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Abstract In this work, we propose to extend the Arlequirand molecular models, for the simulation of multiscale prob
framework to couple particle and continuum models. Thréems.

different coupling strategies are investigated based @hth We propose here to extend the Arlequin framework of
norm,H* seminorm, andH* norm. The mathematical prop-Ben Dhia [3; 4; 5; 6; 7] to problems that involve both an
erties of the method are studied for a one-dimensional modebmistic model and a continuum model. The Arlequin frame-
of harmonic springs, with varying coefficients, coupledwitwork introduces an overlapping region in which the two mod-
a linear elastic bar, whose modulus is determined by simplg are coupled using Lagrange multipliers. Several rdlate
homogenization. It is shown that the method is WG”—pOSQdethodologies have been previously proposed (see for ex-
for theH! seminorm andd* norm coupling terms, for both ample [14; 9; 17]). In particular, the bridging domain metho
the continuous and discrete formulations. In the case?of of Belytschko and Xiao presents many similar features to
coupling, it cannot be shown that the Babuska-Brezzi congihe Arlequin method and was numerically investigated in [2;
tion holds for the continuous formulation. Numerical examtsg].

ples are presented for the model problem that illustrate the | thjs paper, we examine in detail the mathematical prop-
approximation properties of the different coupling termd a erties of such a method when applied to a one-dimensional
the effect of mesh size. model of harmonic springs, with varying stiffness coeffi-
cients, coupled with a linear elastic bar. Our objectiveois t
investigate three different coupling strategies basedhen t
L2 norm, theH! seminorm, and thé4 norm. We show
that theH! seminorm andH® norm coupling yield well-

) ) posed problems for the continuous and discrete formula-
Multiscale modeling at the nanoscale has been the fogishs. However, we are not able to show that the Babugka-
of many investigations and discussion in recent years (8@zzi condition holds in the case of th& norm coupling:
supercomputers, scientists can now contemplate simglatife development of a robust coupling method. We also pro-
complex systems spanning a large range of scales that Wak a priori error estimates for the discrete problem and
previously considered intractable. Nevertheless, fdlsot- jjjystrate our theoretical results with several simple eom
ved atomistic and molecular simulations still remain out gfg) examples. Reference [12], brought to the attention of
reach with current computer resources for engineering sye authors upon finishing the writing of the present paper,
tems of practical interest. There is obviously a need fav-algpresents a similar study for the coupling of two continuum
rithms that can couple different models, such as continuyghgels. In that paper, several numerical examples are shown
for L2 andH* coupling terms as well as different weighting
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functions in the coupling terms. Many of the numerical re-
sults are analogous to those shown here, but no mathemati-
cal results are given. One major difference between the two
papers is that we are interested here in coupling highly het-
erogeneous particle models with homogeneous continuum
models. Our ultimate objective in the investigation of such
coupling algorithms is to extend ideas of goal-orientedrerr
estimation and adaptation (see e.g. [16; 15]) to control the
size and position of the overlapping region so as to deliver
highly accurate simulations.



X Fig. 2 Elastic bar of length. with modulusE and loaded under trac-

. . . . . tionT.
Fig. 1 System ofn+ 1 particles connected withharmonic springs.

Problem (3) is equivalent to:
The paper is organized as follows: following this brief in- (3) s equiv

troduction, we introduce the particle model, the continuum wo=0
model, and briefly describe the Arlequin algorithm. In Sec- (Ky + ko)W — koW = 0
tion 3, we prove that the Arlequin problem is well-posed as (ki + K KoWii=0 1<i
established by Theorem 1. We show in Section 4 that theldWi-1 + (ki ki) wi —kiawiy = <t<n
discrete formulation of the Arlequin method leads to a well- —knWn—1 +Kqwp = f

posed problem as well. Section 5 describes a few numencald the svstem of equations can be represented more com-
experiments followed by conclusions in Section 6. Y q P

pactly in matrix form as
Aw= f 5)

wheref™ = (0,...,0, f) and
In this section, we introduce the coupled model problem to

(4)

2 Model Problems

be studied. First, the discrete model is introduced with ac- (1) K J?k _ﬁ 00 g 8
companying notation, then, the continuum approximation, | ¢ 1—k 2 K +2k ke D 3
and finally, the coupled Arlequin model. Mathematical rigor 2 T2 s
is postponed until Section 3. A= (6)
2.1 Particle Model 0o ... oo 0 —kno1 kn-1+kn —kn

0 ... ... 0 0  —k ki

X\é?]géiggée{);sf;miﬁ r;nsgrisg ;;egfn \(;'grll O%irtslgrlgi é:ﬁ; %re The matrixA is symmetriclpositive definite and induces the
S ; — " — /7T A7 n+

and equilibrium lengtH;, i = 1,....n. The initial position M2l =vz'AzonR™=.

of the particles are denoted lyand the system undergoes

displacementsy; when subjected to forcé applied atx;, .

(see Figure 1). The potential energy of such a system is gi\?eﬁ Continuum Model

by One possible approximation of the particle model is a lin-

ear elastic continuum. Here, the system of springs can be
=5 ZK —wi_1)®— fwy (1) replaced by an elastic bar on dom&nwith lengthL, mod-
ulusE, and subjected to traction= f /A, A being the cross-
The particles are assumed to be ordered soxhat< x; Sectional area of the bar. The displacement in the bar is de-
and the particle on the left end of the chain to be fixed, i.8oted byu; see Figure 2. The total energy of this system is
Wp = 0. We then mtroduc&”+1 {ze R™1:z=0}. given by

Equilibrium states of such a system, denoted RSH,
can be obtained by minimizing the potential energy: Ec= / 5 x) dx— AT(L)u(L) )
Eq(w) = min Eq(2) (2) Here the material is supposed to obey Hooke’s taw E¢
2Ro and, usinge = U, we have
Thus,w are stationary points df4(z) and satis -
" points @s(2) i = A ()? ax- AT(Lu(L) ®)
Q

1
lim = (Eq(w+ 62) — Eg(w)) =0 Vze R _ . . .
6—00 (Baf )~ Ea(w)) 0 To obtain the elastic modulus, we simply consider a rep-

resentative cell of springs (see Figure 3) so that, in a syste
consisting of a periodic array of two springs with stiffness
ki1, ko and equilibrium lengthy, I», we get

In other words, the displacemems< ]RB+1 at equilibrium
are given by

n

> k(Wi —wia) (3 —3-1) = 2 VZERG™ @) A= 42,11y ©
2 k1 + ko
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. L . . Fig. 5 Plot of different functions used far; anday.
Fig. 3 Homogenization of spring model on a representative cell.
Continuum model where we have introduced the weighting coefficiamtand
ac, such that:
Overlap
Q ;/ domain aC(X) —+ ad(X) =1 WXxeQ
f
LERAAR SR AAR SR AAR SNAAR SRAAR SR LAR e 1 ¥xeQ:\Q
0, oc(x) = L 12
Particle model 0 VX € Qd \ QO ( )
1 .
0 Xa Xp L X ai = ay E(xieri,l) , I=1....m

Fig. 4 Arlequin model that replaces the particle model with a com- . .
bined particle and spring model. In the overlap regiod,, the coefficientr; (and thusng) can

be chosen in different ways. Some intuitive and apparently
attractive candidates are (see Figure 5):

The modulus of elasticitf is derived here by equating the

energy in the representative cell with the energy one woulgl(x) = = vx e Qq

obtain if a linear elasticity model were used. For simpjicit 2

we will implicitly take A equal to unity. de(X) = 1— (X=Xa) o o, 13)
As with the spring model, the equilibrium state for the Xp — Xa
continqum _model i_s found by miljimizing the energy (8). B —(X—Xp)2(2X — 3Xa+ Xp)
This minimization yields the following problem: ac(x) = (Xa— %) VX € Qo
FindueV = {ve Hl(Q) :v(0) = 0} such that wherex, andx, denote the left and right end point 6.
_ o ' o (10) In the overlap region, the main idea is to constrain the
/ EuVdx=T(L)v(L) weV displacements andw to be “equal” in some appropriate
Q measure. In order to do so, the first step is to convert the

discrete displacementginto a displacement fiel@w that

can be compared to on Q,. The natural way to do this is
2.3 Coupling Scheme to takell as the linear interpolation operator. Other interpo-

lation schemes are possible, but we only consider the linear

We recall that our objective is to couple the particle modg]te_lr_pr)]olanthin Ehe pres”ent work. d by the mi hiaind

with the continuum model 0. The continuum model is _ UZ' the "energy” generated by the mismatc

selected in regio2. = (0,%,) while the particle model is /"W ON 2% 1S

chosen in domaif2y = (X,L) such thatQ = Q.| J Qq and 2 [ 2 ”

Qo = QN Qg = (Xa, Xp), | Q0| # 0. We will refer toQ, as lu—rTw(* = /Qoﬁl(u* W)+ B (u—=Tw)= dx  (14)

the overlap region. We denote b§.|, |Qq4|, and|Q,|, the _ )

length of domaing2., Qq, andQ,, respectively. The particle Where (1, 32) are non-negative weight parameters. These
model has been reduced fram- 1 tom+ 1 particles that are ¢an also be chosen so as to scale the two terms in the in-
connected byn harmonic springs , supposedly with< n. tegral. For example(1, 32) = (1,0) refers to the.? norm,

See Figure 4. (B, B) = (0,1) to theH* seminorm, andB;, 32) = (1,1)
The main idea of the Arlequin method is to modify thé® theH= norm ong,. _ o _
energies as follows: The coupled problem consists of findingandw, in

appropriate spaceg andVy, respectively (defined below),

. - E 2 that minimizes the total energy and satisfies the constraint
Ec= /Q UC(X)E (u)” dx lu—w| =0, i.e.
C

m (11) - _g T . - -
E, = % Zaiki (W —wi_1)— FWin E(u,w) = Eg(w) +Ec(u) = ,nin, (Ba(2) +Ec(v)) (15)
i= [lv—12||=0



Introducing the coupling term We now introduce the product spa¥e= V; x Vy with
pairs of X denoted for example dd = (u,w), V = (v,2),

b(A, (Uw)) = / BiA (U— W) + BoA’ (u— Mw)’ dx (16) @nd with norm:
JQo
— ivli2 2
the minimization problem (15) can be recast into the folIov&l-VHX - ”V”Vc T HZ”Vd (20)

ing saddle point problem: :
and define the kernel space laff,-) as the subspace &
' = = such that:
semin, max (Eq(2) + Ee(v) +b (1, (2))) (17)

whereM is an appropriate space for the Lagrange multipl%SO ={VeX:b(V) =0 vueMm} (1)

ers. We now pose this problem precisely and analyze §ig wish to solve the following saddle point problem:
details of its mathematical properties.

FindU € X, A € M such that:

L(U,A) = inf supL (V,u) (22)
3 Mathematical Analysis of the Coupled Formulation VeX uem

LetVe={ve H(Qc) : v(0) = 0} andVyg = {z¢ Rm+1} be Where the Lagrangian reads:

the vector spaces of test functions for the continuum and dis

crete models, respectively, and fébe the linear interpolant | (v, ) = }a(V,V) +b(u,V)=1(V)
I1: Vg — HY(Qo). In what follows, we will not distinguish a 2

functionv € \; from its restriction to the spade!(Q,). We a(u,Vv) = / acEuVdx

also define the vector space for the Lagrange multipliers as: ’ J¢

L2(Qo), if B,=0 +i;ailq (Wi —Wi—1) (z —z-1) (23)

M= ¢ HY(Qo)/R, ifB=0 (18)

b(u,V) :/ B (v—T12) + Bop’ (v — M2)'dx
H(Qo), otherwise ol

(V)= fzq

The saddle point problem (22) can be recast as:

with associated norm:

= . 24 Bop'2dx
[H]Im \//Qoﬁlﬂ Pokt FindU € X, A € M such that:

Let the average afon Q, be denoted as: aU,V)+b(A, V) =1(V) WeX (24)
b(p,U)=0 vYueM

s < i z+zq
i; Q| 2 Problem (24) is well posed fof; > 0 and 3, > 0. This
wheren. is the number of sprinas ofd.. The restrictive result immediately follows from results in Ben Dhia and
0 pring o Rateau [4; 5]. Nevertheless, we choose to present here a

assumption that is made here is that the overlap region Hetailed proof with the main objective of explicitly deriv-

study the influence of parameters such as the geometrical

spring.We also introduce the seminorimly, onVy as: and material properties, the coupling paramefzrand 3,

= or length of the overlap domain on the coupled solutions.
2y, = Ki(z —7_1)2 Proofs of continuity of the forma(-,-), b(-,-), andl(-) are
d i; relatively straightforward and provided for completeniess
Appendix B. We show below thai(-, -) is coercive and that
The norms o1V, andVy are then chosen as: the coupling ternb(-,-) satisfies the BabuSka-Brezzi condi-
tion [1; 8]. Technical lemmas are presented in Appendix A.
Vv, = / E|v/|2dx We conclude the section by a theorem for the well-posedness
e\ Ja of Problem (24), summarize the continuity and inf-sup con-
° (19) stants, and identify from this analysis “optimal” constant
12lvy = /1215, + 672 B1, B, ands.

where 9 is a dimensionally consistent weighting constaritemma 1 (Coercivity ofa) Let a. and ag be constant or
that we define below. linear functions defined kL 3); and(13),. Then, with above



notation and definitions, there exists a constgnt- 0 such Then,

that: 1 . l No "Xi Z| Z| 2

- aE\/de:— /IaE<._._l> dx

auv))| 2 Jo, EV =352 [ OB\
inf sup————"— > V4
UeXovex, IUIx[IVIIx 1 z—7z-1\" [%
supa(U,V) >0 W eXp,V#0 _EZE< ) /x 1aCdX
UeXp "
> 1 1 E Mo 1 NS \2

it mln A 21( —a)ki(z —7z-1)

Vi if By =0 Repeating the same procedure in opposite order on the dis-
Vo = 1 E|Qo crete term, we have
Vlmin(i,m> |fBl>0 l No 1 k||
33 k(-2 > gmin((2 ) [ (1-a)EW)?dx

and
Substituting the previous two expressions into the origina
1 . < E Iqli> expression and using the fact tlat+ ag = 1 gives
Yi=sminf o—,—
2 i kili” E m
avv)z [ EW)Rdxe Y k(z-aa)
Proof It suffices to show thaa(-,-) is coercive orXo. Let Qc\Qo i=No+1
V = (v,2) € Xo. We first show that 1 . No )
+ > min (1 min (klll >> _Zk;(zi —Z_1)
a(V7V) > V1(||V||\2/C+|Z‘\2/d) 1 k|| I
+ = min (1, min (—'>> / E(V)?dx
wherey; is a constant that depends apanday being con- 2 ! E Qo
stant or linear. >y (HV\|\2/C+ |Z‘\2/d)
By definition of the bilinear form, and the fact that= 1
on Q. \ Q, andag =1 0nQq\ Qo, we have and
1 E kil
. m h= <k.| )
alV.V) = [ acE(v)? dwr > k(a2 i
Qe i= Now, if B = 0, the result is immediate witp, = y1. If
n B1 is nonzero, we observe that the tejaly, vanishes for all
= Joog E(V)? dx+ _72 ki(z—2-1)° constant vectorg in Vy. Applying Poincaré inequality (cf.
'*Ef’*l Lemma A-1), we get
+ [ acE(V)?dx+ S aiki(z —z_1)? 1 1
/Q cE(V) i; iki(z—2z-1) aVv,V) >y (§||v||$c - §\|v\|\2,c+ |z|\2,d>
i ; : 1 E
We then divide the overlap terms in half: >w (_||V||\2/c W||v||fz ot |z|\2,d>
/ acE (V)2 dx+ iaiki(zi _z4)?= Then using Lemma A-2, the fact thXp consists of those
Qo i functionsv and vectorg such thatv = 1z, which implies

1 Tz =z, we observe that

No
1 2 K (Z— 7 1) i
5 (./QOGCE(\/) dx+i;a.k|(2. Z-1) ) M2 ) > IMIZ2 0y = P190] = 2|0

1 , o , Thus, it follows that:
+3 /Q aE(V)2 dx+ Yy aiki(z —7-1) 1 o, EQ

) i=1 a(V,V) >v (E”VHVC + |Z|Vd 5|.Q |2622>
Next, we examine the continuum term and the discrete term > VaIIVH>2<

and show how they should be recombined. We use the fact
thatX, consists of functiong and vectorg such thav = 1z where

on Q, (and therefore/ = (I1z)’), and (1 E|Qo|
e
(Mz) = o VX € (Xi—1,%) which completes the proof. O



Remark 1Above proof also holds for the case = ag = If B > 0, we can boungi in terms of | ul| 2 o, and

1/2, however it can be shown that the constgnsimply |H|a1 .- Using the Poincaré inequality (sinfie= 0 atx =
reduces in that case fg = 1/2. Xa) V\Eeoéet

Remark 2Although we used the strong conditian= 1z S ' A 2 "5 .o

in second part of the proof, the weaker conditior: 1z /QO Hadx= /Qo(“ —[)Tdx< 2/90“ + pdx

could have been used. This becomes important in the proof < 2llull2 0121112

of discrete coercivity, which is addressed later in the pape = H“HL2<90) +[ Q| “J‘Hl(Qo)

-2 2 lo) 2 2

Remark 3We have not proven the case whexgay are cu- I H"Zm") 12 “J'Hl(g")

bic functions (13). We believe that this case yields coercivSince

ity and could be proven with more sophisticated techniques.
T uidx= o2

Lemma 2 (Inf-sup condition for b) Let B, > 0. Then, with 7%

the above notation and definitions, there exists a constan arrive at the inequality:

W > O such that:

2
pi < @H“HEZ(QO) + ‘QOHME!l(Qo)

inf supM > W (25)
ueMyex [[H[my [V [Ix Thus, substituting the bound fpi, we conclude that
with

- 20
N1 < g1+ (E + 810D e

B _ 20  E+9|Q
P2 -0 o 2
C By <max( o )|u|M

E
W= B
/ ) 1|Q0|E / E
Emm( 250, E+6|Qo|> B1>0 and, therefore,
B

Proof This proof follows the proof given in [4; 5]. It is suf- =0

VE BL=
ficient to show that W=
wﬁmin Bl‘Q("E, = B1>0
lb(p,V)| E 203, '\ E+0|Q
U wilullv Vi eM
veXx X and the proof is complete. ad

Sincepu € M, U(xy) is well defined and denoted hy. Let Remark 4We are not able to show the case for whigh=

[l = 4 — pa. We introduce the extension opera®p): u € 0. IndeedM would be the spack?(Q,) and the extension
M — ¥ €V, such thav= [i on Q,, andv'=0 on Q. \ Q,. operatoiS(A) is not defined in this case. This stems from the
Furthermore, lez be the constant vectar= [,. Thus, taking fact that the spack?(Q,) is not contained itH*(Qy).

V = (9,2) we get - L
From the continuity and coercivity of(-,-), from the
- 2 continuity ofI(-), and from the continuity and inf-sup con-
Sup|b(u,V)| > |b(‘f’v) | = HE‘HM dition of b(-,-) (see Lemmas B-1, B-2, B-3, and Lemmas 1
vex [VIIx IV Ix IV Ix and 2), we have the following theorem.

It suffices to show thalti||w /|[V || is greater than a positive Theorem 1 Let B > 0 and 5, > 0 and |etac and aq be
constant independent pf. Using the definition off - [|x, we constant or linear. Then, problem (24) is well-posed, in the
have sense that it admits a unique solution and that the solution

depends continuously on the data.

V|2 = / E(u')? dx+op2 = E|u|ﬁ,1<90) + o2 Finally, we summarize the constants obtained from con-

Qo tinuity, coercivity, and B-B condition in Tables 1-3. In an
effort to obtain optimality with respect to the constantg, w
choose specific values f@i, B2, and d. In particular, we
want 31, B2, and d to be dimensionally consistent in their
VI = E/ p'%dx = E||u||§/| respective terms while also optimizing the continuity con-

JQo B stants (i.e. not depending on the size of the domains). Ta-

ble 4 summarizes the choice for the paramefirg,, and

The inf-sup constant is then equalyp= /3, /E. d and Table 5 shows the resulting constants.

Thus, if 81 = 0, we can fixuy = 0, and



Table 1 Constants from continuity conditions. Table 5 Rescaled constants for continuity, coercivity, and B-Bita
ity for the casg3; > 0.
Ma
2 2 Ma !
Q 2 Qo Q 2
M \/imax( A C‘ + P \/Bﬂ d "/ BIZn:in_L_BZ) 3 E |Qo/2
. i Kilj My max| 1, 2minkl; (l+ \Qc\2>
M 2|f|max( )
V& v/minik M 2|f|max( )
E| Qo vminik;
Table 2 Constants from coercivity and B-B conditions for the case Ya } E &)
B =0. 4" K E
Q|2
1 (E ki o
oo zmn <|<.|.7 E ) * Qe+
/B2
¥ E a) General case
QC
b t t t t t 1 Overlap
Table 3 Constants from coercivity and B-B conditions for the casg Q /domai”
BL>0 ‘ ‘
1_/E kh\_ (1 EQ)] ‘
w3 (e )™ ( s a
[32 B1|Q0|E E b) Nodes on Q) are aligned with particles
W VEMNA 288\ Exoy) = : < =
Q

Table 4 Choice for the parametef, 32, andd

2E Q4
L
" o
B E c) Nodes on Q, coincidgwith those of Q.
s Ell | o |
|Qc[? : o)

Remark 5Note that the constantd, andyy in Table 5 are Qq
bounded above and below, respectively, by observing that
|Qo| < |Qc|. Then: d) Elements on Q) are larger than those of Q)

/| _E Q
Mb<\/§max(l, m) o6 : 5

> 1 ° ® ® ® ® ° ° ® ® d
w=3 Q
However, the constam, increases a2,| decreases. Fig. 6 Finite element discretization @ andQ, (C= nodes o2, [

= nodes oy, ® = particles onQy).

are faced with several choices since the elements assbciate
with V" andM" do not have to match (case (a) in Figure 6).

However for the sake of simplicity here, we will only con-

h h i
Let Vc' and M* be finite glement subsaaces of the VeClUider three special cases M (see Figure 6, cases (b), (c),
spacesV; and M, respectively, and leK" be the product 4.4 (d)):

spaceX™ = V' x V4. More precisely, the subspavg con-

sists of piecewise linear continuous functions defined by thH.. “Particle coupling”: Each node of the mesh associated
set of nodest = ih, i = 0,...,N®, whereN® denotes the with MM coincides with the position of one particle on
number of elements in the mesh. For the subspatewe Q, and vice-versa (case (b) in Figure 6).

4 Discrete Formulation of the Coupled Model



2. “Continuum coupling”: The elements of the mesh ast.e.
sociated withM" are exactly identical with those &f"

on Q, (case (c) in Figure 6). / B1Vhth + BV, M dX

3. “RVE coupling”™: The element sizd for the contin- Qo _
uum solution are chosen arbitrarily from the equilibrium = / Bu(M2) i+ B2(M2) whdx,  Viup € M"
length | of the particles, but the elements fbt" are Qo

equal to the size, denoted of the representative vol- |, qther words. ai ; i ;

S . , given a functione Vg, v;, is simply viewed
ume eIem(-;-nt (RVE) (case (d_) in Figure 6). The contings the projection offz on V! if MP = V. Takepn = 1 on
uum coupling can then be viewed as a subcase of tS. 1hap, ifB; 0 ¢ ¢

case.

Finally, we writeU, = (Un, W) andVi, = (vy,2) and in- /Q VhdXx = /Q (M2)dx, Vi € M"
troduce the spacy! as: ° °
The averages of,, and 'z on Q, are equal but the func-
h_ h. _ h tions are not necessarily identical unlike the continu@sec
=Vhe X" b(Uuh,Vh) =0 VY eM 27 . . o ;
% { n (Hin Vo) Hh } @7) However, if every particle o2, coincides with a node of
MM (case (b) in Figure 6), them, = [z If not, only the

Then, problem (24) is approximated as follows: equality of averages, as above, is necessary to show coer-

- ; N civity if 31 # 0 (see Remark 2). In the case whéhe= 0,
FindU, € X", Ap € M such that: coercivity of the bilinear form is immediate. o
a(Un,Vh) +b(An, Vi) = 1(Vh) ~ WWh € X" (28) Remark 7We do not show here coercivity @f(-,) in the
b(n,Up) = 0 Vi € mh case wherea. and aq are linear. The proof is of course
' straightforward when using the particle coupling and essen

tially follows the proof of Lemma 1 sinca, = Iz However,

Remark 6Although Vq is a finite-dimensional space andip, the general case, the proof becomes very technical as the
consequently does not need to be discretized using finite §lsments of the spao%“ are not simple.

ements, we will use the notatiom, to denote the solution
of the particle model in (28) to emphasize thatindirectly Lemma 4 (Inf-Sup condition for b) With above notation

depends on the choice gf' andM". and definitions, there exists a constaft> O:
. b(pn, Vi
inf sup M > ylg

4.1 Existence and Uniqueness of Solutions HneMNy, cxh [ Hnllm Vil x

In this section, we prove that the discretized Problem (@8)Rroof Let p, € MM, Similarly to the continuous case, we
well-posed. We shall review the lemmas of the previous sdieed to show that
tion in order to highlight the differences between the “con- 1y, v )|
tinuous” and “discrete” problems. We omit consideration ofup ———— > V€||Hh|||v|
continity ofa(-,-), b(-,-), and|(-) as they follow trivially Vhex" [Vhllx
(sinceX" ¢ X andM" c M). . - , .
One difficulty in analyzing the discretized saddle poithVIth y{,‘ > 0 independent ofiy. We consider the two cases:
problems is due to the fact that the kernel sp}s@és nota 1. Continuum/RVE coupling: In this case, givep, € M,
subset ofXo. we can always find a function, € V" such thatv;; =
Hn— Ua ON Qo andvi, = 0 onQc\ Qo, wherepy = tn(Xa)-
Furthermore, we can selezt= L, so that\V, = (Vh, 2).
Thus,

b (tn, Vi b (th, Vi
a(Un,Vh) sup [2(Hn V)| b (kin Vi) |
wiexn [IVhllx IVl

Lemma 3 (Coercivity ofa) Leta. = ag = 1/2. Then, with
the above notation and definition, there exists a constant
Y2 > 0 such that:

inf  sup —————
UnXivexy I0nIx VX =~ 2
The proof then follows the one in Lemma 2 and we con-
with 12 = ya. clude here thag) = .
2. Particle coupling: In this case, we can always find a
Proof The proofis actually similar to the one shown in Lem-  vectorZe Vg such that1Z = i, on Qo. On Q¢\Qo, Zis
ma 1. We just provide here a sketch of it. chosen as a constant vector so ¥at= (0, /72). Then:

We observe that function, = (vy,2) in X{ satisfy -
oup 1P| 1D (un.Yh) |

b(tn,Vh) =0, Vi € M" wexh Millx T IValx (12,




We just need to show th#ii||m /]2y, is greater than a 4.2 a priori Error Estimates

positive constant. Sincas constant 024\ Q,, we have

(using Lemma A-2): For completeness, we state the followiagpriori error esti-
) mate. The proof follows exactly that of the traditional mixe

Mo | <z. + 2_1>> finite element error estimate (see e.g. [10]).

|ﬁ&;ajm@zlf+5<zﬁz(__7_

< mianiIi |“h|a1(90) + 5’-7&

Theorem 3 Let (u,w,A) € V¢ x Vg x M be the solutions to
(24) and let (un, Wh,Ap) € V" x Vg x MP be the solutions
to (28). Then,

If B; =0, we can fixu, = 0 so that: (| (U= un, w—wh)||x <Ci infh U= Vhlve
VheV(
512 12 _ maxkil; 2 . B
1218, < maxkhlnlFa o, =g 1l +Cz inf I\~ phlu

A=A <Gz inf |lu—=vpllyv,+Cs inf |A —
andyf = \/Bz/max k. A=Al < Co inf lu—vhllv,+Ca_inf A — ol
If B1 Is non-zero, then using Lemma A-2, we get

5 where
a2 2 2
12, < miani|i|I"lh|Hl(Qo) + m”uhHLZ(QO) Ma M, My
o C=\1+—)|(1+— | .C=—F
5 maxkl; va 3 A
R VAT N A Ma/ M M My MaM
1|40
2 2 c——a(1+—a> 142 ) Co= (142420
(B]-H"’thLZ(QO)+[32“Jh‘H1(QO)) ° W A W ¢ SV
o) maxk;li> 5
=max| ——,———— | ||l
<31|Qo| Bz M 5 Numerical Examples

which completes the proof with: In all the following experiments, we consider the domain

Q = (0,3). Moreover, the force, applied atxy, is chosen
VQ —min | B1| Qo / B2 in such a way that the displacement at the right end of the
o 7\ maxkil domain, when using the continuum model everywher@ jn
is equal to unity. In what follows, we restrict ourselves to
O the cases where the equilibrium lengths of the springs are al
equal.
Remark 8We note that in the discrete case, the bilinear formq
b(-,-) does satisfy the inf-sup condition f = 0. Indeed,
we can in this case bound the tefm|y1 o, bY [[Hnll 20, 5.1 Uniform springs coefficients with, ag constant
using an inverse inequality. However, the inf-sup constant
would be dependent on the mesh sizeand would go to In the first set of experiments, we consider uniform springs
zero ash tends to zero. such thatk =k = 1,i = 1,....,m. In this simple case, the
) solutions of the spring model and of the equivalent contin-
Remark 9We also note here that, as pointed out by Bejum model in all ofQ are linear. The continuum model is
Dhia and Rateau [7], the discretization of the Lagrange myjse in the subdomai€l; = (0,2) while the particle model
tiplier space cannot be finer than the discretization of thesed inQq = (1,3) and the weight coefficients, andag
continuum mode&ndthe particle spacing. This can be seegre chosen to be/2 in the overlap region. There ane= 8
from the proof since we would not be able to finthaor 11z gprings inQy, i.e. 9 particles. The equilibrium length of each
that is an extension gij, since it is possiblen # i, in Q. spring is then given by = |; = 0.25. We discretize the con-
tinuum region withN® = 4 elements. Because the springs

Finally, the following theorem follows from the contmu-are uniform, the representative cell used to derive the cor-

ity on X" and coercivity or)(g of .a(~,_-), from the continu?t_y responding Young’'s modulug is constituted of only one
of I(-) on X", and from the continuity and inf-sup Cond't'or’spring. Then

of b(-,-) onM" x X" (see Lemmas B-1, B-2, B-3, and Lem-
mas 3 and 4): E=kl=1x025=0.25 (29)

Theorem 2 Problem (28) with3; > 0 and3; > 0 and with \we first consider the case where the two models are cou-
ac, 0g constant or linear is well-posed, in the sense that thgled via a particle coupling, that is, the finite element spac
solution to (28) exists, is unique, and depends continyoushh for the Lagrange multipliers is dictated by the parti-
on the data. Moreover, all constants are independent of hcles. As expected, this coupling ensures that the solutions
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Fig. 7 Uniform spring coefficients with particle coupling aied, aqg

X

X

Fig. 8 Uniform spring coefficients with continuum coupling anog,

constant. The three graphs correspontd4morm,H! seminorm, and Qg constant.
H?® norm coupling cases.

5.2 Non-uniform stiffness coefficients with,, ayq constant

of the Arlequin problem (28) are linear and that the contilh more general settings, we are interested in problems in
uum part exactly coincides with the particle solution ovewhich the spring coefficients are not necessarily uniforin bu
the overlap region in the three cases corresponding tb%hepossibly randomly distributed. As a simple test case, we con
norm,H* seminorm, andi* norm couplings (see Figure 7).sider here a periodic distribution of springs with two spgrin

In these and subsequent plots, the initials LM refers to Lstiffness constantg = 100 andk; = 1. We have fomeven:
grange multiplier. The solution at= 3 is equal to unity in
the three cases. kojo1=ki j=1,....m/2

j=1,...,m/2 (30)

We repeat above experiment using this time a continuufai = k2
coupling, i.e. the elements " are the same as M on
the overlap region. The coupling is therefore “weaker” thatss before, we consider the following geometry and discreti-
in the preceding experiment. The computed displacementation data:Q. = (0,2), Qq = (1,3) m= 8, andN® = 4.
X = 3 is nowzy, = 1 for theH! seminorm coupling, buin, = The equilibrium length of the springs is once again equal to
1.01042 in the other two cases (see Figure 8). | =1; = 0.25. It follows that the Young’'s modulus is given
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Fig. 9 Periodic distribution of spring coefficients with partiateu- Fig. 10 Periodic distribution of spring coefficients with continau
pling andac, ag constant. The three graphs correspondldmorm, coupling andae, ag constant.
H® seminorm, andH norm coupling cases.

the results when using continuum coupling. We observe that

by, using a representative cell (or Representative Volume &n = 1 for theH* seminorm coupling, buin = 1.08727 and

ement, RVE) made of two consecutive springs: Zn = 1.08710 for the.? andH* norm coupling, respectively.
We note here that in thel® seminorm case, the constant
kika 100 modes ofVy are fixed by settingy to be equal to the dis-
E= 1k 2l = mO.S = 0.49505 (31) placementi, atxa.

Figure 9 shows the Arlequin solutions in the case of partic'l?i-:emark 10we ob_serve in Figure 10 a sll_ght c_ha_nge in the
ope of the continuum displacemantThis variation can

coupling. It is not surprising that we firg}, = 0.691822 in S

the three cases of coupling since such a coupling is necgg_int_erpreted by writing the equilibrium equation at the in
. - térfacial pointx;. We have:
sarily too constraining.

In this problem, it is clear that the elementdMig should du
not be smaller than the representative cell used to derf':ve(j( N +adk1|lT (32)
the continuum model. For the continuum coupling, we see a
that the size of the elements M, is equal to the size of Becausery = 1/2 here, and thus does not vanisixgtoth-
one representative cell, i.a.= 2| = 0.5. Figure 10 shows ing guarantees that the two derivatives should be the same on

B du Wy — W
) =acE &I
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the left and right sides of,. This issue is therefore inherent Arlequin Solution

to the choicea; and ag constant and should be improved 19F ' ' ' Y ]
by the use of linear or cubic weight coefficients (see next LM meshsize = h (cont. model) é
subsection). Note that this was also observed in [12]. 1 2 norm coupling ke

o
©

"« linear

5.3 Influence of the weight coefficienat

Displacements
o o
B o]

In this subsection, we study the effect of using linear and | " FE nodes ||
cubic weight coefficients. We consider here the same case -—O— Particles
as the one studied in the previous subsection with contin- : :

.O
[N

o

0.5 1 15 2 25 3

uum coupling. We show in Figures 11 and 12 the results 0 "
with a linear and cubic, respectively. We now observe that Arlequin Solution
the change in slope in the continuum displacemeist no i i i
longer visible for theL? andH* norm couplings. However, Y21 M meshsize — h (cont. model)
a variation is the slope has appeared for teseminorm 1t . i d
coupling. We do not have an explanation for this behavior at £ SCMIMOTI cOupting e
this time. @ 0.8 a linear /O— g
e .
The linear and cubic cases apparently provide similarre- & 0.6 A=
sults to the naked eye. Actually, there exists a slight diffe = =
ence. Indeed, the displacements of the particlgatvith g 04 X3
theL? andH* norm couplings are, = 1.04084 for the lin- 0.2 —+— FE nodes |,
ear case and, = 1.03707 for the cubic case. These values ‘ ‘ | =O- Particles
are nevertheless greatly improved over the constant case fo o5 0.5 1 15 2 2.5 3
which approximately,, = 1.087. X
Arlequin Solution
1.2f : : :
5.4 Representative volume element LM meshsize = h (cont. model) o
® g H' norm coupling ®~/7
Our objective in this subsection is to show that the mesh size § 0.8} « linear &
h for the continuum solution can be chosen arbitrarily from § sl @
the equilibrium length of the particles, but that it is im- g~
portant to select the size of the elements for the Lagrange £ 0.4} 5
multiplier at least equal to the size, denotedof the rep- o2l —FE nodes |
resentative cell or volume element. Note that the continuum ' -—O— Particles
coupling case then becomes a subcase of this configuration. 00 o5 1 s 5 oy 3

We show in Figure 13 the results withlinear wherh=1/2
and the meshsize for the Lagrange multiplier is equal,to _ o
which in this problem is simply 12 The results are exactly Fi9- 11 Same as Figure 10 but with linear.
identical to the results obtained in Figure 11 for tifeand
H® norm couplings. However, the behavior of the continuum
solution in the overlap region when using tHé seminorm We collect in Table 6 the displacementsat 3 for the
coupling has the tendency to follow that of the particle soldlifferent mesh sizeb and coupling types based on thé
tion. This is attributed to the fact that this type of couglinnorm,H! seminorm, and4* norm. Here the weight coeffi-
does not constrain enough the two displacement fields.dentsa. andag are chosen linear. For the andH?! norms,
our opinion, theH! seminorm coupling should not be rethe displacement at = 3 are constant for every value of
tained as a useful candidate for this type of simulations. h until h = 1/4 and then the value remains constant again.
This shows that the solution is exact for evérg 1/4 (i.e.
the spacing of the particles), while for> 1/4, the “aver-
5.5 Influence of mesh size age” solution is linear and is resolved exactly with linear
elements. For théi! seminorm, the results improve &s

In this section, we study the effect of the mesh size on tfecreases. Here, the solution is not exact due the constant
Arlequin solution. The equilibrium length of the springs i§hosen (i.e. the solution match a point) so, as the mesh is
the same as in Section 5.2 and we vary the size of the gafined, the constraint becomes enforced more exactly, unti
ements inv," from h = 1 to h = 1/32. The stiffness of the h < 1/4 where the solution becomes exact.

springs is the same as in Section 5.2 and we consider hereWe show in Figures 11 and 14 the Arlequin solution and
the continuum coupling. Lagrange multiplier, respectively, for=1/2. The same re-

X



13

Arlequin Solution

1.2¢ : b
LM meshsize = h (cont. model) >
U : 7]
L 1 .
g norm coupling o @
@ 0.8[ a cubic 7 1
£ 1<)
g o6 1
@
A 0.4r R
0.2 —— FE nodes ||
- —0O— Particles
0 ‘ ‘ ‘ ‘ ‘
0 0.5 1 1.5 2 25 3
X
Arlequin Solution
1.2f : : : E

LM meshsize = h (cont. model)

[any
oY)
o

S ) )
H" seminorm coupling /

(%] .
g 0.8} a cubic P—T
£ .
g 0.6 - - d 4
2 4l A= ]
A 04 =&

0.2 —+— FE nodes ||

- —O— Particles
0 ‘ ‘

15 2 2.5 3
X

o
o
o
N

Arlequin Solution

=
N

LM meshsize = h (cont. model)

H
N
‘\J

H' norm coupling

2 oo
@ 0.8 o cubic K
IS {<)
é 0.6
&
3 0.4}
0.2 —+— FE nodes ||
- —0O— Particles
o , ,

0 0.5 1 15 2 25 3
X

Fig. 12 Same as Figure 10 but with cubic.
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Fig. 13 Same as Figure 11 but with=1/2 and element size for the
Lagrange multiplier (LM) equal tol2= €.

Table 6 Displacementgy, atx = 3 for various mesh sizes and coupling

types. The equilibrium length of each springd is 0.0625.

h L2norm  H!seminorm H!norm
1 1.04084 0.994358 1.04084
1/2 1.04084 0.964384 1.04084

1/4-1/32  0.930203 0.930203 0.930203

to zero linearly withh if 3, is set to zero. Note also how

the lineara is reflected in the character of the Lagrange
multiplier solution - at the interface of the overlap and-dis
crete domains, the Lagrange multiplier solution is zeromwhe
h<1/4.

5.6 Reconstruction of solutions

sults for the casé = 1/8 are shown in Figures 15 and 16
and then forh = 1/32 in Figures 17 and 18. Note that thdn the overlap region, the Arlequin method produces two so-
Lagrange multipliers are constant for thé andH?® norms Iutions, one corresponding to the continuum model and the

cases, and smooth for tiE' seminorm coupling wheh =

other to the particle model. Neither of these two solutions

1/2. For theL? norm, we observe that the Lagrange mukepresents the solution of the problem at hand. It seems nat-
tiplier u, displays larger and larger variations as the mesinal here to reconstruct a displacement field by combining
is refined. This result is commensurate with our theoretidhle two solutions on the overlap region. This can be done
results in the sense that the discrete inf-sup constant goesvo ways. In the first one, we reconstruct a displacement
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Fig. 14 Lagrange multiplier solution in the cabe- 1/4 andh=1/2 Fig. 15 Arlequin solution in the cask= 1/4 andh = 1/8 using the
using the continuum coupling amdlinear. continuum coupling and linear.

field as follows:
G(X) = acun(X) + aglz(x), Vx € Qq (33)

In the second one, a displacement vector is reconstructeds have presented in this paper a technique to couple a par-
ticle model with a continuum model. The proposed approach
is essentially an extension of the Arlequin framework which
We show in Figure 19 the Arlequin solution and reconstrubad been previously developed to couple partial diffeednti
ted solution in the case where a continuum couplingldhd equation systems of different scales. We have given a de-
norm coupling, along with constant weight coefficients tailed mathematical analysis of the coupled one-dimemgion
anday, are used. Herdl® = 2, and there are eight springgproblem and shown that the problem is well-posed when
distributed over each element. We observe that the receonstant weight coefficients and linear coefficients are cho
structed solution is discontinuous at both end points of teen in the overlap domain. However, it is not possible to
overlap domain and that the displacements display a rettow that the inf-sup condition is satisfied when using a cou-
tively erratic behavior inQ,. We show the same results inpling constraint based on theé norm. This tells us that it
Figures 20 with linear weight coefficients and the respectiis insufficient to enforce a constraint on the displacements
solutions look much better. only; this fact is actually observed experimentally as the L

6 Conclusions

Z :aCUh(Xi)+ade, v' :1a"'an0 (34)
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Fig. 16 Lagrange multiplier solution in the cae- 1/4 andh=1/8 Fig. 17 Arlequin solution in the case= 1/4 andh = 1/32 using the
using the continuum coupling amdlinear. continuum coupling and linear.

grange multiplier converges in this case to a distributiorglated to the method need to be addressed. For example, one
We have also presented one-dimensional numerical exatdestion is whether we can define a coupling constraint that
ples with the objective of showing that the proposed aj$ explicitly dependent on the size of the representatille ce
proach was well suited to solve problems in which the sprifVE) so that the formulation becomes fully independent of
constants in the particle model could be non-uniformly dighe mesh size. It would also be interesting to see how this
tributed. In particular, we considered a periodic system &fethod behaves in the case of nonlinear problems, for ex-
two springs for which it is straightforward to derive an equi ample, by considering potentials of the Lennard-Jones type
alent continuum model. We showed that the method prbinally, a major and important study will be to investigate
duced satisfactory results as long as the mesh size usethgouse of the method for problems in dimensions two and
discretize the Lagrange multiplier space was at least targaree and for time-dependent problems. We shall strive to
than (a multiple of) the size of the representative cell definaddress these issues and propose answers to these questions
to compute the Young’s modulus for the continuum modelin forthcoming papers.

The present study of the Arlequin method for the cou-

pling of particle and continuum models is by no means comeknowledgements S. Prudhomme would like to thank Denis Aubry
plete. This is a very preliminary work and numerous iSSués the kind invitation to visit Ecole Centrale de Paris, figa, during
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Fig. 18 Lagrange multiplier solution in the cabe- 1/4 andh = 1/32
using the continuum coupling ardlinear.

the Spring of 2006, where this work was initiated. P. T. Banrae-
knowledges the support of the DOE Computational Sciencel(@ta
Fellowship. Support of this work by DOE under contract DEGRS
05ER25701 is gratefully acknowledged.

A Technical Lemmas

We first recall without proof the classical Poincaré indifyan one
dimension:

Lemma A-1 (Poincaré Inequality)Let ve H(Q.). Then
\ch Ich

IVIZ2 Mason < A (35

Lemma A-2 Letve H1(Q,) and letv be the average of v ofd, i.e.
1
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Fig. 19 Arlequin solution and reconstructed solution using a genti

uum coupling for the Lagrange multiplier and thé norm coupling
with o constant.
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Then

|o|

|Qo| V < Hvaz <|Qo\V2+

MHl (Q0)

Proof Letve Hl(Qo). We note that
/ (vf\7)2dx=/ V2 — 2w+ vPdx
Qo Qo

= M2 g 72\7/90 vdx+ 2| Q|

= [Vl1%2 ) — 10l
The first inequality follows by observing that the integral the left
hand side is necessarily non-negative.
Let Q, be represented as the inter¢al, x,). Sincevis continuous

on Q,, we know that there exists X3 < x < xp such thaw(x) = v. We
posev=v+Yy. Then

MZ2(0p = [, (79)%dx
:/ \?dx+2\7/ ydx+/ yPdx
Qo Qo Qo
=\72|QO|+/Q y2dx

as the average of, by definition, is simply zero. Moreover, singe

B Proof of Lemmas for the Continuous Problem

B.1 Continuity ofa

Lemma B-1 Let &+,-) be the bilinear form defined i(23). Then, for
allu = (u,w),V = (v,2) € X, there exists a constant\+ 0 such that:

a(U,V)[ < Ma|UIx[(V)lIx
with My = 1.

Proof From Cauchy-Schwarz and Holder inequalities, we get

m
aUV)| < [ acElu/|V] de > ki w112 -2
C i=
< Ca|ullve ] IVlive +CaWiv, 12l

whereC; = max(ac) = 1 andC, = max (aj) = 1. ¢ From the defini-
tion of the norm invy, we then have:
[a(U, V)| < [[ullve [IVllve + lIWlivg 1Zlhvg < IU1x[IV/[Ix

andM, = 1. ad

vanishes ak in Q,, we can use the Poincaré inequality to find the

bound:
/ ydx< | °‘ VPis oy
which completes the proof. O

Lemma A-3 Let ze R™*! and letz be the average of z d,. Then
No
7, <22+23 (3-71)°
SEE

Proof Letz,i=1,...,n, be defined as:
—_ i 2+z4
Qo] 2

Thus,

= i z—2z li li 2
oA R T N A AT N (Zn ZI(ZK 1)
that is:
li = i fz—za Q2
Qo] =4 rzo< PR

Summing over all terms in=1,...,
Sili =1l

ZOMQO (Z' ; ! kzo(zkzkl)>

no, and noting thafy z = zZand

_ D 1

:Hi; _QO|<<kzl|k> ) (z—17-1)
Therefore
\Zno|§|f[+zol %((zm) ) 12—z

no
<+ |z -2z-4]
2

which yields the desired result, using the fact ttaat b)? < 2(a? +b?)
a,beR. [}

B.2 Continuity ofb

Lemma B-2 Leth(-,-) be as defined i23). Then, for ally e M,V =
(v,2) € X, there exists a constantg\- 0 such that:

Ib(1,V)| < Mp||pt[Im][V]Ix
with

_ /31|Qc\2+232 B B Q0|2 2B,
szmax( \/ o\ = Zminkh )

Proof By making use of Poincaré inequality (35) and the fact {hat
b)? < 2(a?+b?), Va, b € R, we get:

Ib(k, V)| < [[1llmllv—TZ][m
< [klim (lIVilm + [[17Z]|m)

< V2| pllm/IVIIG + 1172115

Now,
IVI§ = BullVIZ2 gy + BelVifi g
< B1HVH|_2 (Qc) +B2|V|al(g )

< B1|Qc*+ 25,

e A

In the same way, using Lemma A-2 and the fact ffiatis a piecewise
linear continuous function, we have

HnZ”M *Bl”nZHLZ (Q) +BZ‘nz|a1(_Qo)
2 Q0 2
< Bl‘QO‘ + Bl 2 +BZ “72|H1(_Q)

Qo2 +2
< %\QO\ 522+(7Bl‘ o Bz)|z|\2,d

2min kil
B B1lQol* + 282 2
< e el b B )
= max( F ‘Q0‘7 2m|nk||| HZHVd
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We combine above results and find

Ib(u, V)| < MpllllmIV [Ix
with:

_ Bl\Qc|2+232 B | Bil0|* +2B2
Mp = 2max(\/ \/ [Qo], Pminkl; )

B.3 Continuity ofl

Lemma B-3 Let|(-) be as defined i23). Then, for all Ve X, there
exists a constant M> 0 such that:

1V <MV
with
2\f\max( ! )
Vo v/mink
Proof From definition ofl (-), we have, withV = (v,2):
NV < [f2zm| < [F]|zm] < |F] |20, + Z (z—27-1)
i=no+1
Sf\/zzn “2Y @-20)
i=np+1
Using Lemma A-3 yields:
No
IV)I<If]) 42 +45 (2 -2-0+2 S (@-21)2
i= i=no+1
f 457 < 2
< - i(z—z_
<11y 507+ i 2 M@ =20

1 1 2 42
< Zf\/max(é’minik;) (12, +2°)
It follows that
TV < M[IZlvg <MV 2)[Ix = MV ][x

with

S
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