

then for all x ∈ Y, lim inf
n

Tfn(x) ≥ Tf(x).

Consider the following subset of P+(Y ):

B+(Y ) = {f ∈ P+(Y ) : f is bounded from above on any compact set of Y }.

We have the following result.

Theorem 2.2. [Existence] Let T be a monotone operator mapping P+(Y ) into
P+(Y ) that satisfies properties (P.1) and (P.3).

(i) Assume there exists f1 ∈ P+(Y ) such that f1 ≤ Tf1. If the sequence
{Tnf1}n∈N has a pointwise limit f̂ ∈ P+(Y ), then f̂ is a fixed point of T on
P+(Y ).

(ii) Assume there exist two functions f1, f2 ∈ B+(Y ) such that:

f1(x) ≤ Tf1(x) ≤ Tf2(x) ≤ f2(x), ∀x ∈ Y.

Then, the pointwise limit of {Tnf1}n∈N exists, belongs to B+(Y ) and is a fixed
point of T on B+(Y ).

Proof. (i) Since Tnf1 ≤ f̂ , it follows that f̂ ≤ T f̂ . The operator satisfies
property (P.3), in which case, for any x ∈ Y we have:

f̂(x) = lim
n

inf T (Tnf1)(x) ≥ T f̂(x).

Therefore, we conclude that f̂ = T f̂ .

(ii) For any n ∈ N, for any x ∈ Y, we have:

f1(x) ≤ Tnf1(x) ≤ Tnf2(x) ≤ f2(x).

The sequence {Tnf1(x)}n∈N is non-decreasing and bounded, in which case
f̂(x) = limn T

nf1(x) exists. Moreover, f̂(x) ≤ f2(x) for any x ∈ Y, so f̂ ∈
B+(Y ). Apply statement (i) to conclude that f̂ = T f̂ .

7



3 Applications to Dynamic Programming

Our purpose is to study a general class of dynamic programming problems
stated in the following reduced form:

V (x0) = sup
+∞∑
t=0

βtF (xt, xt+1)

s.t. xt+1 ∈ Γ(xt), ∀t
x0 ∈ X is given,

(1)

where F : graphΓ → R ∪ {−∞} is the return function, β ∈ (0, 1) is the dis-
counting factor, X is a topological space, Γ : X → 2X is a technological corre-
spondence and V is the value function. The following assumptions are typically
made in this context.

Assumption (H1). Γ is a continuous, nonempty, compact-valued correspon-
dence.

Assumption (H2). The function F is continuous at any (x, y) ∈ graphΓ such
that F (x, y) > −∞. Moreover, if F (x, y) = −∞ and lim

n
(xn, yn) = (x, y), then

lim
n
F (xn, yn) = −∞.

We are interested in the relation between the value function V and the
solutions to the Bellman operator:

Tf(x) = sup{F (x, y) + βf(y) : y ∈ Γ(x)}. (2)

We would like the value function V to be a fixed point of the Bellman
operator, and conversely, the Bellman operator T to have a unique fixed point
that coincides with the value function V . We proceed by introducing some
notation required to study this relation.

Let

Π(x0) = {x̃ = (x1, ..., xt, ...) ∈ X∞ : xt+1 ∈ Γ(xt),∀t ≥ 0}

denote the set of feasible sequences from x0.

Lemma 3.1. Assume (H1). Then:
(i) For any x0 ∈ X, Π(x0) is compact for the product topology.
(ii) The correspondence Π is continuous for the product topology.

Proof. See Appendix.
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Remark 3.1. Le Van and Morhaim (2002) provide a proof of statement (ii) in
Lemma 3.1 imposing additional restrictions on the technological correspondence
Γ. It appears that Assumption (H1) is sufficient to prove the claim2.

Let

u : x̃ ∈ Π(x0) → u(x̃) =
+∞∑
t=0

βtF (xt, xt+1)

denote the total discounted returns. We subsequently define the set:

Π0(x0) =

{
x̃ ∈ Π(x0) : u(x̃) =

+∞∑
t=0

βtF (xt, xt+1) exists and u(x̃) > −∞

}
.

of feasible programs from x0 consistent with bounded from below total dis-
counted utility.

Consider the following maximization problem:
V̂ (x0) = sup e

+∞P
t=0

βtF (xt,xt+1)

s.t. xt+1 ∈ Γ(xt), ∀t
x0 ∈ X.

(3)

Observe that V̂ = eV . The Bellman operator associated with problem (3) has
now the following multiplicative form:

If f ∈ P+(X) :

T̂ f(x) = sup{eF (x,y)(f(y))β : y ∈ Γ(x), x ∈ X}. (4)

Let C+(X) denote the set of continuous and non-negative functions, i.e.

C+(X) = {f(x) ≥ 0 : f is continuous on X}.

If f ∈ C+(X) then:

T̂ f(x) = max{eF (x,y)(f(y))β : y ∈ Γ(x), x ∈ X}. (5)

The operator T̂ is well defined on P+(X) (respectively on C+(X)), and given
assumption (H1)-(H2) we have that T̂ maps P+(X) (respectively C+(X))
into P+(X) (respectively C+(X)). In what follows we study the connection
between the solutions to the multiplicative Bellman equation, T̂ f = f and the
value function V̂ . In particular, we apply Theorems 2.1 and 2.2 to show that
under suitable conditions the operator T̂ has a unique fixed point that coincides
with the value function V̂ . By construction, the solutions of the multiplicative
Bellman equation are related to the solutions of the original Bellman equation.
Our first step amounts to show that the operator T̂ satisfies properties (P.1)
and (P.3).

2We are grateful to V. Filipe Martins-da-Rocha for bringing this point to our attention.
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Lemma 3.2. Under Assumptions (H1)-(H2), the operator T̂ satisfies proper-
ties (P.1) and (P.3).

Proof. See Appendix.

The following proposition is crucial for our analysis. It is stated here for
further reference.

Proposition 3.1. Let Assumptions (H1)-(H2) be satisfied. Assume further
that there exist two functions f1, f2 in B+(X) that satisfy:

(a) f1 ≤ T̂ f1 ≤ T̂ f2 ≤ f2.

(b) f2(x0) = 0 for any x0 ∈ X such that Π0(x0) = ∅.
(c) For any x0 ∈ X, for any x̃ ∈ Π0(x0),

lim
T→+∞

(f1(xT ))β
T

= lim
T→+∞

(f2(xT ))β
T

= 1.

Then:
(i) The operator T̂ has a unique fixed point f̂ on the set [f1, f2]. Moreover,

for any f ∈ [f1, f2] we have T̂nf → f̂ pointwise.
(ii) Suppose that condition (c) is strengthened in the following way:

(c′) For any compact set K ⊆ X, for any ε > 0, there exists N(K, ε),
such that, for any x0 ∈ K, for any x̃ ∈ Π0(x0), for any T ≥ N(K, ε),

(1− ε) ≤ (fi(xT ))β
T ≤ (1 + ε), i = 1, 2.

The operator T̂ has a unique fixed point f̂ on the set [f1, f2]. In addition, f̂ is the
uniform limit on any compact set of any sequence {T̂nf}n∈N with f ∈ [f1, f2].
Moreover, if [f1, f2] contains a continuous function then f̂ is continuous.

Proof. See Appendix.

3.1 Returns bounded from below

In this section we deal with problems where both the total discounted utility
u and the period return function F are bounded from below. In what follows
Assumption (H2) is replaced by:

Assumption (H2′). The return function F : graphΓ → R is continuous.

Given a subset K of X denote

Γ(K) = ∪x∈KΓ(x).

We impose the following restrictions on the topological space X and the tech-
nological correspondence Γ.
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Assumption (H3). X = ∪jKj where {Kj}j∈N is a countable increasing se-
quence of nonempty and compact subsets of X such that Γ(Kj) ⊆ Kj , ∀j ∈ N.

For any j ∈ N define:

λj = min
x∈Kj

{ min
y∈Γ(x)

F (x, y)} and µj = max
x∈Kj

{ max
y∈Γ(x)

F (x, y)}.

Observe that the sequence {λj}j∈N is non-increasing while the sequence {µj}j∈N

is non-decreasing. Denote

C++(X) = {f(x) > 0 : f is continuous on X}.

Theorem 3.1. Assume (H1)-(H2′)-(H3). Let

A(X) = {f ∈ B+(X) : ∀j ∈ N, ∀x ∈ Kj , e
λj

(1−β) ≤ f(x) ≤ e
µj

(1−β) }.

Then, T̂ has a unique fixed point f̂ on A(X) which is continuous and coincides
with the value function V̂ . In particular, f̂ is the unique fixed of T̂ on the set
C++(X). In addition, for any f ∈ A(X), T̂nf → V̂ uniformly on any compact
set of X.

Proof. Define the functions f1 and f2 as follows:

x ∈ K1, f1(x) = e
λ1

(1−β) , f2(x) = e
µ1

(1−β)

x ∈ K2\K1, f1(x) = e
λ2

(1−β) , f2(x) = e
µ2

(1−β) .

x ∈ Kj\Kj−1, f1(x) = e
λj

(1−β) , f2(x) = e
µj

(1−β) and so on.

The functions f1 and f2 belong to A(X). Moreover, we have:

f1 ≤ T̂ (f1) ≤ T̂ (f2) ≤ f2.

It is easy to check that T̂ maps A(X) into A(X). We claim that condition (c′)
in Proposition 3.1 is satisfied. Fix some j ∈ N. For any x0 ∈ Kj and any x̃

∈ Π(x0) we have that xt ∈ Kj , ∀t. It follows that for any ε > 0, there exists N,
such that, for any T ≥ N, for any x0 ∈ Kj , for any x̃ ∈ Π(x0) we have:

1− ε ≤ (f1(xT ))β
T ≤ 1 + ε.

Similarly, we have:
1− ε ≤ (f2(xT ))β

T ≤ 1 + ε.

From Proposition 3.1, T̂ has a unique fixed point f̂ in [f1, f2]. Moreover, f̂ is
the uniform limit on any compact set K of {T̂nf}n∈N with f ∈ A(X). Let α
be any constant that belongs to the open interval (λ1, µ1). Observe that the

11



function g, defined by g(x) = eα for any x ∈ X, is continuous and belongs to
[f1, f2]. This implies that f̂ is continuous.

The value function V̂ is a fixed point of the Bellman operator T̂ (see The-
orem 4.2 in Stokey et al.). It is easy to verify that V̂ belongs to A(X) and
therefore it coincides with f̂ . In general, if ĥ is a fixed point of the operator T̂
on the set C++(X), then ĥ belongs to A(X) and therefore it coincides with V̂ .
This shows that V̂ is the unique fixed point of T̂ on the set C++(X).

Remark 3.2. (i) Rincón-Zapatero and Rodŕıguez-Palmero (2003) obtain the
same result (Theorem 3 in the corresponding paper). However, following their
approach may be problematic since the proof of their theorem relies on a result
which is not correct3. Moreover, following our approach, the continuity of the
value function V̂ comes as a consequence of being the unique solution to the
multiplicative Bellman equation.

(ii) Observe that uniqueness is implied for the whole space C++(X). The
implication for the Bellman operator T is that uniqueness is implied for the
space of functions:

A(X) = {f ∈ C(X) : f(x) > −∞ for any x ∈ X}.

(iii) The critical step in the proof relies on the fact that the operator T̂ maps
[f1, f2] into [f1, f2]. In that process, assuming Γ(Kj) ⊆ Kj for any j ∈ N plays
a crucial role and simultaneously allows us to establish uniqueness in the class
of continuous functions. However, there are situations where the assumption
Γ(Kj) ⊆ Kj does not hold. The next step is to identify alternative restrictions
that replace this rather restrictive assumption. An important observation is
that under Assumption (H1) it is always possible to find an increasing sequence
{Kj}j∈N of compact sets covering X such that Γ(Kj) ⊆ Kj+1, ∀j ∈ N. Along
this line we replace (H3) by the following assumption.

Denote
||ψ||Kj = max

x∈Kj

|ψ(x)|

where ψ(x) = max
y∈Γ(x)

F (x, y).

Assumption (H3′). X = ∪jKj where {Kj}j∈N is a countable increasing se-
quence of nonempty, compact subsets of X such that Γ(Kj) ⊆ Kj+1, ∀j ∈ N
and

+∞∑
j=1

βj ||ψ||Kj = M < +∞.

3The proof of Theorem 3 in Rincón-Zapatero and Rodŕıguez-Palmero (2003) makes use of

Theorem 1 which in turn relies on Proposition (1b). However, Proposition (1b) is not correct.

Refer to Matkowski and Nowak (2008) for a counterexample.
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Remark 3.3. (i) Assume that X = Rn
+ and that y ∈ Γ(x) ⇒ ‖y‖ ≤ γ ‖x‖ with

γ > 1 (this is assumed in Le Van and Morhaim (2002)). In this case, one can
construct a sequence {Kj}j∈N satisfying the restrictions imposed in Assumption
(H3′) by simply letting Kj = B(0, γjj) ∩X.

Given any j ∈ N define:

mj =
+∞∑
l=j

βl−j ||ψ||Kl
.

Observe that {mj}∞j=1 is a non-decreasing sequence. The following result is a
natural application of Proposition 3.1 to the multiplicative Bellman operator
in cases where Assumption (H3′) is satisfied.

Theorem 3.2. Assume (H1)-(H2′)-(H3′). Let

A(X) = {f ∈ B+(X) : ∀Kj , ∀x ∈ Kj , e
−mj ≤ f(x) ≤ emj}.

Then, T̂ has a unique fixed point f̂ on A(X) which is continuous and coincides
with the value function V̂ . In addition, for any f ∈ A(X), T̂nf → V̂ uniformly
on any compact set of X.

Proof. Define the functions f1 and f2 as follows:

x ∈ K1, f1(x) = e−m1 , f2(x) = em1

x ∈ K2\K1, f1(x) = e−m2 , f2(x) = em2 .

x ∈ Kj\Kj−1, f1(x) = e−mj , f2(x) = emj and so on.

The functions f1 and f2 belong to A(X). Moreover, we have:

f1 ≤ T̂ (f1) ≤ T̂ (f2) ≤ f2.

It is easy to check that T̂ maps A(X) into A(X). We claim that condition (c′)
in Proposition 3.1 is satisfied. Fix some j ∈ N. For any x0 ∈ Kj , for any x̃

∈ Π(x0) we have:

e−β
Tmj+T ≤ (f1(xT ))β

T ≤ eβ
Tmj+T .

Recall that βTmj+T → 0 when T → +∞. It follows that for any ε > 0, there
exists N, such that, for any T ≥ N, for any x0 ∈ Kj , for any x̃ ∈ Π(x0) we
have:

1− ε ≤ (f1(xT ))β
T ≤ 1 + ε.

Similarly, we have:
1− ε ≤ (f2(xT ))β

T ≤ 1 + ε.
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From Proposition 3.1, T̂ has a unique fixed point f̂ in [f1, f2]. Moreover, f̂ is
the uniform limit on any compact set K of {T̂nf}n∈N with f ∈ A(X). Observe
that the function g, defined by g(x) = 1 for any x ∈ X, is continuous and
belongs to [f1, f2]. This implies that f̂ is continuous.

It is easy to verify that for any j ∈ N, for any x ∈ Kj , we have V̂ (x) ≤ emj .
Now, given any x0 ∈ Kj , consider the feasible sequence {xt}t≥0 that satisfies
F (xt, xt+1) = ψ(xt) for any t. It follows that:

V̂ (x0) ≥ e

+∞P
t=0

βtF (xt,xt+1)
≥ e

−
+∞P
t=0

βt|ψ(xt)|
= e−mj .

In other words, V̂ ∈ A(X). Since V̂ satisfies the Bellman equation (see Theorem
4.2 in Stokey et al.), it is a fixed point of T̂ in A(X) and hence it coincides with
f̂ .

Remark 3.4. (i) The last theorem is equivalent to Theorem 4 in Rincón-
Zapatero and Rodŕıguez-Palmero (2003). They assume that there exists c > 1
with cβ < 1 such that:

+∞∑
j=1

c−j ||ψ||Kj = M < +∞

while we impose a weaker assumption:
+∞∑
j=1

βj ||ψ||Kj = M < +∞.

(ii) The continuity of the value function V̂ comes as a consequence of being
the unique solution to the multiplicative Bellman equation.

(iii) The implication for the Bellman operator T is that uniqueness is implied
for the space of functions:

A(X) = {f ∈ C+(X) : ∀Kj , ∀x ∈ Kj , −mj ≤ f(x) ≤ mj}.

(iv) iii) One may wonder whether the value function may be the limit of
any sequence {T̂nf}n∈N where f is any function in C++(X). We give below
an example showing that this is not possible. Let X = R+, Γ(x) = [0, x

β ] and

F (x, y) = ln
[
x
β − y + 1

]
. Define:

K1 =
[
0,

1
β

]
, K2 =

[
0,

1
β2

]
, Kn =

[
0,

1
βn

]
, and so on.

Obviously, the sequence {Kj}j∈N is increasing, X = ∪jKj and Γ(Kj) = Kj+1.

We have V̂ (x) = limn T̂
n(1) = e

1
1−β

ln
h

(1−β)
β

x+1
i
. Take f(x) = ex, ∀x and com-

pute T̂nf(x). We obtain:

T̂nf(x) = e(1+β+...+βn−1)[β−lnβ−1]ex.

14



Hence, Tnf(x) → e
1

1−β
[β−lnβ−1]

ex 6= V̂ (x) when x > 0.
The function f(x) = ex does not belongs to the set A(X) in Theorem 3.2.

Indeed, the sequence { 1
β ,

1
β2 , ...

1
βt , ...} belongs to Π(1). For j large enough we

have:

emj = e
β−j

+∞P
l=j

βl||ψ||Kl
< eβ

−j
.

3.2 Returns unbounded from below

3.2.1 Unbounded total discounted returns

Following Rincón-Zapatero and Rodŕıguez-Palmero (2003) we first consider the
case where the return function F is bounded from below but there are feasible
programs x̃ ∈ Π(x0) such that the total discounted utility u(x̃) may take the
value −∞. We impose the following assumption.

Assumption (H3′′). (a) Let X be a Banach space. Moreover, X = ∪jKj

where {Kj}j∈N is a countable increasing sequence of nonempty, convex and
compact subsets of X.

(b) Fix some j ∈ N. Define the truncated correspondence Γj as follows:

Γj(x) =

{
Γ(x) if x ∈ Kj

Γ(Pj(x)) if x /∈ Kj .

where Pj(x) denotes the projection of x ∈ X on the set Kj . The technological
correspondence Γj satisfies the following property:

∀x ∈ X, Γj(x) ⊆ Γ(x).

(c) Let F− denote the negative part of the return function F, i.e. F− =
min(0, F ). For each x̃ ∈ Π0(x0), all x0 ∈ X, there exists a ∈ X with a ∈
Γ(xt) ∩ Γ(a) for all t large enough, and such that, limt β

tF−(xt, a) = 0.

Remark 3.5. Note that the requirements (a) and (b) in Assumption (H3′′) are
satisfied, for instance, when Γ(x) = [0, f(x)] and f is a non-decreasing function
from R+ into R+. In general, (a) and (b) in Assumption (H3′′) are satisfied
(see Appendix B (claim (i)) in Rincón-Zapatero and Rodŕıguez-Palmero (2003))
provided that

(a) X is a nonempty, closed, convex and comprehensive subset of Rn
+

(b) graphΓ satisfies: x̂ ≥ x⇒ (x̂, y) ∈ graphΓ, for all (x, y) ∈ graphΓ.

Fix some j ∈ N and consider the operator T̂j defined as follows:

∀f ∈ B+(X), ∀x ∈ X, T̂jf(x) = sup
y∈Γj(x)

{eF (x,y)(f(y))β}.

Observe that T̂j maps B+(X) into B+(X). We have the following result.
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Lemma 3.3. Under Assumptions (H1)-(H2′)-(H3′′), the operator T̂j has a
unique fixed point f̂j that belongs to C++(X).

Proof. It easy to check that the operator T̂j satisfies properties (P.1) and (P.3).
Under Assumption (H3′′) we have Γj(x) ⊆ Γ(Kj), all x ∈ X. It follows that
there exists a sequence {Ki}i∈N of compact sets such that X = ∪iKi and
Γj(Ki) ⊂ Ki for any i. With this in mind the proof of the claim parallels the
one in Theorem 3.1.

Let us consider the sequence {f̂j}j∈N where each f̂j is the unique continuous
fixed point of the operator T̂j on C++(X). We impose the following assumption.

Assumption (H4). There exists an upper-semicontinuous function g such that
fj ≤ g for all j and

lim sup
t

[g(xt)]
βt

≤ 1, ∀x̃ ∈ Π(x0).

Remark 3.6. (i) It is important to provide conditions under which a function
g with the aforementioned properties exists. This is the case (see Rincón-
Zapatero and Rodŕıguez-Palmero (2003) Remark 5(ii)) when there exists an
upper-semicontinuous function ω : X → R+ such that:

ψ ≤ ω and max
y∈Γ(x)

ω(y) ≤ γω(x) for all x ∈ X,

where γ > 0, βγ < 1 and ψ(x) = max
y∈Γ(x)

F (x, y). We simply let:

g(x) = e
ω(x)
1−βγ

.

In Le Van and Morhaim (2002) it is assumed (Assumptions (H2), (H7) in their
paper) that y ∈ Γ(x) ⇒ ‖y‖ ≤ γ ‖x‖ with γ > 1 and that ∀(x, y) ∈ graphΓ

F (x, y) ≤ A+B(‖x‖+ ‖y‖) with A ≥ 0, B ≥ 0.

In this case, ω(x) = A+B(1 + γ) ‖x‖.

We have the following results.

Lemma 3.4. Under Assumptions (H1)-(H2)-(H3′′)-(H4), the sequence {f̂j}j∈N,

where f̂j is the unique continuous fixed point of the operator T̂j , is increasing
and bounded. In addition, f̂ := supj f̂j coincides with the value function V̂ .

Proof. It follows from Appendix B (claim (ii)) and Theorem 5 in Rincón-
Zapatero and Rodŕıguez-Palmero (2003).
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Lemma 3.5. Assume (H1)-(H2)-(H3′′)-(H4). Then, the operator T̂ has at
most one fixed point on the set:

A(X) =
{
f ∈ B+(X) : lim sup

t
(f(xt))β

t ≤ 1, ∀x̃ ∈ Π(x0)
}
.

Proof. See Appendix.

Theorem 3.3. Assume (H1)-(H2)-(H3′′)-(H4). Then:
(i) The value function V̂ is the unique continuous fixed-point of T̂ on the

set:

A(X) =

{
f ∈ B+(X) :

∀x0 ∈ X, ∀x̃ ∈ Π(x0), limt sup(f(xt))β
t ≤ 1

∀x0 ∈ X, ∀x̃ ∈ Π0(x0), limt(f(xt))β
t
= 1.

}

(ii) For any x ∈ R+, V̂ (x) = limn T̂
nf(x) where f ∈ A(X) and verifies

Tf ≤ f. If in addition f ∈ C++(X), then the convergence is uniform on any
compact subset of X. In particular, for any f̂j the sequence (T̂nf̂j)n∈N converges
to V̂ uniformly on any compact subset of X.

Proof. (i) It is easy to check that T̂ maps A(X) into A(X). The value function
V̂ is a fixed point of the operator T̂ (see Theorem 4.2 in Stokey et al.). Since
V̂ coincides with the function f̂ := supj f̂j we have:

∀x0 ∈ X, ∀x̃ ∈ Π(x0), lim
t→+∞

sup(V̂ (xt))β
t ≤ 1.

Moreover, for any x̃ ∈ Π0(x0), one has:

0 < eu(ex) ≤
e TP

t=0
βtF (xt,xt+1)

(V̂ (xT+1))β
T+1

 .
Then:

1 = e

»
u(ex)−lim

T

T
t=0β

tF (xt,xt+1)

–
≤ lim

T
inf(V̂ (xT+1))β

T+1
.

It follows that V̂ belongs to A(X) and by Lemma 3.5 is the unique fixed point
of T̂ on the set A(X).

The function f̂ := supj f̂j is lower semi-continuous as the supremum of
continuous functions. Since the value function V̂ coincides with the function f̂
is is lower semi-continuous. We next show that V̂ is also upper-semicontinuous
at any x0 ∈ X. Let (xn0 )n∈N be a sequence that converges to x0. The continuity
of Π implies that there exists a sequence (x̃n)n∈N with x̃n ∈ Π0(xn0 ) such that
x̃n → x̃ ∈ Π0(x0) and
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V̂ (xn0 ) = e

∞P
t=0

βtF (xn
t ,x

n
t+1)

= eF (xn
0 ,x

n
1 )+βF (xn

1 ,x
n
2 )+...+βn−1F−(xn

T−1,x
n
T )[V̂ (xnT )]β

T

≤ eF (xn
0 ,x

n
1 )+βF (xn

1 ,x
n
2 )+...+βn−1F−(xn

T−1,x
n
T )[g(xnT )]β

T
.

Since the function g is upper semi-continuous it follows that

lim sup
n
V̂ (xn0 ) ≤ eF (x0,x1)+βF (x1,x2)+...+βn−1F−(xT−1,xT )[g(xT )]β

T

Taking the limits as T →∞ we get:

lim sup
n
V̂ (xn0 ) ≤ u(x̃) ≤ V̂ (x0).

(ii) It follows from Le Van and Morhaim (2002, Theorem 4.2(ii)).

Remark 3.7. Theorem 3.3 is similar to Theorem 5 in Rincón-Zapatero and
Rodŕıguez-Palmero (2003). We rely on their method based on truncating the
technological correspondence, and approaching the fixed point by means of a
sequence of fixed points of the truncated problems. Working in this direction
the crucial step is Lemma 3.34.

3.2.2 Unbounded period returns

We next look to problems where the return function F can take the value −∞
at some points of the technological set. The following assumption is satisfied in
a large class of economic applications.

Assumption (H3′′′). (a) Let X = Rn
+ and assume that

(a.1) Γ(0) = {0} and ∀x 6= 0, ∃y ∈ Γ(x)\{0}
(a.2) F (0, 0) = −∞ and ∀x 6= 0, ∃y ∈ Γ(x), F (x, y) > −∞
(a.3) Π0(x0) 6= ∅ if x0 6= 0.

(b) There exist two functions f1, f2 ∈ C+(X\{0}) such that

(b.1) f1 ≤ T̂ f1 ≤ T̂ f2 ≤ f2

(b.2) f2(0) = 0.
(b.3) ∀x0 6= 0, ∀x̃ ∈ Π0(x0), limT (f1(xT ))β

T
= limT (f2(xT ))β

T
= 1.

4This step is also crucial in Rincón-Zapatero and Rodŕıguez-Palmero (2003). However, to

prove the existence of a sequence { bfj}j∈N with each bfj be the unique continuous fixed point

of the operator bTj on C++(X) they make use of Theorem 3 which relies on the incorrect

Proposition (1b).
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Consider the following set of functions:

A(X) = {f ∈ C+(X\{0}) : f(0) = 0 and f1 ≤ f ≤ f2}.

We have the following result.

Theorem 3.4. Under Assumptions (H1)-(H2)-(H3′′′), the operator T̂ has a
unique fixed point f̂ on the set A(X) which coincides with the value function
V̂ . In addition, for any f ∈ [f1, f2], T̂nf → V̂ pointwise.

Proof. The operator T̂ maps A(X) into A(X). From Proposition 3.1 it follows
that T̂ has a unique fixed point f̂ on the set A(X). We have to show that V̂
belongs to A(X). Let x0 6= 0 and take x̃ ∈ Π0(x0) such that

V̂ (x0) = e

+∞P
t=0

βtF (xt,xt+1)
.

f2(x0) ≥ T̂Nf2(x0)

≥ eF (x0,x1)+βF (x1,x2)+...+βN−1F−(xN−1,xN )[f2(xN )]β
N
.

Taking the limit as T →∞ we get:

f2(x0) ≥ V̂ (x0).

A similar argument shows that f1(x0) ≤ V̂ (x0). Moreover, V̂ (0) = 0.
To prove the claim we have to show that V̂ ∈ C+(X\{0})5. Let x0 6= 0 and

take x̃ ∈ Π0(x0) such that

V̂ (x0) = e

+∞P
t=0

βtF (xt,xt+1)
.

We claim that T̂nf2(x0) ≥ V̂ (x0) for any n > 0. Indeed,

f2(x0) ≥ T̂nf2(x0)

≥ eF (x0,x1)+βF (x1,x2)+...+βn−1F−(xn−1,xn)[f2(xn)]β
n

≥ eF (x0,x1)+βF (x1,x2)+...+βn−1F−(xn−1,xn)[V̂ (xn)]β
n

= V̂ (x0).

A similar type argument shows that T̂nf1(x0) ≤ V̂ (x0) for any n > 0. Define
fn1 := T̂nf1 and fn2 := T̂nf2. Let x0 > 0 and consider a convergent sequence
xm0 → x0. Since fn1 , f

n
2 are continuous we have limmf

n
1 (xm0 ) = fn1 (x0) and

limmf
n
2 (xm0 ) = fn2 (x0). It follows that

−fn2 (x0) ≤ −V̂ (x0) ≤ −fn1 (x0)

fn1 (x0) = lim
m
fn1 (xm0 ) ≤ lim

m
V̂ (xm0 ) ≤ lim

m
fn2 (xm0 ) = fn2 (x0).

5We are grateful to Jorge Durán for suggesting this method of proof.
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Therefore, ∣∣∣lim
m
V̂ (xm0 )− V̂ (x0)

∣∣∣ ≤ fn2 (x0)− fn1 (x0).

From Proposition 3.1, for any x0 > 0, we have:

lim
n

[fn2 (x0)− fn1 (x0)] = 0.

We have proved that V̂ ∈ C+(X\{0}).

Remark 3.8. (i) Theorem 3.3 is similar to Theorem 6 in Rincón-Zapatero and
Rodŕıguez-Palmero (2003).

(ii) A function f1 with the specified properties can always be found if one
assumes that for all x 6= 0 there is a continuous selection q of Γ with U(x, q(x)) >
−∞ (this is the case in Rincón-Zapatero and Rodŕıguez-Palmero, Assumption
DP3′).

Concerning the existence of function f2 observe the following. If the set X
is compact one may take:

f2(x) = e
M

1−β

where M =
{

0,max
y∈Γ(x)
x∈X

F (x, y)
}

. In cases where there exists an upper-

semicontinuous function ω : X → R+ such that:

(a) ψ ≤ ω and max
y∈Γ(x)

ω(y) ≤ γω(x) for all x ∈ X

(b) lim
T

(ω(xT ))β
T

= 1,

where γ > 0, βγ < 1 and ψ(x) = max
y∈Γ(x)

F (x, y), one may choose f2(x) = e
ω(x)
1−βγ .

When the technological correspondence satisfies Γ(Kj) ⊆ Kj for any j ∈ N
(as in Rincón-Zapatero and Rodŕıguez-Palmero, Theorem 6), then the functions
f1 and f2 can be chosen as in Theorem 3.1 for any x 6= 0.

(iii) For our multiplicative operator, uniqueness of solutions is implied on
the set A(X). The implication of this result for the standard Bellman operator
T, is that uniqueness is established for the space of functions:

A(X) = {f ∈ C(X\{0}) : f(0) = −∞ and f1 ≤ f ≤ f2}.

(iv) One may wonder whether the value function may be the limit of any
sequence {T̂nf}n∈N where f is any function in C++(X). We give below an
example showing that this is not possible. Indeed, let X = R+, Γ(x) = [0, x

β ]

and F (x, y) = ln
[
x
β − y

]
. Define:

K1 =
[
0,

1
β

]
, K2 =

[
0,

1
β2

]
, ... ,Kn =

[
0,

1
βn

]
, and so on.
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Obviously, the sequence {Kj}j∈N is increasing, X = ∪jKj and Γ(Kj) = Kj+1.

We have V̂ (x) = limn T̂
n(1) = e

1
1−β

ln
h

(1−β)
β

x
i
. Take f(x) = ex, ∀x and compute

T̂nf(x). We obtain:

T̂nf(x) = e−(1+β+...+βn−1)(lnβ+1)ex.

Hence Tnf(x) → e
−1
1−β

(lnβ+1)
ex 6= V̂ (x) when x > 0.

The function f(x) = ex does not belongs to the set A(X) in Theorem 3.4.
Indeed, the sequence { 1

β ,
1
β2 , ...

1
βt , ...} belongs to Π(1). For any t ≥ 0, we have

(f( 1
βt ))β

t
= e, and therefore lim

t→+∞
(f( 1

βt ))β
t
> 1.

4 Appendix-Proofs

4.1 Lemma 3.1

Proof. (i) The proof is standard. (ii) We only prove that Π is lower hemi-
continuous. Let x0 ∈ X, x̃ = (x1, x2, ..., xt, ...) ∈ Π(x0) and (xn0 )n be a sequence
converging to x0. Consider a compact neighborhood of x0 denoted by B. For
n ∈ N large enough, xn0 ∈ B. Since Γ is continuous, for n large enough, Π(xn0 )

is included in
∞∏
i=0

Γi(B) which is a compact set of the product topology.

Since Γ is lower hemi-continuous, there exists a sequence (xn1
0 , xn1

1 )n1 where
xn1

1 ∈ Γ(xn1
0 ), ∀n1 and (xn1

0 )n1 is a subsequence of (xn0 )n such that xn1
1 → x1. Us-

ing again the lower hemi-continuity of Γ, there exists a sequence (xn2
0 , xn2

1 , xn2
2 )n2

where xn2
2 ∈ Γ(xn2

1 ),∀n2 and (xn2
1 )n2 is a subsequence of (xn2

1 ) such that
xn2

2 → x2. By induction, there exists a sequence (xnk
0 , xnk

1 , xnk
2 , ..., xnk

k )nk
where

(xnk
0 , xnk

1 , xnk
2 , ..., xnk

k ) → (x0, x1, x2, ..., xk) when nk →∞. Now define:

z̃n1 = (xn1
1 , ỹn1) ∈ Π(xn1

0 ) with ỹn1 ∈ Π(xn1
1 )

z̃n2 = (xn2
1 , xn2

2 , ỹn2) ∈ Π(xn2
0 ) with ỹn2 ∈ Π(xn2

2 )
...

z̃nk = (xnk
1 , xnk

2 , ..., , xnk
k , ỹ

nk) ∈ Π(xnk
0 ) with ỹnk ∈ Π(xnk

k )

Since xnk
0 → x0, and since for nk large enough, Π(xnk

0 ) is included in a compact
set of the product topology, one can assume that (z̃nk)k converges, and let us
denote z̃ its limit. Fix t. By construction, for k large enough, znk

t = xnk
t . Hence

z̃ = x̃.

4.2 Lemma 3.2

Proof. The proof (P.1) is easy. Let us show that (P.3) is satisfied. Let {fn}n∈N

be a sequence in P+(X) that converges to f ∈ P+(X). Let x ∈ X. For any
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y ∈ Γ(x) we have:
T̂ fn(x) ≥ eF (x,y)(fn(y))β.

This in turn implies that:

lim inf
n

T̂ fn(x) ≥ eF (x,y)(f(y))β,

and therefore:

lim inf
n

T̂ fn(x) ≥ T̂ f(x).

4.3 Proposition 3.1

Proof. (i) Let f̂ := lim
n→+∞

T̂nf1 denote the pointwise limit of {T̂nf1}n∈N.. From

Theorem 2.2(ii) this limit exists, belongs to B+(X) and is a fixed point of T̂ on
B+(X). It is therefore a fixed point of T̂ on the set [f1, f2].

Let x0 ∈ X and x̃ ∈ Π0(x0). For any T we have:

f̂(x0) = T̂ f̂(x0) ≥ e

T−1P
t=0

βtF (xt,xt+1)
(f̂1(xT ))β

T
.

Since limT→+∞(f̂1(xT ))β
T

= 1

f̂(x0) ≥ e

+∞P
t=0

βtF (xt,xt+1)
. (1)

Assume that T̂ has another fixed point ĝ ∈ [f1, f2]. It must be the case that

f̂ ≤ ĝ. (2)

Let α > 1. For any x0 ∈ X, there exists x1 ∈ Γ(x0) such that:

ĝ(x0) = T̂ ĝ(x0) ≤ α[eF (x0,x1)(ĝ(x1))β].

But there is also x2 ∈ Γ(x1) such that:

ĝ(x1) ≤ α[eF (x1,x2)(ĝ(x2))β]

and
ĝ(x0) ≤ α1+β[eF (x0,x1)+βF (x1,x2)(ĝ(x2))β

2
].

By induction, it follows that for any T > 0

ĝ(x0) ≤ α
1−βT

1−β

eT−1P
t=0

βtF (xt,xt+1)
(ĝ(xT ))β

T

 .

22



Since limT→+∞(ĝ(xT ))β
T

= 1, by letting T → +∞ we get:

ĝ(x0) ≤ α
1

1−β e

+∞P
t=0

βtF (xt,xt+1)
. (3)

Combining inequalities (1), (2) and (3) we have:

f̂(x0) ≤ ĝ(x0) ≤ α
1

1−β f̂(x0).

From Theorem 2.1(ii), it follows that f̂(x0) = ĝ(x0) for any x0 ∈ X such that
Π0(x0) 6= ∅. For any x0 ∈ X such that Π0(x0) = ∅, it follows that f̂(x0) =
ĝ(x0) = 0.

We next show that {T̂nf2}n∈N converges to f̂ pointwise. For any x0 ∈ X

such that Π0(x0) = ∅, we have T̂nf2(x0) → f̂(x0) = 0. Let x0 ∈ X be such that
Π0(x0) 6= ∅. Fix some N ∈ N. For any n > N, there exists xn1 ∈ Γ(x0) such
that:

T̂nf2(x0) = T̂ (T̂n−1f2)(x0) = eF (x0,xn
1 )(T̂n−1f2(xn1 ))β.

Similarly, there exists xn2 ∈ Γ(xn1 ) such that:

T̂n−1f2(xn1 ) = eF (xn
1 ,x

n
2 )(T̂n−2f2(xn2 ))β

and hence:
T̂nf2(x0) = eF (x0,xn

1 )+βF (xn
1 ,x

n
2 )(T̂n−2f2(xn2 ))β

2
.

By induction,

T̂nf2(x0) = eF (x0,xn
1 )+...+βN−1F (xn

N−1,x
n
N )(T̂n−Nf2(xnN ))β

N

≤ eF (x0,xn
1 )+...+βN−1F (xn

N−1,x
n
N )(f2(xnN ))β

N
.

Observe also that

f̂(x0) = T̂N f̂(x0) ≥ eF (x0,xn
1 )+...+βN−1F (xn

N−1,x
n
N )(f̂(xnN ))β

N

≥ eF (x0,xn
1 )+...+βN−1F (xn

N−1,x
n
N )(f1(xnN ))β

N
.

Combining the last inequalities one gets:

1 ≤ T̂nf̂2(x0)

f̂(x0)
≤

(f2(xnN ))β
N

(f1(xnN ))βN .

Let ε > 0 be given. There exists N(ε, x0), such that, for any n > N(ε, x0)

1 ≤ T̂nf̂2(x0)

f̂(x0)
≤ 1 + ε.

The claim has been proved.
(ii) The proof of uniform convergence on compact subsets of X is standard.

If f ∈ [f1, f2] is continuous, uniform convergence of {T̂nf}n∈N implies that f̂ is
continuous.
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4.4 Lemma 3.5

Proof. (i) Let f̂ be a fixed point of T̂ on B+(X) that satisfies:

lim sup
t

[
f̂(xt)

]βt

≤ 1, ∀x̃ ∈ Π(x0).

Let x0 ∈ X. Assumption H3′′ implies that for any x̃ ∈ Π0(x0)

f̂(x0) = T̂nf̂(x0)

≥ eF (x0,x1)+βF (x1,x2)+...+βn−1F−(xn−1,a)[f̂(a)]β
n
.

Taking the limits as n→∞ we get:

e

∞P
t=0

βtF (xt,xt+1)
≤ f̂(x0), ∀x̃ ∈ Π(x0). (1)

Let ĥ be another fixed point of T̂ on set A(X). Let α > 1. There exists
x1 ∈ Γ(x0) such that

ĥ(x0) ≤ αeF (x0,x1)(ĥ(x1))β .

There also exists x2 ∈ Γ(x1) such that

ĥ(x1) ≤ αeF (x1,x2)(ĥ(x2))β .

and hence
ĥ(x0) ≤ α1+βeF (x0,x1)+βF (x1,x2)(ĥ(x2))β

2
.

By induction

ĥ(x0) ≤ α
1

1−β eF (x0,x1)+βF (x1,x2)+...+βtF (xt−1,xt)[ĥ(xt)]β
t
.

Let t→ +∞. We have:

ĥ(x0) ≤ α
1

1−β e

+∞P
t=0

F (xt,xt+1)
.

It follows that:
ĥ(x0) ≤ α

1
1−β f̂(x0). (2)

Inequality (1) actually holds for any fixed point. Let x̃′ ∈ Π0(x0) be such that

f̂(x0) = e

∞P
t=0

βtF (x′t,x
′
t+1)

. It follows that:

f̂(x0) ≤ ĥ(x0). (3)

Combining (2) and (3) we get

f̂(x0) ≤ ĥ(x0) ≤ α
1

1−β f̂(x0).

From Theorem 2.1(ii), we must have ĥ = f̂ .
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