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Bâtiment du Doyen Jean Braconnier, 43, boulevard du 11 novembre 1918, 69622 Villeurbanne Cedex, France

Abstract

In this paper, we generalize several works in the extreme value theory for the estimation of the extreme

value index and the second order parameter. Weak consistency and asymptotic normality are proven under

classical assumptions. Some numerical simulations and computations are also performed to illustrate the

finite-sample and the limiting behavior of the estimators.

Keywords: Extreme value index, second order parameter, Hill estimator, semi-parametric estimation,
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1 Introduction

The estimation of the extreme value index has been widely considered in the literature. It allows to do inference
in the far tail of a probability distribution like large quantiles and return periods of high levels estimations.
Even when restricting to heavy tail underlying distributions, corresponding to positive value of this parameter,
the estimating problem remains interesting, but difficult. Indeed, the accuracy of any estimator depends on
the number k of top order statistics to be consider. To be precise, small values of k provide high volatility
whereas large values of k induce considerable bias. Hence, semi-parametric extensions may be considered for
increasing the degree of freedom in the trade-off between variance and bias.
In this paper we study generalizations of some estimators of the extreme value index, denoted by γ. More
precisely, let us introduce a sample X1, . . . , Xn with continuous distribution function F . We assume that F
belongs to the max-domain of attraction of the Fréchet distribution with parameter γ > 0, which is equivalent to

lim
t→∞

1 − F (tx)

1 − F (t)
= x−1/γ , ∀x > 0. (1)

For some weighted function g and for some positive real α, our statistics of interest have the following form

Γn,k(g, α) =

1
k

∑k
i=1 g

(
i

k+1

) [
log

Xn−i+1,n

Xn−k,n

]α

∫ 1

0
g(x) (log(x−1))

α
dx

, (2)

where X1,n ≤ . . . ≤ Xn,n denote the order statistics of the sample. This estimator is the well-known Hill
estimator (1975) when the parameter α and weights are one. The class of the so-called kernel estimators given
by Csörgő et al. (1985), as the one studied in Beirlant et al. (1996), corresponds to a specific form of the
weighted function with moreover α equal to one. Note also that Gomes and Martins (1999, 2001) and Segers
(2001) considered such type of estimators when the weighted function g is identically equal to one and α is
some positive real. Note finally that Hüsler et al. (2006) introduced these weighted estimators when α is equal
to one. Consequently, the family of statistics Γn,k(g, α) generalizes several approaches already studied in the
literature.

As remarked above, the choice of the number k of order statistics used in the estimation of the extreme
value index is of primordial importance. We can define an optimal sequence from the asymptotic mean square
error point of view. This sequence can be determined when the underlying distribution has a second order
expansion involving an extra unknown parameter, namely the second order parameter that is denoted by ρ.
We refer for instance to the works of Hall (1982), Dekkers and de Haan (1993) and Draisma et al. (1999).
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Consequently several estimators of ρ have been studied in articles on the adaptive choice of k. See, e.g., Hall
and Welsh (1985), Drees and Kaufmann (1998), Gomes et al. (2002) and references therein.
In this paper we also propose three methods in order to estimate the parameter ρ. The idea consists in com-
posing a consistent estimator of a function of ρ from differences and quotients of several estimators Γn,k(g, α).
Firstly, we consider

Γn,k(g1, 2α) − Γn,k(g3, 1)2α

Γn,k(g2, 2ℓ) − Γn,k(g4, 1)2ℓ

(
Γn,k(h1, α+ ℓ) − Γn,k(h3, 1)α+ℓ

Γn,k(h2, 2ℓ) − Γn,k(h4, 1)2ℓ

)2

for α and ℓ some positive reals. Note that this definition extends the class of estimators of Gomes et al. (2002)
studied for constant weighted functions and for ℓ equal to one. Under some assumptions, we can show that this
family of estimators converges in probability. Since the limit does not depend on the parameter γ, it furnishes
a consistent family of estimators of some function of ρ. Similarly, we study

Γn,k(g1, αg) − Γn,k(g3, 1)αg

Γn,k(g2, αg + ℓ) − Γn,k(g4, 1)αg+ℓ

Γn,k(h1, αh) − Γn,k(h3, 1)αh+ℓ

Γn,k(h2, αh + ℓ) − Γn,k(h4, 1)αh+ℓ

for positive reals αg, αh, ℓ and

Γn,k(g1, αθ1)
τ/θ1 − Γn,k(g2, αθ2)

τ/θ2

Γn,k(g3, αθ3)τ/θ3 − Γn,k(g4, αθ4)τ/θ4
.

for positive reals α, θi and τ . Note that the last-mentioned class is a weighted generalization of that of
Fraga Alves et al. (2003).

The organization of the paper is as follows. In Section 2 we describe the hypotheses required on the
underlying distribution F and on the class of weighted functions g. Section 3 presents our results on the statistics
Γn,k(g, α). We state weak consistency and asymptotic normality for the parameter γα in Proposition 1 and 2.
In Corollary 1 and 2 we derive asymptotic properties of two estimators of the extreme value index. As a
consequence, we propose an estimating procedure for large quantiles in Corollary 3. Section 4 is devoted to the
estimation of (a function of) the second order parameter. Three different families of estimators are proved to be
weak consistent in Proposition 4, 6 and 8. We also obtain the asymptotic normality of suitable normalization
of these estimators in Proposition 5, 7 and 9. Section 5 gives some numerical results. Finally, all proofs are
postponed to Section 6.

2 Preliminaries

Let X1, . . . , Xn be n independent and identically distributed (i.i.d.) random variables with common continuous
distribution function denoted by F . Let us denote by X1,n ≤ . . . ≤ Xn,n the order statistics of our sample.
Throughout the paper, our statistics of interest are Γn,k(g, α) given by (2) with α some positive real and g
some well-behaved weighted function. In this section, we summarize assumptions required on F and on the
weighted function g. We also introduced some notations.

2.1 Assumptions

For t > 1, we set

U(t) := F←
(

1 − 1

t

)

where the arrow denotes the inverse function. Hypothesis (1) can be written in terms of the quantile function
U as follows.
Assumption (H1): There exists a positive real γ such that

lim
t→∞

logU(tx) − logU(t) = γ log x, ∀x > 0.
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In order to estimate the extreme value index γ and more specifically to achieve the asymptotic normality of
our estimators, we need to assume a second order expansion.
Assumption (H2): There exists a positive real γ, a negative real ρ and a function A with A(t) → 0 of constant
sign for large values of t such that

lim
t→∞

logU(tx) − logU(t) − γ log x

A(t)
=
xρ − 1

ρ
, ∀x > 0.

Let us remark here that Assumption (H2) implies that the function |A| is regularly varying of index ρ (see for
instance de Haan and Ferreira, 2006).
As before, we can prove the asymptotic normality in the estimation of the second order parameter ρ if a third
order expansion is assumed.
Assumption (H3): There exists a positive real γ, some negative reals ρ and β, some functions A and B, with
A(t) → 0 and B(t) → 0, both of constant sign for large values of t such that

lim
t→∞

(logU(tx) − logU(t) − γ log x) /A(t) − (xρ − 1) /ρ

B(t)
=

1

β

(
xρ+β − 1

ρ+ β
− xρ − 1

ρ

)
, ∀x > 0.

Note that under Assumption (H3) it can be proved that the function |B| is regularly varying of index β. Once
again we refer for details to de Haan and Ferreira (2006) and references therein.

We will assume that the weights satisfy the following condition.
Assumption (G): g is a positive, non-increasing and integrable function defined on (0, 1) such that there exists

δ = δ(g) > 1/2 satisfying 0 <
∫ 1

0
g(x)x−δdx <∞ and 0 <

∫ 1

0
g(x)(1 − x)−δdx <∞.

Finally, throughout the paper we will assume that k = k(n) is a sequence of integers satisfying
Assumption (K): k → ∞ and k/n→ 0 as n tends to infinity.

2.2 Notations

For the sake of clarity we introduce here some notations. Let g and g̃ be some functions defined on (0, 1). Let

also H and H̃ be some well behaved functions in view of the definition of the following operators

µ(g,H) :=

∫ 1

0

g(x)H(x)dx,

ν(g, g̃,H, H̃) :=

∫∫

[0,1]2
g(x)H ′(x)g̃(y)H̃ ′(y)(x ∧ y)(1 − x ∨ y)dxdy,

σ2(g,H) := ν(g, g,H,H).

They will play the role of asymptotic mean, variance or covariance of some random variables.
For x ∈ (0, 1), α some positive real, ρ and β some negative reals, let us denote

Iα(x) := (log x−1)α,

Jα,ρ(x) := (log x−1)α−1x
−ρ − 1

ρ
,

Kα,ρ(x) := (log x−1)α−2

(
x−ρ − 1

ρ

)2

,

Lα,ρ,β(x) := (log x−1)α−1 1

β

(
x−(ρ+β) − 1

ρ+ β
− x−ρ − 1

ρ

)
.

Finally, when Hα and H̃α stand for some functions of the preceding list, we define the “normalized” version of
the operators µ, ν and σ by

µ̄(g,Hα) :=
µ(g,Hα)

µ(g, Iα)
,

ν̄(g, g̃,Hα, H̃α) :=
ν(g, g̃,Hα, H̃α)

µ(g, Iα)µ(g̃, Iα)
,

σ̄2(g,Hα) := ν̄(g, g,Hα, Hα).

3



3 Estimating the extreme value index

In this part we present some generalizations for the estimation of the extreme value index γ. We start by the
study of the asymptotic behavior of Γn,k(g, α) defined by (2). We recall that α is assumed to be some positive
real. As given in the next proposition, we see that under (H1) these statistics form a family of weak consistent
estimators of the parameter γα.

Proposition 1. If (G), (H1) and (K) hold then Γn,k(g, α) → γα in probability as n→ ∞.

When the second order expansion (H2) holds true, we can derive the asymptotic normality property.

Proposition 2. If (G), (H2) and (K) hold then we have the distributional representation

Γn,k(g, α) =d γα +

(
γασ̄(g, Iα)

Pk(g, α)√
k

+A(n/k)αγα−1µ̄(g, Jα,ρ)

)
(1 + oP(1)) (3)

where Pk(g, α) is asymptotically standard normal.
As a consequence, if

√
kA(n/k) tends to λ <∞ as n→ ∞, we get

√
k (Γn,k(g, α) − γα)

d−→ N
(
λαγα−1µ̄(g, Jα,ρ), γ

2ασ̄2(g, Iα)
)
.

Remark 1. As already remarked in the introduction, the statistics Γn,k(g, α) are shown to be generalizations
over some estimators presented in the literature.

• Hn,k := Γn,k(1, 1) corresponds to the Hill estimator (1975).

• Zn,k := Γn,k

(
log(·−1) − 1, 1

)
is a slight modification of the QQ-estimator introduced by Kratz and Resnick

(1996); Schultze and Steinebach (1996).

• For α > 0, Γn,k(1, α) are the statistics studied by Gomes and Martins (1999, 2001) and by Segers (2001).

• Γn,k(g, 1) is the weighted least squares estimator of Hüsler et al. (2006) for positive g, of bounded variation

on (0, 1) such that there exists δ = δ(g) > 0 with 0 <
∫ 1

0
x−δg(x)dx <∞ and 0 <

∫ 1

0
(1−x)−δg(x)dx <∞.

Following the ideas of Gomes and Martins (1999, 2001) and Segers (2001) we derive from Γn,k(g, α) some
estimators of the parameter γ.

From the one hand, a possible estimator of the parameter γ is Γ
1/α
n,k (g, α). Taking into account the distri-

butional representation of Γn,k(g, α) given by (3), we obtain easily

Corollary 1. If (G), (H2) and (K) hold, if moreover
√
kA(n/k) tends to λ <∞ as n→ ∞ then

√
k
(
Γ

1/α
n,k (g, α) − γ

)
d−→ N

(
λµ̄(g, Jα,ρ),

γ2

α2
σ̄2(g, Iα)

)
.

From the other hand, another possible estimator of γ is
Γn,k(g1, α)

Γα−1
n,k (g2, 1)

. Note the following result

Lemma 1. If g1 and g2 satisfy (G) then (Pk(g1, α1), Pk(g2, α2)) is asymptotically a centered bivariate normal

random vector with covariance given by
ν(g1, g2, Iα1

, Iα2
)

σ(g1, Iα1
)σ(g2, Iα2

)
.

Using the distributional representation of Γn,k(g, α) and Lemma 1 we obtain

Corollary 2. Assume that g1 and g2 satisfy (G). If (H2) and (K) hold true and
√
kA(n/k) tends to λ < ∞

as n→ ∞, then
√
k

(
Γn,k(g1, α)

Γα−1
n,k (g2, 1)

− γ

)

is asymptotically normal with mean λ [αµ̄(g1, Jα,ρ) − (α− 1)µ̄(g2, J1,ρ)] and variance

γ2
[
σ̄2(g1, Iα) + (α− 1)2σ̄2(g2, I1) − 2(α− 1)ν̄(g1, g2, Iα, I1)

]
.

4



A consequence of the estimation of the extreme index is that of high quantiles defined by xp := F←(1 − p)
where the order p tends to 0. Several estimators of xp have been proposed in the literature by extrapolation
along the fitted line of the Pareto QQ-plot. Indeed, Weissman (1978) proposed the well-known estimator

x̂H
n,k,p := Xn−k,n

(
k + 1

(n+ 1)p

)Hk,n

where we recall that Hn,k denotes the Hill estimator. More recently, Fils and Guillou (2004) established the
asymptotic behavior of the quantile estimator:

x̂Z
n,k,p := p−Zk,n exp

(
1

k

k∑

i=1

logXn−i+1,n − Zk,n

k

k∑

i=1

log

(
n+ 1

i

))

where we recall that Zn,k is the QQ-estimator. We deduce here the quantile estimator

x̂Γ
n,k,p(g, α) := Xn−k,n

(
k + 1

(n+ 1)p

)Γ
1/α
n,k (g,α)

. (4)

Corollary 3. Under the assumption of Corollary 1 and for p = p(n) such that p and np tend to 0 as n→ ∞,
we have √

k

log an

(
log x̂Γ

n,k,p(g, α) − log xp

) d−→ N

(
λµ̄(g, Jα,ρ),

γ2

α2
σ̄2(g, Iα)

)

where an =
k + 1

(n+ 1)p
.

4 Estimating the second order parameter

We derive in this part some estimators of the second order parameter from the statistics Γn,k(g, α). We start
by a refinement of the distributional expansion.

Proposition 3. If (G), (H3) and (K) hold then

Γn,k(g, α) =d γα + γασ̄(g, Iα)
Pk(g, α)√

k
+ αγα−1µ̄(g, Jα,ρ)A(n/k) + αγα−1σ̄(g, Jα,ρ)P k(g, α, ρ)

A(n/k)√
k

+
α(α − 1)

2
γα−2µ̄(g,Kα,ρ)A

2(n/k) (1 + oP(1)) + αγα−1µ̄(g, Lα,ρ,β)A(n/k)B(n/k) (1 + oP(1)) (5)

where P k(g, α, ρ) is asymptotically standard normal.

Note that the third term in the distributional representation (5) is a function of the parameters γ and ρ.
The main idea consists in the combination (by difference and quotient) of several statistics Γn,k(·, ·) in order
to get rid of the first two terms and to conserve only a weak consistent estimator of some function of ρ.

Throughout this section we consider a slight modification of the assumption on the sequence k as follows.
Assumption (K̃): k → ∞, k/n→ 0 and

√
kA(n/k) → ∞ as n→ ∞.

4.1 First approach

Let us denote g := (g1, g2, g3, g4) for g1, g2, g3 and g4 some functions defined on (0, 1). For α1 and α2 some
positive reals, we define the statistics

Ψn,k(g, α1, α2) :=
Γn,k(g1, α1) − Γn,k(g3, 1)α1

Γn,k(g2, α2) − Γn,k(g4, 1)α2

and the function

ψ(g, α1, α2, ρ) :=
α1

α2

µ̄(g1, Jα1,ρ) − µ̄(g3, J1,ρ)

µ̄(g2, Jα2,ρ) − µ̄(g4, J1,ρ)
.
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Following the idea developed by Gomes et al. (2002), we propose to study the class of statistics

Sn,k(g,h, α, ℓ) :=
Ψn,k(g, 2α, 2ℓ)

[Ψn,k(h, α+ ℓ, 2ℓ)]
2

where α and ℓ are some positive reals. The next proposition states that Sn,k(g,h, α, ℓ) is a weak consistent
estimator of the function of ρ given by

s(g,h, α, ℓ, ρ) :=
ψ(g, 2α, 2ℓ, ρ)

ψ2(h, α+ ℓ, 2ℓ, ρ)
.

Proposition 4. Assume that for i = 1, . . . , 4 the functions gi and hi satisfy Assumption (G). Assume that (H2)

and (K̃) hold true. Suppose that ψ(g, 2α, 2ℓ, ρ) and ψ(h, α + ℓ, 2ℓ, ρ) are well defined and nonzero. Then
Sn,k(g,h, α, ℓ) → s(g,h, α, ℓ, ρ) in probability as n→ ∞.

Now if we assume that the third order condition is true, then we can obtain the asymptotic distribution of
a suitable normalization of Sn,k(g,h, α, ℓ) − s(g,h, α, ℓ, ρ). Before, we need to introduce the notations

mS
A(g, α1, α2, ρ) :=

(α1 − 1)
ˆ

µ̄(g1,Kα1,ρ) − µ̄2(g3, J1,ρ)
˜

− (α2 − 1)
ˆ

µ̄(g2, Kα2,ρ) − µ̄2(g4, J1,ρ)
˜

ψ(g, α1, α2, ρ)

(µ̄(g2, Jα2,ρ) − µ̄(g4, J1,ρ))ψ(g, α1, α2, ρ)
,

mS
B(g, α1, α2, ρ, β) :=

ˆ

µ̄(g1, Lα1,ρ,β) − µ̄(g3, L1,ρ,β)
˜

−
ˆ

µ̄(g2, Lα2,ρ,β) − µ̄(g4, L1,ρ,β)
˜

ψ(g, α1, α2, ρ)

(µ̄(g2, Jα2,ρ) − µ̄(g4, J1,ρ))ψ(g, α1, α2, ρ)
,

κS(g1, g2, h1, h2, α1, α2) := ν̄(g1, h1, Iα1
, Iα2

) − α2ν̄(g1, h2, Iα1
, I1) − α1ν̄(g2, h1, I1, Iα2

) + α1α2ν̄(g2, h2, I1, I1),

cS(g,h, α1, α2, α3, α4, ρ) :=
1

α1α2α3α4 (µ̄(g2, Jα2,ρ) − µ̄(g4, J1,ρ))ψ(g, α1, α2, ρ) (µ̄(h2, Jα3,ρ) − µ̄(h4, J1,ρ))ψ(h, α3, α4, ρ)

× [α2α4κS(g1, g3, h1, h3, α1, α3) − α2α3ψ(h, α3, α4, ρ)κS(g1, g3, h2, h4, α1, α4)−
α1α4ψ(g, α1, α2, ρ)κS(g2, g4, h1, h3, α2, α3) + α1α3ψ(g, α1, α2, ρ)ψ(h, α3, α4, ρ)κS(g2, g4, h2, h4, α2, α4)] ,

v2S(g, α1, α2, ρ) := cS(g,g, α1, α2, α1, α2, ρ).

Proposition 5. Assume that for i = 1, . . . , 4 the functions gi and hi satisfy Assumption (G). Assume that (H3)

and (K̃) hold true with
√
kA2(n/k) → λA < ∞ and

√
kA(n/k)B(n/k) → λB < ∞ as n → ∞. Suppose that

ψ(g, 2α, 2ℓ, ρ) and ψ(h, α+ ℓ, 2ℓ, ρ) are well defined and nonzero. Then

√
kA(n/k) (Sn,k(g,h, α, ℓ) − s(g,h, α, ℓ, ρ))

is asymptotically a normal random variable with mean

s(g,h, α, ℓ, ρ)

 

λA
mS

A(g, 2α, 2ℓ, ρ) − 2mS
A(h, α+ ℓ, 2ℓ, ρ)

2γ
+ λB

“

mS
B(g, 2α, 2ℓ, ρ, β) − 2mS

B(h, α+ ℓ, 2ℓ, ρ, β)
”

!

and variance

γ2s2(g,h, α, ℓ, ρ)
(
v2

S(g, 2α, 2ℓ, ρ) + 4v2
S(h, α+ ℓ, 2ℓ, ρ) − 4cS(g,h, 2α, 2ℓ, α+ ℓ, 2ℓ, ρ)

)
.

4.2 Second approach

For αg, αh and ℓ some positive reals, we introduce the family of statistics

Qn,k(g,h, αg, αh, ℓ) :=
Ψn,k(g, αg, αg + ℓ)

Ψn,k(h, αh, αh + ℓ)

and the function

q(g,h, αg, αh, ℓ, ρ) :=
ψ(g, αg, αg + ℓ, ρ)

ψ(h, αh, αh + ℓ, ρ)
.

This construction is clearly inspired by the preceding one. However it does not appear in the literature since
for constant weighted functions g ≡ h ≡ (1, 1, 1, 1), the limit q(g,h, αg, αh, ℓ, ρ) does not depend on ρ. As
previously, the second order condition allows us to prove that Qn,k(g,h, αg, αh, ℓ) is a weak consistent estimator
of q(g,h, αg, αh, ℓ, ρ).
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Proposition 6. Assume that for i = 1, . . . , 4 the functions gi and hi satisfy Assumption (G). Assume that (H2)

and (K̃) hold true. Suppose that ψ(g, αg, αg + ℓ, ρ) and ψ(h, αh, αh + ℓ, ρ) are well defined and nonzero. Then
Qn,k(g,h, αg, αh, ℓ) → q(g,h, αg, αh, ℓ, ρ) in probability as n→ ∞.

Moreover, taking into account the notations defined in Section 4.2, we obtain

Proposition 7. Assume that for i = 1, . . . , 4 the functions gi and hi satisfy Assumption (G). Assume that (H3)

and (K̃) hold true with
√
kA2(n/k) → λA < ∞ and

√
kA(n/k)B(n/k) → λB < ∞ as n → ∞. Suppose that

ψ(g, αg, αg + ℓ, ρ) and ψ(h, αh, αh + ℓ, ρ) are well defined and nonzero. Then
√
kA(n/k) (Qn,k(g,h, αg, αh, ℓ) − q(g,h, αg, αh, ℓ, ρ))

is asymptotically a normal random variable with mean

q(g,h, αg , αh, ℓ, ρ)

 

λA
mS

A(g, αg , αg + ℓ, ρ) −mS
A(h, αh, αh + ℓ, ρ)

2γ
+ λB

“

mS
B(g, αg, αg + ℓ, ρ, β) −mS

B(h, αh, αh + ℓ, ρ, β)
”

!

and variance

γ2q2(g,h, αg, αh, ℓ, ρ)
(
v2

S(g, αg, αg + ℓ, ρ) + v2
S(h, αh, αh + ℓ, ρ) − 2cS(g,h, αg, αg + ℓ, αh, αh + ℓ, ρ)

)
.

4.3 Third approach

For θ1, θ2, θ3 and θ4 some positive reals, let us denote θ := (θ1, θ2, θ3, θ4). Let also τ denotes some positive real.
Following the construction of Fraga Alves et al. (2003) we consider the statistics

Φn,k(g, α,θ, τ) :=
Γn,k(g1, αθ1)

τ/θ1 − Γn,k(g2, αθ2)
τ/θ2

Γn,k(g3, αθ3)τ/θ3 − Γn,k(g4, αθ4)τ/θ4
.

and the function

φ(g, α,θ, ρ) :=
µ̄(g1, Jαθ1,ρ) − µ̄(g2, Jαθ2,ρ)

µ̄(g3, Jαθ3,ρ) − µ̄(g4, Jαθ4,ρ)
.

This class of estimators has clearly the simplest form.

Proposition 8. Assume that g1, g2, g3 and g4 satisfy Assumption (G). Assume that (H2) and (K̃) hold true.
Suppose that φ(g, α,θ, ρ) is well defined and nonzero. Then Φn,k(g, α,θ, τ) → φ(g, α,θ, ρ) in probability as
n→ ∞.

In order to describe the asymptotic normality associated to this estimator, we need to introduce some
notations.
mA

Φ(g1, g2, α1, α2, α3, ρ) := (α1 − 1)µ̄(g1,Kα1,ρ) + (α3 − α1)µ̄2(g1, Jα1,ρ) − (α2 − 1)µ̄(g2,Kα2,ρ) − (α3 − α2)µ̄2(g2, Jα2,ρ),

mB
Φ (g1, g2, α1, α2, ρ, β) := µ̄(g1, Lα1,ρ,β) − µ̄(g2, Lα2,ρ,β),

cΦ(g1, g2, g3, g4, α1, α2, α3, α4) :=
ν̄(g1, g3, Iα1

, Iα3
)

α1α3
−
ν̄(g1, g4, Iα1

, Iα4
)

α1α4
−
ν̄(g2, g3, Iα2

, Iα3
)

α2α3
+
ν̄(g2, g4, Iα2

, Iα4
)

α2α4
,

v2Φ(g1, g2, α1, α2) := cΦ(g1, g2, g1, g2, α1, α2, α1, α2).

Proposition 9. Assume that g1, g2, g3 and g4 satisfy Assumption (G) with µ̄(g3, Lαθ3,ρ) 6= µ̄(g4, Lαθ4,ρ). As-

sume that (H3) and (K̃) hold true with
√
kA2(n/k) → λA < ∞ and

√
kA(n/k)B(n/k) → λB < ∞ as n → ∞.

Then √
kA(n/k) (Φn,k(g, α,θ, τ) − φ(g, α,θ, ρ))

is asymptotically a normal random variable with mean

λA
mA

Φ(g1, g2, αθ1, αθ2, ατ, ρ) −mA
Φ(g3, g4, αθ3, αθ4, ατ, ρ)φ(g, α,θ, ρ)

2γ
`

µ̄(g3, Jαθ3,ρ) − µ̄(g4, Jαθ4,ρ)
´ +λB

mB
Φ (g1, g2, αθ1, αθ2, ρ, β) −mB

Φ (g3, g4, αθ1, αθ2, ρ, β)φ(g, α,θ, ρ)

µ̄(g3, Jαθ3,ρ) − µ̄(g4, Jαθ4,ρ)

and variance

γ2 v
2
Φ(g1, g2, αθ1, αθ2) + v2

Φ(g3, g4, αθ3, αθ4)φ
2(g, α,θ, ρ) − 2cΦ(g1, g2, g3, g4, αθ1, αθ2, αθ3, αθ4)φ(g, α,θ, ρ)

(µ̄(g3, Jαθ3,ρ) − µ̄(g4, Jαθ4,ρ))
2 .

Remark 2. If τ tends to 0 then the statistic Φn,k(g, α,θ, τ) tends to

Φn,k(g, α,θ, 0) :=
(log Γn,k(g1, αθ1)) /θ1 − (log Γn,k(g2, αθ2)) /θ2
(log Γn,k(g3, αθ3)) /θ3 − (log Γn,k(g4, αθ4)) /θ4

.

Moreover, it can be proved that Propositions 8 and 9 hold true setting τ = 0 everywhere.
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4.4 Consequences for the estimation of ρ

These approaches furnish three consistent classes of estimators of some function of ρ. As a consequence, it is also
possible to derive associated class of estimators of ρ by inversion. Assume that we can choose weighted functions
and tuning parameters such that the functions ρ 7→ s(g,h, α, ℓ, ρ), ρ 7→ q(g,h, αg, αh, ℓ, ρ) and ρ 7→ φ(g, α,θ, ρ)
are bijective. Let us denote by s←(g,h, α, ℓ, ·), q←(g,h, αg, αh, ℓ, ·) and φ←(g, α,θ, ·) their inverse functions.
Then we can define

ρ̂S
n,k(g,h, α, ℓ) := s←(g,h, α, ℓ, Sn,k(g,h, α, ℓ)),

ρ̂Q
n,k(g,h, αg, αh, ℓ) := q←(g,h, αg, αh, ℓ, Qn,k(g,h, αg, αh, ℓ)),

ρ̂Φ
n,k(g, α,θ, τ) := φ←(g, α,θ,Φn,k(g, α,θ, τ)).

Moreover, assume that these inverse functions are continuous. By application of the Continuous mapping
Theorem, under the assumptions of Proposition 4 (resp. 6 and 8) it can be proved that ρ̂S

n,k(g,h, α, ℓ) (resp.

ρ̂Q
n,k(g,h, αg, αh, ℓ) and ρ̂Φ

n,k(g, α,θ, τ)) is weak consistent for the parameter ρ. Finally, if moreover these inverse
functions are differentiable, the asymptotic normality of the statistics suitably normalized may be obtained from
the Delta method under the assumptions of Proposition 5, 7 and 9 respectively.
Some examples, derived from the third approach, are presented in Section 5.2.

5 Numerical results

In this part we show numerical results for the estimation of the parameters γ and ρ in finite-sample and
asymptotic framework respectively.

5.1 Simulations for the estimation of the extreme value index

To illustrate the finite-sample behavior of some estimators studied in this paper we give some simulation results
for the distribution functions given in Table 1 and the weighted functions given in Table 2.

Distributions γ ρ
Standard Cauchy 1 -2
Fréchet(2) 2 -1

Table 1: Tail characteristics of some distribution functions.

Weighted functions g Expressions
g0 1
g1 2(1 − x)
g2 3/2(1 − x2)
g3 log x−1

Table 2: Weighted functions satisfying Assumption (G).

Figure 1, 2 and 3 are obtained as follows. We generate independent and identically distributed samples of
size n = 1000 and replicate them m = 5000 times independently. For the sake of simplicity, let us denote the
estimates by γ̂1, . . . , γ̂m. We compute the mean 1/m

∑m
i=1 γ̂i and the mean square error 1/m

∑m
i=1(γ̂i − γ)2.

Since all the estimators depend on k upper order statistics, we show these averages as functions of k.
We present the results for the Standard Cauchy distribution on the left and the Fréchet(2) distribution on the
right. We use on the same sample the estimators

(1) Γn,k(gi, 1) for i ∈ {0, 1, 2, 3} in Figure 1,

(2) Γn,k(gi, α)1/α for i ∈ {0, 1} and α ∈ {0.5, 2} in Figure 2,

(3) Γn,k(gi, α)/Γα−1
n,k (g0, 1) for i ∈ {1, 2} and α ∈ {0.5, 2} in Figure 3.
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Figure 1: Mean and MSE in the case (1).
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Figure 2: Mean and MSE in the case (2).
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Figure 3: Mean and MSE in the case (3).
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5.2 Asymptotic properties in the estimation of the second order parameter

We present here four estimators of ρ constructed from the third approach explained in Section 4.3. Let us
consider the family Φn,k (g, α,θ, τ) for α = 1 and particular values of g and θ

Φ
[1]
n,k (τ) := Φn,k ((g0, g0, g0, g0), 1, (1, 2, 2, 3), τ) ,

Φ
[2]
n,k (τ) := Φn,k ((g1, g0, g0, g2), 1, (1, 1, 1, 1), τ) ,

Φ
[3]
n,k (τ) := Φn,k ((g1, g0, g0, g1), 1, (1, 2, 1, 1), τ) ,

Φ
[4]
n,k (τ) := Φn,k ((g1, g0, g2, g1), 1, (1, 1, 1, 1), τ) .

Recall that the weighted functions gi are given in Table 2. Under the assumptions of Proposition 8, these
statistics converge in probability (respectively and independently of τ) towards

φ ((g0, g0, g0, g0), 1, (1, 2, 2, 3), ρ) =
3(1 − ρ)

3 − ρ
,

φ ((g1, g0, g0, g2), 1, (1, 1, 1, 1), ρ) = −4

3

3 − ρ

2 − ρ
,

φ ((g1, g0, g0, g1), 1, (1, 2, 1, 1), ρ) =
1

2

4 − ρ

1 − ρ
,

φ ((g1, g0, g2, g1), 1, (1, 1, 1, 1), ρ) = −4(3 − ρ)

6 − ρ
.

By inversion, we obtain the following weak consistent estimators of ρ

ρ̂
[1]
n,k (τ) :=

3
(
Φ

[1]
n,k (τ) − 1

)

Φ
[1]
n,k (τ) − 3

provided that 1 ≤ Φ
[1]
n,k (τ) < 3,

ρ̂
[2]
n,k (τ) :=

6
(
Φ

[2]
n,k (τ) + 2

)

3Φ
[2]
n,k (τ) + 4

provided that − 2 ≤ Φ
[2]
n,k (τ) < −4/3,

ρ̂
[3]
n,k (τ) :=

2
(
Φ

[3]
n,k (τ) − 2

)

2Φ
[3]
n,k (τ) − 1

provided that 1/2 < Φ
[3]
n,k (τ) ≤ 2,

ρ̂
[4]
n,k (τ) :=

6
(
Φ

[4]
n,k (τ) + 2

)

Φ
[4]
n,k (τ) + 4

provided that − 4 < Φ
[4]
n,k (τ) ≤ −2,

where the conditions yield the right sign for the estimators. Then, under the assumptions of Proposition 8, we
have for i = 1, . . . , 4

√
kA(n/k)

(
ρ̂
[i]
n,k (τ) − ρ

)
d−−−−→

n→∞
N

(
λA

γ
mA,[i](τ, ρ) + λBmB,[i](ρ, β), γ2v2

[i](ρ)

)
.

Straightforward computations give the expressions of the asymptotic variance components

v2
[1](ρ) =

(1 − ρ)6

ρ2
(1 − 2ρ+ 2ρ2),

v2
[2](ρ) =

(2 − ρ)2(3 − 4ρ+ ρ2)2

27ρ2
(36 − 12ρ+ ρ2),

v2
[3](ρ) =

(1 − ρ)4(2 − ρ)2

3ρ2
(1 − ρ+ ρ2),

v2
[4](ρ) =

(3 − ρ)2(2 − 3ρ+ ρ2)2

30ρ2
(4 − ρ+ ρ2).

In Figure 4, we plot for i = 1, . . . , 4 the asymptotic component v[i](ρ), mA,[i](τ, ρ) for τ ∈ {0, 1} and mB,[i](ρ, β)
for β ∈ {−2,−1} as functions of ρ ∈ (−5/2, 0). The cases i = 2 and i = 4 give the same results for the
asymptotic mean components.
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6 Proofs

6.1 Main tool

We present here the essential tool in proving our results. For convenience we set

Mn,k(g, α) :=
1

k

k∑

i=1

g

(
i

k + 1

)[
log

Xn−i+1,n

Xn−k,n

]α

.

Let Ui,k denote the ith-order statistic of a standard uniform sample of size k and by H some function defined
on (0, 1). Under classical assumptions, the statistics Mn,k(g, α) can be written (in the sense of distributional
representation) as linear combinations of terms with the following form

1

k

k∑

i=1

g (i/(k + 1))H (Ui,k) .

The asymptotic behavior of such random variables has been studied by Chernoff et al. (1967). Consequently,
we recall here a slightly simplified version of their Theorem 3.

Theorem 1. Let H be a continuous function on (0, 1), satisfying a first order Lipschitz condition in every
interval bounded away from 0 and 1, whose derivative H ′ exists and is continuous except on a set S of Jordan
content 0. Assume that there exists some τ0 ∈ (0, 1) such that

⋆ ∀K > 0, ∃M <∞ s.t. if 0 < u1, u2 < τ0 and K−1 <
u1

u2
< K then M−1 <

H ′(u1)

H ′(u2)
< M ,

⋆ ∀K > 0, ∃M <∞ s.t. if 1 − τ0 < u1, u2 < 1 and K−1 <
1 − u1

1 − u2
< K then M−1 <

H ′(u1)

H ′(u2)
< M .

Let now g be a function defined on (0, 1) such that

(i)

∫ 1−θ

θ

g(x)dx converges absolutely for any θ ∈ (0, 1/2),

(ii) mk(g,H) = µ(g,H) + o(k−1/2) where mk(g,H) :=
1

k

k∑

i=1

g (i/(k + 1))H (i/(k + 1)),

(iii) σ2(g,H) converges absolutely,

(iv)

∫ 1

0

g(x)H ′(x)[x(1 − x)]1/2dx converges absolutely.

Then for U1, . . . , Uk a sample from the standard uniform distribution, we have

√
k




1
k

∑k
i=1 g

(
i

k+1

)
H (Ui,k) − µ(g,H)

σ(g,H)


 d−−−−→

k→∞
N(0, 1).

This result will be applied in the particular cases given by

Lemma 2. Let g verifying Assumption (G) and let H stands for Iα, Jα,ρ, Kα,ρ or Lα,ρ,β with α > 0, ρ < 0
and β < 0 defined in Section 2.2. Then the functions g and H satisfy the hypotheses of Theorem 1.

Proof of Lemma 2. We prove the lemma when H stands for Iα. Similar arguments may be used in the other
cases.

⋆ Let τ0 ∈ (0, 1) and K > 1. In order to satisfy M−1 <
I′

α(u1)
I′

α(u2) < M whenever 0 < u1 < τ0, 0 < u2 < τ0 and

K−1 < u1

u2
< K, it suffices to choose M := max

(
K
(
1 + log K

log τ−1

0

)1−α

,K
(
1 + log K

log τ−1

0

)α−1
)

.

⋆ One can check that for M := max

(
1

1−τ0

(
K

1−τ0

)α−1

, 1
1−τ0

(
K

1−τ0

)1−α
)

we have M−1 <
I′

α(u1)
I′

α(u2)
< M for
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1 − τ0 < u1 < 1, 1 − τ0 < u2 < 1 and K−1 < 1−u1

1−u2
< K.

⋆ Taking into account Assumption (G), (i) is obvious. Let us prove (ii). From Assumption (G), the func-
tion x 7→ g(x)Iα(x) is positive, non increasing and integrable on (0, 1). We get easily the following inequalities

1
√
k
µ(g, Iα) −

k + 1
√
k

Z 1/(k+1)

0
g(x)Iα(x)dx ≤

√
k[mk(g, Iα) − µ(g, Iα)] ≤

1
√
k
µ(g, Iα) −

k + 1
√
k

Z 1

k/(k+1)
g(x)Iα(x)dx.

Since there exists δ > 1/2 such that
∫ 1

0
g(x)x−δdx <∞ and

∫ 1

0
g(x)(1 − x)−δdx <∞, we see that

∫ 1/(k+1)

0

g(x)Iα(x)dx = O
(
(k + 1)−δ (log (k + 1))

α)
and

∫ 1

k/(k+1)

g(x)Iα(x)dx = O
(
(k + 1)−δ−α

)
.

Now remark that the point (iii) is a direct consequence of (iv) since

∀x, y ∈ (0, 1) x ∧ y(1 − x ∨ y) ≤ (x(1 − x))
1/2

(y(1 − y))
1/2

.

When α ≥ 1, we write

∫ 1

0

∣∣∣g(x)I ′α(x) (x(1 − x))1/2
∣∣∣ dx = α

∫ 1

0

g(x)x−δxδ−1/2
(
log x−1

)α−1
(1 − x)1/2 dx.

Then the point (iv) follows from the boundedness of x 7→ xδ−1/2
(
log x−1

)α−1
and x 7→ (1 − x)1/2. Similarly,

when α ∈ (0, 1) we use the boundedness of x 7→ (1 − x)1/2
(
log x−1

)α−1
and x 7→ xδ−1/2.

6.2 Proofs of Section 3

Proof of Proposition 1. We recall that Γn,k(g, α) may be written as the quotient Mn,k(g, α)/µ(g, Iα). Since
Assumption (G) implies µ(g, Iα) 6= 0, we need to prove that Mn,k(g, α) =d γαµ(g, Iα) + oP(1).
Let Y1, . . . , Yn be independent and identically distributed with distribution (1 − y−1), y > 1. Then we have
{Xn−k,n, . . . , Xn,n} =d {U(Yn−k,n), . . . , U(Yn,n)} and consequently

Mn,k(g, α) =d 1

k

k∑

i=1

g

(
i

k + 1

)
log

(
U(Yn−i+1,n)

U(Yn−k,n)

)α

.

Under Assumption (H1), it can be proved as in Hüsler et al. (2006) that

Mn,k(g, α) =d (γα + o(1))
1

k

k∑

i=1

g

(
i

k + 1

)(
log

Yn−i+1,n

Yn−k,n

)α

+ o(1)
1

k

k∑

i=1

g

(
i

k + 1

)
.

Now {logYn−i+1,n − logYn−k,n}k
i=1 =d {En−i+1,n − En−k,n}k

i=1 =d
{
E⋆

k−i+1,k

}k

i=1
=d

{
logU−1

i,k

}k

i=1
where

E1, . . . , En and E⋆
1 , . . . , E

⋆
k are both samples from the standard exponential distribution, and U1, . . . , Uk is a

sample from the standard uniform distribution. Hence last expansion of Mn,k(g, α) becomes

Mn,k(g, α) =d (γα + o(1))
1

k

k∑

i=1

g

(
i

k + 1

)(
logU−1

i,k

)α

+ o(1)
1

k

k∑

i=1

g

(
i

k + 1

)
. (6)

From Assumption (G), or more precisely using the fact that mk(g, Iα) = µ(g, Iα) + o(k−1/2), we obtain

1

k

k∑

i=1

g

(
i

k + 1

)(
logU−1

i,k

)α

= (1 + o(1))µ(g, Iα) +
1

k

k∑

i=1

g

(
i

k + 1

)[(
logU−1

i,k

)α

−
(

log
k + 1

i

)α]
. (7)

Let ck = k−1/2. We split the last term of (7) into two sums: when i ∈ {1, . . . , kck} and when i ∈ {kck+1, . . . , k}.
On the one hand, we find that on the set {U1,k ≥ k−2}

∣∣∣∣∣
1

k

kck∑

i=1

g

(
i

k + 1

)[(
logU−1

i,k

)α

−
(

log
k + 1

i

)α]∣∣∣∣∣ ≤
3α

k

kck∑

i=1

g

(
i

k + 1

)
(log (k + 1))

α
.
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By Assumption (G), there exists δ = δ(g) > 1/2 satisfying
∫ 1

0
g(x)x−δdx <∞, so that

1

k

kck∑

i=1

g

(
i

k + 1

)
∼
∫ ck

0

g(x)dx = O(cδk).

Since P(U1,k ≤ k−2) ∼ k−1 and cδk (log(k + 1))
α

tends to 0 as k tends to infinity, we proved

1

k

kck∑

i=1

g

(
i

k + 1

)[(
logU−1

i,k

)α

−
(

log
k + 1

i

)α]
P−→ 0. (8)

On the other hand, from Lemma 3.2. of Hüsler et al. (2006) supkck+1≤i≤k

∣∣∣∣
k + 1

i
Ui,k − 1

∣∣∣∣ = oP(1), so that

1

k

k∑

i=kck+1

g

(
i

k + 1

)[(
logU−1

i,k

)α

−
(

log
k + 1

i

)α]
= oP(1)

1

k

k∑

i=kck+1

g

(
i

k + 1

)(
log

k + 1

i

)α−1

.

Using Assumption (G), we know that
∫ 1

0 g(x)(1 − x)−δdx <∞ and one may deduce that

1

k

k∑

i=kck+1

g

(
i

k + 1

)[(
logU−1

i,k

)α

−
(

log
k + 1

i

)α]
P−→ 0. (9)

The result follows from the combination of (6), (7), (8) and (9).

Proof of Proposition 2. We use here the same notations as those introduced in the first lines of the proof of
Proposition 1. Remark that (k/n)Yn−k,n → 1 in probability yields A(Yn−k,n) = A(n/k)(1+ oP(1)). Recall also
that Yn−i+1,n/Yn−k,n is distributed as U−1

i,k for U1, . . . , Uk a sample from the standard uniform distribution.
As in Gomes and Martins (2001), it can be proved that under Assumption (H2)

Mn,k(g, α) =d γαT1,k(g, α) +A(n/k)(1 + oP(1))αγα−1T2,k(g, α, ρ) + oP (A(n/k))
1

k

k∑

i=1

g

(
i

k + 1

)

with

T1,k(g, α) :=
1

k

k∑

i=1

g

(
i

k + 1

)(
logU−1

i,k

)α

,

T2,k(g, α, ρ) :=
1

k

k∑

i=1

g

(
i

k + 1

)(
logU−1

i,k

)α−1 U−ρ
i,k − 1

ρ
.

Applying Theorem 1 to the function Iα we get

T1,k(g, α) = µ(g, Iα) + σ(g, Iα)
Pk(g, α)√

k

where Pk(g, α) is asymptotically standard normal. The weak consistency contained in Theorem 1 for the
function Jα,ρ yields

T2,k(g, α, ρ)
P−→ µ(g, Jα,ρ).

Combining what precedes we have

Mn,k(g, α) =d γα

(
µ(g, Iα) + σ(g, Iα)

Pk(g, α)√
k

)
+A(n/k)αγα−1µ(g, Jα,ρ) + oP(A(n/k))

since 1
k

∑k
i=1 g

(
i

k+1

)
= O(1) under Assumption (G). The normalization by µ(g, Iα) gives the result for

Γn,k(g, α).

14



Proof of Lemma 1. It is a direct consequence of Corollary 4 of Chernoff et al. (1967) which asserts that if the
convergence in Theorem 1 applies for gj and Hj with j ∈ {1, . . . , r}, then it applies vectorially. Moreover,
elements of the covariance matrix are computed from the formula

∫ 1

0

∫ 1

0

gi(x)H
′
i(x)gj(y)H

′
j(y)(x ∨ y)(1 − x ∧ y)dxdy.

Proof of Corollary 3. By definition of xp and an we can write

log x̂Γ
n,k,p(g, α) − log xp = Γ

1/α
n,k (g, α) log an + logXn−k,n − logU(p−1). (10)

On the one hand, under Assumption (H2), we know from Drees (1998) the following inequality: ∀ ε > 0,
∃ t0 = t0(ε) such that ∀ t ≥ t0 and x ≥ 1,

∣∣∣∣
logU(tx) − logU(t) − γ log x

A(t)
− xρ − 1

ρ

∣∣∣∣ ≤ εxρ+ε.

Let Y1, . . . , Yn be a sample from the distribution function (1 − y−1)1y≥1. Recall that Xn−k,n =d U(Yn−k,n).
We apply this inequality to t = n/k and x = (k/n)Yn−k,n. We get for any ε > 0

logXn−k,n − logU(n/k) =d γ log

(
k

n
Yn−k,n

)
+A(n/k)

(
k
nYn−k,n

)ρ − 1

ρ
+ o(1)A(n/k)

(
k

n
Yn−k,n

)ρ+ε

.

Since k is an intermediate number such that
√
kA(n/k) → λ and using the fact that

√
k

(
k

n
Yn−k,n − 1

)
d−→ N(0, 1)

(see for instance de Haan and Ferreira, 2006, Corollary 2.2.2) we deduce easily that

√
k

log an
(logXn−k,n − logU(n/k)) = oP(1). (11)

Similarly, it can be proved that

√
k

log an

(
logU(n/k) − logU

(
n+ 1

k + 1

))
= o(1). (12)

On the other hand, we have for any ε > 0

logU

(
n+ 1

k + 1

)
− logU(p−1) = −γ log an −A

(
n+ 1

k + 1

)
aρ

n − 1

ρ
+ o(1)A

(
n+ 1

k + 1

)
aρ+ε

n .

Since it is assumed that ρ < 0 one can choose ε > 0 such that ρ + ε < 0. Then, using the fact that√
kA ((n+ 1)/(k + 1)) → λ, we obtain

√
k

log an

(
logU

(
n+ 1

k + 1

)
− logU(p−1) + γ log an

)
= o(1). (13)

In summary, (10) combined with (11), (12) and (13) yields

√
k

log an

(
log x̂Γ

n,k,p(g, α) − log xp

)
=d

√
k
(
Γ

1/α
n,k (g, α) − γ

)
+ oP(1).

The result follows by application of Corollary 1.
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6.3 Proofs of Section 4

Proof of Proposition 3. Using the same arguments as in Proposition 3.2 of Gomes et al. (2002), we may write
that

Mn,k(g, α) =d γαT1,k(g, α) +A(n/k)αγα−1T2,k(g, α, ρ) +A2(n/k)(1 + oP(1))
α(α − 1)

2
γα−2T3,k(g, α, ρ)

+A(n/k)B(n/k)(1 + oP(1))αγα−1T4,k(g, α, ρ, β) (14)

with T1,k(g, α) and T2,k(g, α, ρ) already defined in the proof of Proposition 2 and where

T3,k(g, α, ρ) :=
1

k

k∑

i=1

g

(
i

k + 1

)(
logU−1

i,k

)α−2
(
U−ρ

i,k − 1

ρ

)2

,

T4,k(g, α, ρ, β) :=
1

k

k∑

i=1

g

(
i

k + 1

)(
logU−1

i,k

)α−1 1

β

(
U
−(ρ+β)
i,k − 1

ρ+ β
−
U−ρ

i,k − 1

ρ

)
.

By application of Theorem 1 to the function Jα,ρ, we get

T2,k(g, α, ρ) = µ(g, Jα,ρ) + σ(g, Jα,ρ)
P k(g, α, ρ)√

k
(15)

where P k(g, α, ρ) is asymptotically standard normal. Now, we apply the weak consistency, contained in Theo-
rem 1, to the functions Kα,ρ and Lα,ρ,β in order to get

T3,k(g, α, ρ)
P−→ µ(g,Kα,ρ), (16)

T4,k(g, α, ρ, β)
P−→ µ(g, Lα,ρ,β). (17)

The relations (14), (15), (16), (17) lead to the conclusion.

Proof of Proposition 4. Let g1 and g2 be some weighted functions satisfying (G). When (H2) and (K) hold we
can expand

Γn,k(g1, α) − Γn,k(g2, 1)α =d γα

√
k

(σ̄(g1, Iα)Pk(g1, α) − ασ̄(g2, I1)Pk(g2, 1))

+αγα−1 (µ̄(g1, Jα,ρ) − µ̄(g2, J1,ρ))A(n/k) (1 + oP(1)) .

For sequences k = k(n) such that
√
kA(n/k) tends to infinity as n→ ∞, this implies

Γn,k(g1, α) − Γn,k(g2, 1)α

A(n/k)

P−→ αγα−1 (µ̄(g1, Jα,ρ) − µ̄(g2, J1,ρ)) .

Under Assumption (G) and if ψ(g, α1, α2, ρ) and ψ(h, α3, α4, ρ) are well defined and nonzero, it follows that

Ψn,k(g, α1, α2)
P−→ γα1−α2ψ(g, α1, α2, ρ) (18)

and
Ψn,k(g, α1, α2)

[Ψn,k(h, α3, α4)]
2

P−→ γα1−α2−(α3−α4) ψ(g, α1, α2, ρ)

ψ2(h, α3, α4, ρ)
.

The rest is straightforward taking into account the values of the α′is in Proposition 4.

Proof of Proposition 5. If g1 and g2 satisfy (G), if (H3) and (K) hold we have

Γn,k(g1, α) − Γn,k(g2, 1)α =d γα

√
k

(σ̄(g1, Iα)Pk(g1, α) − ασ̄(g2, I1)Pk(g2, 1))

+αγα−1 (µ̄(g1, Jα,ρ) − µ̄(g2, J1,ρ))A(n/k)

+αγα−1
(
σ̄(g1, Jα,ρ)P k(g1, α, ρ) − σ̄(g2, J1,ρ)P k(g2, 1, ρ)

) A(n/k)√
k

+
α(α− 1)

2
γα−2

(
µ̄(g1,Kα,ρ) − µ̄2(g2, J1,ρ)

)
A2(n/k) (1 + oP(1))

+αγα−1 (µ̄(g1, Lα,ρ,β) − µ̄(g2, L1,ρ,β))A(n/k)B(n/k) (1 + oP(1)) .
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Moreover for k = k(n) such that
√
kA(n/k) tends to infinity as n→ ∞ we see easily that

Γn,k(g1, α) − Γn,k(g2, 1)α

A(n/k)
=d αγα−1 (µ̄(g1, Jα,ρ) − µ̄(g2, J1,ρ))

+
γα

√
kA(n/k)

(σ̄(g1, Iα)Pk(g1, α) − ασ̄(g2, I1)Pk(g2, 1))

+
α(α− 1)

2
γα−2

(
µ̄(g1,Kα,ρ) − µ̄2(g2, J1,ρ)

)
A(n/k) (1 + oP(1))

+αγα−1 (µ̄(g1, Lα,ρ,β) − µ̄(g2, L1,ρ,β))B(n/k) (1 + oP(1)) .

Whenever the weighted functions satisfy (G) and are such that µ̄(g2, Jα2,ρ) 6= µ̄(g4, J1,ρ), it follows that

Ψn,k(g, α1, α2) =d γα1−α2ψ(g, α1, α2, ρ) +
γα1−α2+1

√
kA(n/k)

„

α2Vk(g1, g3, α1) − α1Vk(g2, g4, α2)ψ(g, α1, α2, ρ)

α1α2 (µ̄(g2, Jα2,ρ) − µ̄(g4, J1,ρ))

«

+
1

2
γα1−α2−1

 

(α1 − 1)
ˆ

µ̄(g1,Kα1,ρ) − µ̄2(g3, J1,ρ)
˜

− (α2 − 1)
ˆ

µ̄(g2,Kα2,ρ) − µ̄2(g4, J1,ρ)
˜

ψ(g, α1, α2, ρ)

µ̄(g2, Jα2,ρ) − µ̄(g4, J1,ρ)

!

A(n/k) (1 + oP(1))

+γα1−α2

 

ˆ

µ̄(g1, Lα1,ρ,β) − µ̄(g3, L1,ρ,β)
˜

−
ˆ

µ̄(g2, Lα2,ρ,β) − µ̄(g4, L1,ρ,β)
˜

ψ(g, α1, α2, ρ)

µ̄(g2, Jα2,ρ) − µ̄(g4, J1,ρ)

!

B(n/k) (1 + oP(1))

where Vk(g, h, α) := σ̄(g, Iα)Pk(g, α) − ασ̄(h, I1)Pk(h, 1).

Let us introduce the process Wk(g, α1, α2, ρ) :=
α2Vk(g1, g3, α1) − α1Vk(g2, g4, α2)ψ(g, α1, α2, ρ)

α1α2 (µ̄(g2, Jα2,ρ) − µ̄(g4, J1,ρ))ψ(g, α1, α2, ρ)
. Thus, under

the assumptions of Proposition 5 and using (1 + x)2 = 1 + 2x+ o(x) and 1/(1 + x) = 1 − x + o(x) as x → 0,
we get

Sn,k(g,h, α, ℓ) =d s(g,h, α, ℓ, ρ)

[
1 + γ

Wk(g, 2α, 2ℓ, ρ)− 2Wk(h, α+ ℓ, 2ℓ, ρ)√
kA(n/k)

+
mS

A(g, 2α, 2ℓ, ρ) − 2mS
A(h, α+ ℓ, 2ℓ, ρ)

2γ
A(n/k)

+
(
mS

B(g, 2α, 2ℓ, ρ, β) − 2mS
B(h, α+ ℓ, 2ℓ, ρ, β)

)
B(n/k)

]
(1 + oP(1))

with mS
A and mS

B introduced in Section 4.1. Then we can conclude since κS(g1, g3, h1, h3, α1, α3) is the asymp-
totic covariance between Vk(g1, g3, α1) and Vk(h1, h3, α3) and since cS(g,h, α1, α2, α3, α4, ρ) is the asymptotic
covariance between Wk(g, α1, α2, ρ) and Wk(h, α3, α4, ρ).

Proof of Proposition 6. The proof is a direct consequence of the convergence obtained in (18).

Proof of Proposition 7. With the same arguments as those used in the proof of Proposition 5, one checks that

Qn,k(g,h, αg, αh, ℓ) =d q(g,h, αg, αh, ℓ, ρ) [ 1 + γ
Wk(g, αg, αg + ℓ, ρ) −Wk(h, αh, αh + ℓ, ρ)√

kA(n/k)

+
mS

A(g, αg, αg + ℓ, ρ) −mS
A(h, αh, αh + ℓ, ρ)

2γ
A(n/k)

+
(
mS

B(g, αg, αg + ℓ, ρ, β) −mS
B(h, αh, αh + ℓ, ρ, β)

)
B(n/k) ] (1 + oP(1)) .

The result follows taking into account the covariances given at the end of the proof of Proposition 5.

Proof of Proposition 8. First note that we may write

Φn,k(g, α,θ, τ) =

((
Γn,k(g1,αθ1)

γαθ1

)τ/θ1

−
(

Γn,k(g2,αθ2)

γαθ2

)τ/θ2

)
/A(n/k)

((
Γn,k(g3,αθ3)

γαθ3

)τ/θ3

−
(

Γn,k(g4,αθ4)

γαθ4

)τ/θ4

)
/A(n/k)

. (19)

Using the distributional representation (3), we observe that under (H2)

(
Γn,k(g, αθ)

γαθ

)τ/θ

=d 1 +
τ

θ
σ̄(g, Iαθ)

Pk(g, αθ)√
k

+A(n/k) (1 + oP(1))
ατ

γ
µ̄(g, Jαθ,ρ).
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For sequences k = k(n) such that
√
kA(n/k) tends to infinity as n→ ∞ we have

(
Γn,k(g1αθ1)

γαθ1

)τ/θ1

−
(

Γn,k(g2,αθ2)

γαθ2

)τ/θ2

A(n/k)

P−→ ατ

γ
(µ̄(g1, Jαθ1,ρ) − µ̄(g2, Jαθ2,ρ))

and the result follows immediately.

Proof of Proposition 9. The distributional representation (5) implies

(
Γn,k(g, αθ)

γαθ

)τ/θ

=d 1 +
τ

θ
σ̄(g, Iαθ)

Pk(g, αθ)√
k

+A(n/k)
ατ

γ
µ̄(g, Jαθ,ρ)

+A(n/k)
ατ

γ
σ̄(g, Jαθ,ρ)

P k(g, αθ, ρ)√
k

+A(n/k)B(n/k)
ατ

γ
µ̄(g, Lαθ,ρ,β) (1 + oP(1))

+A2(n/k)
ατ

2γ2

(
(αθ − 1)µ̄(g,Kαθ,ρ) + α(τ − θ)µ̄2(g, Jαθ,ρ)

)
(1 + oP(1)) .

Hence the numerator in the fraction (19) satisfies

(
Γn,k(g1αθ1)

γαθ1

)τ/θ1

−
(

Γn,k(g2,αθ2)

γαθ2

)τ/θ2

A(n/k)
=d ατ

γ
(µ̄(g1, Jαθ1,ρ) − µ̄(g2, Jαθ2,ρ)) + ατ

Zk(g1, g2, αθ1, αθ2)

A(n/k)
√
k

+B(n/k) (1 + oP(1))
ατ

γ
(µ̄(g1, Lαθ1,ρ,β) − µ̄(g2, Lαθ2,ρ,β)) +A(n/k) (1 + oP(1))

ατ

2γ2
×

(
(αθ1 − 1)µ̄(g1,Kαθ1,ρ) + α(τ − θ1)µ̄

2(g1, Jαθ1,ρ) − (αθ2 − 1)µ̄(g2,Kαθ2,ρ) − α(τ − θ2)µ̄
2(g2, Jαθ2,ρ)

)

with Zk(g1, g2, α1, α2) :=
σ̄(g1, Iα1

)

α1
Pk(g1, α1) −

σ̄(g2, Iα2
)

α2
Pk(g2, α2). Using the notations introduced in Sec-

tion 4.3, it yields

Φn,k(g, α,θ, τ) = φ(g, α,θ, ρ) +
γ

A(n/k)
√
k

Zk(g1, g2, αθ1, αθ2) − Zk(g3, g4, αθ3, αθ4)φ(g, α,θ, ρ)

µ̄(g3, Jαθ3,ρ) − µ̄(g4, Jαθ4,ρ)

+B(n/k)(1 + oP(1))
mB

Φ(g1, g2, αθ1, αθ2, ρ, β) −mB
Φ(g3, g4, αθ1, αθ2, ρ, β)φ(g, α,θ, ρ)

µ̄(g3, Jαθ3,ρ) − µ̄(g4, Jαθ4,ρ)

+A(n/k)(1 + oP(1))
mA

Φ(g1, g2, αθ1, αθ2, ατ, ρ) −mA
Φ(g3, g4, αθ3, αθ4, ατ, ρ)φ(g, α,θ, ρ)

2γ (µ̄(g3, Jαθ3,ρ) − µ̄(g4, Jαθ4,ρ))
.

The result follows since the asymptotic covariance between Zk(g1, g2, α1, α2) and Zk(g3, g4, α3, α4) is given by
cΦ(g1, g2, g3, g4, α1, α2, α3, α4).
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