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Semi-parametric estimation for heavy tailed distributions

Gabriela Ciuperca Cécile Mercadier*

Université de Lyon, Université Lyon 1, CNRS, UMR 5208 Institut Camille Jordan,
Batiment du Doyen Jean Braconnier, 43, boulevard du 11 novembre 1918, 69622 Villeurbanne Cedex, France

Abstract

In this paper, we generalize several works in the extreme value theory for the estimation of the extreme
value index and the second order parameter. Weak consistency and asymptotic normality are proven under
classical assumptions. Some numerical simulations and computations are also performed to illustrate the
finite-sample and the limiting behavior of the estimators.

Keywords: Extreme value index, second order parameter, Hill estimator, semi-parametric estimation,
asymptotic properties

1 Introduction

The estimation of the extreme value index has been widely considered in the literature. It allows to do inference
in the far tail of a probability distribution like large quantiles and return periods of high levels estimations.
Even when restricting to heavy tail underlying distributions, corresponding to positive value of this parameter,
the estimating problem remains interesting, but difficult. Indeed, the accuracy of any estimator depends on
the number k of top order statistics to be consider. To be precise, small values of k provide high volatility
whereas large values of k induce considerable bias. Hence, semi-parametric extensions may be considered for
increasing the degree of freedom in the trade-off between variance and bias.

In this paper we study generalizations of some estimators of the extreme value index, denoted by ~. More
precisely, let us introduce a sample X7y, ..., X,, with continuous distribution function F. We assume that F'
belongs to the max-domain of attraction of the Fréchet distribution with parameter v > 0, which is equivalent to

1— F(tx)

; — —1/7
tlggo T F@® x , Yz >0. (1)

For some weighted function g and for some positive real «, our statistics of interest have the following form

B %Z;C:lg(kjrl) [ngXn;%:,lfr
Frelga) = folg(:c) (log(z=1))" dx ’ ®

where X, < ... < X, , denote the order statistics of the sample. This estimator is the well-known Hill
estimator (1975) when the parameter o and weights are one. The class of the so-called kernel estimators given
by Csorgd et al. (1985), as the one studied in Beirlant et al. (1996), corresponds to a specific form of the
weighted function with moreover o equal to one. Note also that Gomes and Martins (1999, 2001) and Segers
(2001) considered such type of estimators when the weighted function ¢ is identically equal to one and « is
some positive real. Note finally that Hiisler et al. (2006) introduced these weighted estimators when « is equal
to one. Consequently, the family of statistics I'y, 1 (g, &) generalizes several approaches already studied in the
literature.

As remarked above, the choice of the number k of order statistics used in the estimation of the extreme
value index is of primordial importance. We can define an optimal sequence from the asymptotic mean square
error point of view. This sequence can be determined when the underlying distribution has a second order
expansion involving an extra unknown parameter, namely the second order parameter that is denoted by p.
We refer for instance to the works of Hall (1982), Dekkers and de Haan (1993) and Draisma et al. (1999).
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Consequently several estimators of p have been studied in articles on the adaptive choice of k. See, e.g., Hall
and Welsh (1985), Drees and Kaufmann (1998), Gomes et al. (2002) and references therein.

In this paper we also propose three methods in order to estimate the parameter p. The idea consists in com-
posing a consistent estimator of a function of p from differences and quotients of several estimators T',, 1 (g, ).
Firstly, we consider

Lo k(g1,2a) = T k(g3, 1)
Fn,k(g% 26) — Fn,k(g4a 1)2
Toi(hi, o+ €) — Ty o(hs, 1)20\ 2
( Ty k(h2,20) — T g (ha, 1)%¢ )

2a
4

for o and ¢ some positive reals. Note that this definition extends the class of estimators of Gomes et al. (2002)
studied for constant weighted functions and for ¢ equal to one. Under some assumptions, we can show that this
family of estimators converges in probability. Since the limit does not depend on the parameter -, it furnishes
a consistent family of estimators of some function of p. Similarly, we study

Lk(g1, 9) — Tnk(gs, 1)
Fn,k(QQa g + ) — Fn,k(gélv 1)a9+é
Fn,k(hl, Ozh) — Fnﬁk(hg, l)athl
ka(hg, ap + f) — Fn,k(h4, 1)0"1"'@

for positive reals oy, ap, £ and
Ty ii(g1,a01)™/% =T, k(go, afiz)™/%
Ly (g3, af3)7/% — T 1 (ga, ably)7/00"

for positive reals «, 6; and 7. Note that the last-mentioned class is a weighted generalization of that of
Fraga Alves et al. (2003).

The organization of the paper is as follows. In Section 2 we describe the hypotheses required on the
underlying distribution F’ and on the class of weighted functions g. Section 3 presents our results on the statistics
Ty.k(g, ). We state weak consistency and asymptotic normality for the parameter v* in Proposition 1 and 2.
In Corollary 1 and 2 we derive asymptotic properties of two estimators of the extreme value index. As a
consequence, we propose an estimating procedure for large quantiles in Corollary 3. Section 4 is devoted to the
estimation of (a function of) the second order parameter. Three different families of estimators are proved to be
weak consistent in Proposition 4, 6 and 8. We also obtain the asymptotic normality of suitable normalization
of these estimators in Proposition 5, 7 and 9. Section 5 gives some numerical results. Finally, all proofs are
postponed to Section 6.

2 Preliminaries

Let X1,..., X, be n independent and identically distributed (i.i.d.) random variables with common continuous
distribution function denoted by F. Let us denote by X;, < ... < X, , the order statistics of our sample.
Throughout the paper, our statistics of interest are I', (g, ) given by (2) with « some positive real and g
some well-behaved weighted function. In this section, we summarize assumptions required on F' and on the
weighted function g. We also introduced some notations.

2.1 Assumptions
For ¢t > 1, we set

Ut) = F~ (1 - %)

where the arrow denotes the inverse function. Hypothesis (1) can be written in terms of the quantile function
U as follows.
Assumption (Hy): There exists a positive real v such that

tlim logU(tx) —logU(t) = ylogz, Va > 0.



In order to estimate the extreme value index v and more specifically to achieve the asymptotic normality of
our estimators, we need to assume a second order expansion.
Assumption (Hz): There exists a positive real 7y, a negative real p and a function A with A(t) — 0 of constant
sign for large values of t such that

logU(tx) —logU(t) — ylogx xf —1

li = :
Jm A P Va>0

Let us remark here that Assumption (Hz) implies that the function |A| is regularly varying of index p (see for
instance de Haan and Ferreira, 2006).

As before, we can prove the asymptotic normality in the estimation of the second order parameter p if a third
order expansion is assumed.

Assumption (Hs): There exists a positive real v, some negative reals p and 3, some functions A and B, with
A(t) — 0 and B(t) — 0, both of constant sign for large values of t such that

lim (logU(tz) —logU(t) — ylogz) JA(t) — (xP — 1) /p 1 (m’”‘ﬁ -1 ar-1
A, B i\ orr

Note that under Assumption (H3) it can be proved that the function | B] is regularly varying of index 8. Once
again we refer for details to de Haan and Ferreira (2006) and references therein.

), Vo >0.

We will assume that the weights satisfy the following condition.
Assumption (G): g is a positive, non-increasing and integrable function defined on (0,1) such that there exists

d =0(g) > 1/2 satisfying 0 < fol g(x)z™%dz < 00 and 0 < fol g(2)(1 — ) %dx < .

Finally, throughout the paper we will assume that & = k(n) is a sequence of integers satisfying
Assumption (K): k — oo and k/n — 0 as n tends to infinity.

2.2 Notations

For the sake of clarity we introduce here some notations. Let g and g be some functions defined on (0,1). Let
also H and H be some well behaved functions in view of the definition of the following operators

g H) = / o) H (x)de,

v ,~,H,I:j = o) H' (2)3(y)H' (v)(z 11—z dxdy,
@) =[] @R T @A) ey
o?(g,H) := v(g,9,H, H).

They will play the role of asymptotic mean, variance or covariance of some random variables.
For x € (0,1), a some positive real, p and 5 some negative reals, let us denote

Io(x) = (loga™")",
- _ 1
Japlz) = (1og$_1)a_1x7,
p
2
-1
Kop(x) = (logz—1)>2 (L> ,
p
1 (a8 1 g=r—1
L z) = (logz= 1)o7 1= ( — ) .

Finally, when H, and I;Ta stand for some functions of the preceding list, we define the “normalized” version of
the operators u, v and o by

[l ,LL(Q,HQ)

g, Hy) = ENAL
99,5, Hoy ) = 2020 Ho: Ho)
P B @ « ,U/(g,Ia)/J/(a, Ia)a
6'2(95H04) = v(g9,9,Ha, Ha).



3 Estimating the extreme value index

In this part we present some generalizations for the estimation of the extreme value index v. We start by the
study of the asymptotic behavior of Ty, x (g, @) defined by (2). We recall that « is assumed to be some positive
real. As given in the next proposition, we see that under (H;) these statistics form a family of weak consistent
estimators of the parameter y.

Proposition 1. If (G), (K1) and (K) hold then Ty, 1(g, o) — v* in probability as n — oo.
When the second order expansion (Hs) holds true, we can derive the asymptotic normality property.

Proposition 2. If (G), (Ha) and (K) hold then we have the distributional representation

Foata ) =5 + (17000, 1) L4 A0/l ) ) (14 02(1) ®

where Py (g, «) is asymptotically standard normal.
As a consequence, if VkA(n/k) tends to A < 0o as n — oo, we get

ay d a—1 - o=
\/E(Fn,k(gaa> -7 ) — N ()\OKY 1#(97 Ja,p)772 0—2(971(1)) .

Remark 1. As already remarked in the introduction, the statistics I'j, x(g, o) are shown to be generalizations
over some estimators presented in the literature.

o Hy:=T,1%(1,1) corresponds to the Hill estimator (1975).

o Znk:=Ipnp (log(-_l) -1, 1) is a slight modification of the QQ-estimator introduced by Kratz and Resnick
(1996); Schultze and Steinebach (1996).

e For o >0, T, (1, ) are the statistics studied by Gomes and Martins (1999, 2001) and by Segers (2001).

e I'), 1(g,1) is the weighted least squares estimator of Hiisler et al. (2006) for positive g, of bounded variation
on (0, 1) such that there exists § = d(g) > 0 with 0 < fol 27 %g(x)dr < oo and 0 < fol(lfz)*‘sg(x)dx < 0.

Following the ideas of Gomes and Martins (1999, 2001) and Segers (2001) we derive from I', 1 (g, o) some
estimators of the parameter ~.

From the one hand, a possible estimator of the parameter - is F:L/ ,? (g, ). Taking into account the distri-

butional representation of I'y, 1(g, &) given by (3), we obtain easily

Corollary 1. If (G), (Hs) and (K) hold, if moreover VkA(n/k) tends to X < co as n — oo then

2
@ d _
Vi (Fiz{k (9, 0) = 7) - N ()\u(g, Jop)s

?62 (9, Ia)) .
Fn,k(gla a)

retg, 1)

Lemma 1. If ¢1 and g2 satisfy (G) then (Pi(g1, 1), Pr(g2,2)) is asymptotically a centered bivariate normal
v(91,92; Loy Lo,

(91, 1a,)0 (92, Las)

From the other hand, another possible estimator of ~ is . Note the following result

random vector with covariance given by

Using the distributional representation of I';, x(g, o) and Lemma 1 we obtain
Corollary 2. Assume that g1 and go satisfy (G). If (Hz2) and (K) hold true and \/EA(n/k) tends to A < oo
as n — 0o, then
T, )
Vk afl(gl a) PN
Fn7k (925 1)
is asymptotically normal with mean X [afi(g1, Ja,p) — (o — 1) (g2, J1,p)] and variance

v [6%(g1, 1a) + (@ = 1)°6%(g2, 1) — 2(a — )P (g1, g2, I, 11)] -



A consequence of the estimation of the extreme index is that of high quantiles defined by x, := F* (1 — p)
where the order p tends to 0. Several estimators of x;,, have been proposed in the literature by extrapolation
along the fitted line of the Pareto QQ-plot. Indeed, Weissman (1978) proposed the well-known estimator

~H k+1 Hin
&€ = Ap—kn
e “\(n+ 1p

where we recall that H, ;, denotes the Hill estimator. More recently, Fils and Guillou (2004) established the
asymptotic behavior of the quantile estimator:

1 Ziom & n+

o — k,n

x’ik,p =p Zk,n exp (E ZIOan,,H,Ln — 71 Zlog < i ))
1=1

=1

where we recall that Z,, j is the QQ-estimator. We deduce here the quantile estimator

1/a
A k+1 Fn,k (g,0)
i 4 (0:0) = Xopon <( ) (4)

n+1)p
Corollary 3. Under the assumption of Corollary 1 and for p = p(n) such that p and np tend to 0 as n — oo,

we have
VE
log a,,

2
A d _ v
(1Og x{z,k,p(g’ Oé) - IOg ZL'p) — N ()\/l(g, Javﬁ)’ 902(97](1))

kE+1

where a,, = ——.
(n+1)p

4 Estimating the second order parameter

We derive in this part some estimators of the second order parameter from the statistics I'y, x(g, o). We start
by a refinement of the distributional expansion.

Proposition 3. If (G), (Hs) and (K) hold then

% + (g, Ja) A(n/k) + a5 (g, Jap) Pr(g, . p) A%k)
M a—2-

5" g, Kap) A% (n/k) (1+ 08(1)) + @y ilg, Lap,0) A(n/k) B(n/k) (14 0p(1))  (5)

Ti(g, @) =44 +7°6(g, Ia)
+

where Py(g,a, p) is asymptotically standard normal.

Note that the third term in the distributional representation (5) is a function of the parameters v and p.
The main idea consists in the combination (by difference and quotient) of several statistics I'y, x(-,-) in order
to get rid of the first two terms and to conserve only a weak consistent estimator of some function of p.

Throughout this section we consider a slight modification of the assumption on the sequence k as follows.
Assumption (K): k — oo, k/n — 0 and VEA(n/k) — oo as n — oo.
4.1 First approach

Let us denote g := (g1, 92,93, 94) for g1, g2, 93 and g4 some functions defined on (0,1). For a; and ag some
positive reals, we define the statistics

Ui k(gs on, 02) :=

and the function - -
a1 fi(g1; Jay,p) — A(g3: J1,p)

(€5 ﬂ(927 JOQ,P) - /j(g4a Jl,ﬂ) .

1/1(97 g, OéQ,ﬂ) =



Following the idea developed by Gomes et al. (2002), we propose to study the class of statistics

\pn,k(ga 20&, 26)

Sn Jhya,l) =
g ) (W (h o+ £, 2002

where a and ¢ are some positive reals. The next proposition states that S, x(g, h, o, f) is a weak consistent
estimator of the function of p given by

(g, 20,20, p)
(b0 0) = sl et 020, )

Proposition 4. Assume that fori =1,...,4 the functions g; and h; satisfy Assumption (G). Assume that (Hs)

and (K) hold true. Suppose that ¥(g,2«,2¢,p) and Y(h,a + £,20,p) are well defined and nonzero. Then
Snk(g, b, o, l) — s(g, h,a,l, p) in probability as n — oo.

Now if we assume that the third order condition is true, then we can obtain the asymptotic distribution of
a suitable normalization of S,, (g, h, o, €) — s(g, h, o, ¢, p). Before, we need to introduce the notations

mS (g, 1, a3, p) = (a1 = 1) [fa(g1, Kay,p) — ﬂi(gs,Jl,p)] - (?2 — 1) [fi(g2: Kas,p) — 1%(94,J1,p)] w(g,ahaz,/))7
(B(92; Jaz,p) — B(94, J1,p)) ¥(g, 1, a2, p)

(1091, Lay p,8) — (93, L1,p,8)] — [1(92, Lag,p,3) — (94, L1,p,8)] ¥(g, a1, a2, p)

(1(92; Jaz,p) — (94, J1,p)) ¥(g, 01, 2, p) 7
ks(g1,92, h1, ho, o1, a2) = (g1, h1, lay, Ias) — 20(g1, ho, Iay, I1) — a19(g2, b1, I1, Iay ) + c102v(g2, ho, 11, I1),

1
arazasay (A(92, Jaz,p) — B(94, J1,0)) ¥(g, a1, a2, p) (B(h2, Jaz,p) — B(ha, J1,0)) (R, a3, aa, p)
X [a2aaks(g1, 93, h1, h3, 01, a3) — azazy(h, az, aq, p)rs(g1, 93, ha, ha, o1, 04)—
araap(g, o1, a2, p)ks (92, ga, b1, hs, a2, a3) + arasip(g, ar, az, p)y(h, as, s, p)ks(g2, g4, h2, ha, a2, aa)],

v%(g,al,ag,p) = cs(g,9,a1,a2,a1,a2,p).

m%(g, a1, az,p, B) =

cs(g, h, a1, a2, 03,04, p) :=

Proposition 5. Assume that fori =1,...,4 the functions g; and h; satisfy Assumption (G). Assume that (Hsz)
and (K) hold true with VkA%(n/k) — A4 < oo and VkA(n/k)B(n/k) — Ap < 00 as n — oo. Suppose that
¥(g, 20,20, p) and p(h, o+ €, 20, p) are well defined and nonzero. Then

\/EA(?’L//{Z) (Sn,k(ga h,a, f) - S(ga h,a, Ea p))

1s asymptotically a normal random variable with mean

m4 (g, 20,20, p) — 2mf (b, o+ £,24, p)
2y

s(g,hya, £, p) (AA + A5 (m(g,20,26,p,8) = 2m (b, + £,20,p, ﬁ)))
and variance

Vs> (g, h,a, 0, p) (vE(g, 20,20, p) + g (h, o+ £,20, p) — dcs(g, b, 20,20, a0+ £,20, p)) .

4.2 Second approach

For ay, a, and ¢ some positive reals, we introduce the family of statistics

\Iln,k(gv Qg, Qg + 6)
‘I/n,k(h; ap, oy + f)

Qn,k(gv h7 Qg, O‘hvg) =

and the function

w(g’ Qg, g + Ea p)

W(h, ap,an +£4,p)

This construction is clearly inspired by the preceding one. However it does not appear in the literature since
for constant weighted functions g = h = (1,1,1,1), the limit ¢(g, h, oy, ap, ¢, p) does not depend on p. As
previously, the second order condition allows us to prove that Q, x(g, h, ag, an, £) is a weak consistent estimator
of g(g, h,ay, an, l, p).

q(g, h,og,an, L, p) :=



Proposition 6. Assume that fori =1,...,4 the functions g; and h; satisfy Assumption (G). Assume that (Hz)

and (KC) hold true. Suppose that (g, oy, g + €, p) and Y(h, an, ap + £, p) are well defined and nonzero. Then
Qn.i(g, b, g, an,l) — q(g, h,ay, an,l, p) in probability as n — oo.

Moreover, taking into account the notations defined in Section 4.2, we obtain

Proposition 7. Assume that fori =1,...,4 the functions g; and h; satisfy Assumption (G). Assume that (Hsz)
and (K) hold true with VEA%(n/k) — A4 < oo and VkA(n/k)B(n/k) — Ap < 00 as n — oo. Suppose that
(g, ag,aq + £, p) and Y(h, ap, ap + £, p) are well defined and nonzero. Then

\/EA(?’L/I{?) (Qn,k(ga h’7 Qg, Qp, f) - q(ga h’7 Qg, Qp, f, P))
1s asymptotically a normal random variable with mean

mi(gvagvag +€7 P) - mi(hv Qp, Op, +£7 P) +
2y

Q(gv h7 agvoéh7€7 p) <)\A >\B (m%(gv Qg, Og +£7p7/8) - m%(h‘v Qp, Xp +£7/77 ﬁ)))

and variance

72q2(gvh7agaah7£7 p) (’U%(gvagaa‘q + g? p) + 'Ug'(h,Oéh,Oéh + 67 p) - 265(95 h,O[g,O[g +£,O&h,0{h +£ap)) .

4.3 Third approach

For 01, 04, 05 and 04 some positive reals, let us denote 8 := (01,02, 03,04). Let also 7 denotes some positive real.
Following the construction of Fraga Alves et al. (2003) we consider the statistics

7-/01 7'/92

Iy i (91, 0b1) — Iy (g2, f2)

(I)n ) 505 = .
x(g,,0,7) T (g3, a03)7/% — T, (g1, ab3) 7/
and the function (g1, ] ) g, )
HAG1; Jaby,p) — H 92, Jabs,p
¢(g, a, 07p) :: —_ — .
,U,(g3, Jaes,ﬂ) - M(g4a Joz94,p)

This class of estimators has clearly the simplest form.

Proposition 8. Assume that g1, ge, g3 and gy satisfy Assumption (G). Assume that (Hz) and (KC) hold true.
Suppose that ¢(g,,0,p) is well defined and nonzero. Then ¥, 1(g,a,0,7) — ¢(g,a, 0, p) in probability as
n — oo.
In order to describe the asymptotic normality associated to this estimator, we need to introduce some

notations.

mg (91, 92,1, 02, a3,p) = (a1 — Dia(g1, Kay,p) + (a3 — @1)i* (91, Jay,p) — (a2 — Dii(g2, Kas.p) — (a3 — a2)i* (92, Jaz p),

mg (91,92, 01,a2,p,8) := (g1, Lay p.8) = 192, Loy p.8)s

(92,94, las; Lay)

5(917937104171043) _ 9(917947[04171044) _ 5(927.‘]37104271043) +
alas a1y asas a0y ’

cao (91,92, 93,94, a1, 2,03, 04) 1=

2
v3 (91, 92,01, @2) := ca (91, 92, 91, 92, 01, @2, 01, @2).

Proposition 9. Assume that g1, g2, g3 and ga satisfy Assumption (G) with (g3, Lass,p) # B(94; Lasy,p). As-
sume that (H3) and (K) hold true with VEkA?(n/k) — Aa < oo and VkA(n/k)B(n/k) — \p < 00 as n — oo.
Then
\/EA(TL/IC) ((I)n,k(g; a, 07 7_) - ¢(gv a, 05 p))
is asymptotically a normal random variable with mean
m£(917927a0170{927 T, p) — m£(937947 abs, aby, ar, P)¢(97 a, 0, p) +Ap mg(.‘]17927a0170927 pyﬁ) — mg(937g4, by, abs, p7:6)¢(gv Q, G,P)

AA — = - —
27 (B(93, Jaos,p) — B(94, Jao,.p)) 1(935 Jabs,p) — B(94; Jaby,p)

and variance
o2 v3 (g1, 92, abh, ab2) + v3 (g3, ga, b3, ab04) 9% (g, o, 0, p) — 2¢a(91, g2, 93, ga, b1, b, bz, abs)d(g, o, 0, p)
(ﬂ(g?n Ja@s,p) - ﬂ(g4a Ja94,p))2
Remark 2. If T tends to 0 then the statistic ®, (g, «, 0, 7) tends to
(log I'n i (g1, a01)) /61 — (log I'n (g2, b)) /62
(log ' k(g3, afi3)) /03 — (log T (94, aba)) /04

Moreover, it can be proved that Propositions 8 and 9 hold true setting 7 = 0 everywhere.

(I)n,k(ga «, 0, 0) =



4.4 Consequences for the estimation of p

These approaches furnish three consistent classes of estimators of some function of p. As a consequence, it is also
possible to derive associated class of estimators of p by inversion. Assume that we can choose weighted functions
and tuning parameters such that the functions p — s(g, h,a, 4, p), p — q(g, h, g, o, ¢, p) and p — ¢(g,a, 0, p)
are bijective. Let us denote by s~ (g,h,,¢,-), ¢~ (g,h,aq,p,¢,-) and ¢ (g,«, 0, ) their inverse functions.
Then we can define

p5 (g hoa,l) = s7(g,h,a, 0, S, k(g,h,a,0)),
ﬁg7k(g7haag)aha€) = q(i(g)haagaahaga Qn,k(gahaagaahaf))a
ﬁ;{;,k(g’a’e’T) = QSH(Q,O[,O,@nyk(g,O[,O,T)).

Moreover, assume that these inverse functions are continuous. By application of the Continuous mapping
Theorem, under the assumptions of Proposition 4 (resp. 6 and 8) it can be proved that p}slyk(g, h,a,f) (resp.
ﬁgk (g,h,ay,an,f) and p¥, (g, @, 6,7)) is weak consistent for the parameter p. Finally, if moreover these inverse
functions are differentiablel the asymptotic normality of the statistics suitably normalized may be obtained from
the Delta method under the assumptions of Proposition 5, 7 and 9 respectively.

Some examples, derived from the third approach, are presented in Section 5.2.

5 Numerical results

In this part we show numerical results for the estimation of the parameters v and p in finite-sample and
asymptotic framework respectively.

5.1 Simulations for the estimation of the extreme value index

To illustrate the finite-sample behavior of some estimators studied in this paper we give some simulation results
for the distribution functions given in Table 1 and the weighted functions given in Table 2.

Distributions Yy op
Standard Cauchy 1 -2
Fréchet(2) 2 -1

Table 1: Tail characteristics of some distribution functions.

Weighted functions ¢ Expressions

90 1

g1 2(1 — )
g2 3/2(1 - 352)
g3 log 2~ 1

Table 2: Weighted functions satisfying Assumption (G).

Figure 1, 2 and 3 are obtained as follows. We generate independent and identically distributed samples of
size n = 1000 and replicate them m = 5000 times independently. For the sake of simplicity, let us denote the
estimates by 41,...,%9m. We compute the mean 1/m > /" 4; and the mean square error 1/m ;" (§; — v)*.
Since all the estimators depend on k upper order statistics, we show these averages as functions of k.

We present the results for the Standard Cauchy distribution on the left and the Fréchet(2) distribution on the
right. We use on the same sample the estimators

(1) Tp.x(gi,1) for i € {0,1,2,3} in Figure 1,
(2) Tyxlgi,a)/® for i € {0,1} and a € {0.5,2} in Figure 2,
(3) Tnk(gi, @) /T (g0, 1) for i € {1,2} and o € {0.5,2} in Figure 3.
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Figure 1: Mean and MSE in the case (1).
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Figure 2: Mean and MSE in the case (2).
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Figure 3: Mean and MSE in the case (3).



5.2 Asymptotic properties in the estimation of the second order parameter

We present here four estimators of p constructed from the third approach explained in Section 4.3. Let us
consider the family ®,, 1, (g, «, 0, 7) for « = 1 and particular values of g and 0

ol (1) = ®uk (90,90, 90,90, 1, (1,2,2,3), 7).
‘I)E,]k(T) = ®,1((91,90, 90 92),1,(1,1,1,1),7),
‘I)Ei]k(T) = ®,1((91,90,90,91),1,(1,2,1,1),7),
o'l (1) = @nu((91.90.92,01), 1, (1,1,1,1),7).

Recall that the weighted functions g; are given in Table 2. Under the assumptions of Proposition 8, these
statistics converge in probability (respectively and independently of 7) towards

3(1—0p
(b((gOagOagOagO)a1a(1527253)7p) = (37/))’
43—p
1,(1,1,1,1 = —=—
(b((glagOagOagQ)a 7() s 4y )7p) 327P,
14—p
1,(1,2,1,1 = ——
(b((glagOagOagl)a 7() s 4y )7p) 217/)’
4(3 —
(b((glngngagl)a17(1517151)7/)) = %pp)

By inversion, we obtain the following weak consistent estimators of p

3 ((I)Ll,]k (1) — 1)

ﬁg,]k (1) ol = provided that 1 < @S}k (1) <3,
n,k -

2 0 ((I)E]k (1) + 2) 2

O (T) o= provided that —2 < & (1) < —4/3,
: TANCER -
(3 2 (@) () -2) 3

O & (r) = provided that 1/2 < ® . (1) <2,
" Q(I)ﬂc (1) -1 "
) 0 (q)é]k () + 2) )

g (T) provided that —4 < &, (7) < -2,
" (I)Ei]k (1) +4 ok

where the conditions yield the right sign for the estimators. Then, under the assumptions of Proposition 8, we
have fori=1,...,4

i A
VEA(n/k) (ﬁuk (1) = /)) N (TAmA,[i] (1,p) + Azmp iy (p, B), v*vf, (P)) :

n—oo

Straightforward computations give the expressions of the asymptotic variance components

viy(p) = (1;72/))6(1 —2p+2p%),

G = BT RR
viy(p) = W(l —p+r),

viylp) = — p)2(§0;23p 4 pi ),

In Figure 4, we plot for i = 1,...,4 the asymptotic component vy (p), ma (7, p) for 7 € {0,1} and mp ;) (p, 3)
for € {—2,—1} as functions of p € (—5/2,0). The cases i = 2 and i = 4 give the same results for the
asymptotic mean components.

10



Asymptotic standard deviation component Vi) (©)]
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Figure 4: Behavior of the asymptotic mean and standard deviation components.



6 Proofs

6.1 Main tool

We present here the essential tool in proving our results. For convenience we set

& ) o
1 Xn7i+1 n
M, = T Xown |

Let U; , denote the ith-order statistic of a standard uniform sample of size k£ and by H some function defined
n (0,1). Under classical assumptions, the statistics M, (g, ) can be written (in the sense of distributional
representation) as linear combinations of terms with the following form

1 k
EZ (i/(k+ 1)) H (U ).

The asymptotic behavior of such random variables has been studied by Chernoff et al. (1967). Consequently,
we recall here a slightly simplified version of their Theorem 3.

Theorem 1. Let H be a continuous function on (0,1), satisfying a first order Lipschitz condition in every
interval bounded away from 0 and 1, whose derivative H' exists and is continuous except on a set S of Jordan
content 0. Assume that there exists some 19 € (0,1) such that

H/
* VK >0,3M < o0 st if 0 <up,us <79 and K~ < 4 < K then M~ < (1)
Uy H'(usz)

<M,

1-— H'
* VK >0,3IM <00 st ifl =79 <up,us<1and K1 < ! « K then M~ < (u1)<M
17’[1,2 H(’LLQ)

Let now g be a function defined on (0,1) such that

1-6
(i) / g(x)dz converges absolutely for any 0 € (0,1/2),
0

(i) mi(g, H) = p(g, H) + o(k=?) where my,(g, H

?rIH

k
Z J(k+ 1) H (i/(k+ 1)),
(iii) o*(g, H) converges absolutely,
1
(iv) / g(z)H'(2)[x(1 — 2)]*/?dx converges absolutely.
0

Then for Uy, ..., U a sample from the standard uniform distribution, we have

\/E %Zf 1g(k+1)H(Ui,k)_M(gvH) d
U(g’H) k—oo

This result will be applied in the particular cases given by
Lemma 2. Let g verifying Assumption (G) and let H stands for I, Jo,p, Ka,p 07 La,p g with oo > 0, p <0
and B < 0 defined in Section 2.2. Then the functions g and H satisfy the hypotheses of Theorem 1.

Proof of Lemma 2. We prove the lemma when H stands for I,. Similar arguments may be used in the other
cases.

15, (u1)
17, (u2)

x Let 79 € (0,1) and K > 1. In order to satisfy M1 < M whenever 0 < u; < 79, 0 < us < 79 and

. 1 K 11—« log K a—1
K‘l<Z—;<K,1tsufﬁcest0chooseM::maX K(1—|— Og ) ,K(l—i—L,l) )

log 7,

a—1 11—« ’
* One can check that for M := max( L ( K ) L ( K ) ) we have M~ < La(w) < M for

1—19 \(1—70 7 1—19 \ 1—70 I/ (u2)

12



l—7<up <1,1-7m <up<land K~! < {4 < K.

* Taking into account Assumption (G), (i) is obvious. Let us prove (ii). From Assumption (G), the func-
tion « — g(x)I,(x) is positive, non increasing and integrable on (0, 1). We get easily the following inequalities

1 ka1 [U/ED 1 k+1
— (g, Ia) — —— Io(2)dz < Vk o) — (g, 1) < —plg, Ia) — Io(2)dz.
T la) === | 9(@)la(z)dr < Vk[my(g, Ia) — n(g, o)) \f#(g AN o 9(x) o (x)dz
Since there exists § > 1/2 such that fol g(x)r~%dx < oo and fo )(1 —2)~°dx < oo, we see that

1/(k+1) 1
/ g(@)Io(z)dz = O ((k+1)7° (log (k+1))*) and / g(x) 1o (z)de = O ((k+1)7°7%).
0 k/(k+1)
Now remark that the point (¢i7) is a direct consequence of (iv) since

Vo,y € (0,1)  wAy(l—azvy) < (z(1-2)"? (y(1 - ).

When a > 1, we write

/01 ‘g(z)lé(z) (z(1— z))l/Q‘ dx = a/ol g(a)z—825~1/2 (1ng71)a—1 (1—2)"2 da.

Then the point (iv) follows from the boundedness of z — 2°~/2 (log x’l)a_l and z — (1 —z)'/?

when « € (0,1) we use the boundedness of z +— (1 — x)/2 (logac_l)a_1 and x — z0~1/2, O

. Similarly,

6.2 Proofs of Section 3

Proof of Proposition 1. We recall that T'y, (g, ) may be written as the quotient M, (g, «)/u(g, Io). Since
Assumption (G) implies (g, I,) # 0, we need to prove that M, x(g, @) =% v*u(g, L) + op(1).

Let Y1,...,Y, be independent and identically distributed with distribution (1 —y~!), ¥ > 1. Then we have
{Xo—knr s Xnn} = {UVn-kmn),---,U(Yn.n)} and consequently

5 ] @
1 ) U(Y,— )
4 n—i+1l,n
My (g, ) = ;Zg (k—i— 1> log< U(Yn—kn) ) .
i=1 ’

Under Assumption (H;), it can be proved as in Hiisler et al. (2006) that

M 1o(g, @) = (7a+0(1))%zg <kL—|—1) <log%ﬁ>a +0(1)%Zg (kj— 1> .

i=1 =1

k k
Now {log YnfiJrl,n 10g Yn k n}ic 1 =d {En i+1ln — En k n}iC 1 =4 {E; i41, k} {1Og U_ } where
=1 i=1
Ey,...,E, and Ef,..., E} are both samples from the standard exponential dlstrlbutlon and Ul, .., Ug is a
sample from the standard umform distribution. Hence last expansion of M, ;(g, @) becomes

M, (g, 0) =" (v* + o(1 %Xk:g( ' )(logUiTk) +o(1 %Xk:g(lﬁ'l) (6)

i=1 i=1

From Assumption (G), or more precisely using the fact that m(g, I) = u(g, In) + o(k~1/2), we obtain

L IR UATARS o ) (S O

Let ¢, = k~1/2. We split the last term of (7) into two sums: when i € {1,..., ke } and when i € {kep+1,...,k}.
On the one hand, we find that on the set {U; , > k~?}

55 () [(os) - (a0 <

13

ka

< 20 () st 1




By Assumption (G), there exists d = d(g) > 1/2 satisfying fol g(x)z~°dz < o0, so that

k ki (k:+ 1) /O%g(w)dx = 0(c}).

Since P(Uy; < k72) ~ k=1 and ¢} (log(k + 1))” tends to 0 as k tends to infinity, we proved

kkfg<k+1) [<logUi7k1)a (1 g@) } 2o (8)

k+1
LUZ'JC — 1‘ = Op(l), so that

On the other hand, from Lemma 3.2. of Hiisler et al. (2006) supy.., 1 1<;<

2 () [@ogq,gy_(bgkm:OM% 2 () ()

i=kcp+1 i=kcp+1
Using Assumption (G), we know that fo )(1 — 2)~%dx < co and one may deduce that
k .
1 1 1\ @ k + 1 P
i=kcr+1
The result follows from the combination of (6), (7), (8) and (9). O

Proof of Proposition 2. We use here the same notations as those introduced in the first lines of the proof of
Proposition 1. Remark that (k/n)Y,_kn — 1 in probability yields A(Y,,—k.n) = A(n/k)(1+o0p(1)). Recall also
that Yy—it1,n/Yn—kn is distributed as U, L for Ui,...,U; a sample from the standard uniform distribution.
As in Gomes and Martins (2001), it can be proved that under Assumption (Hz)

Mn,k(gva) :d ’YaTl,k(gaoé)+A(n/k})(1+O[P’(1))Oé’}/a71T27k(g7Oz7p)+0P n/k %Zg <

=1

with
1 i o
Tl,k(g)a) = Ezg (k+ 1) (1OgUz_k1) )
=1
k —p
1 72 o1 Uzk -1
To(g, 0. p) = Ezg(k+1) (10gUu§) v

Applying Theorem 1 to the function I, we get

Pk(gaa>
VEk

where Py (g, ) is asymptotically standard normal. The weak consistency contained in Theorem 1 for the
function J,,, yields

Tl,k(ga Oé) = ,Lt(g, Ia) + J(ga Ia)

P
To1(g, 0, p) — (g, Ja,p)-

Combining what precedes we have

My (g, ) = 7 (u(g, Ia) +o(g, Ia)%) +A(n/k)ey* " (g, Ja,p) + op(A(n/k))

since %Zleg (k—il) = O(1) under Assumption (G). The normalization by u(g,I,) gives the result for
Fn,k(gaa)' O

14



Proof of Lemma 1. Tt is a direct consequence of Corollary 4 of Chernoff et al. (1967) which asserts that if the
convergence in Theorem 1 applies for g; and H; with j € {1,...,r}, then it applies vectorially. Moreover,
elements of the covariance matrix are computed from the formula

/0 / 0i (2) H @) g () H ()@ V ) (1 — 2 A y)ddly.

Proof of Corollary 3. By definition of x,, and a,, we can write

log &), 1., (9. ) — logx, = I‘Tll{g‘(g, a)loga, +log X,k —logU(p™t). (10)

On the one hand, under Assumption (Hz), we know from Drees (1998) the following inequality: Ve > 0,
Jto = to(e) such that Vit > to and x > 1,

logU(tx) —logU(t) —ylogz a2 —1 < earte

A(t) p

Let Y,...,Y, be a sample from the distribution function (1 —y~')1,>1. Recall that X,,_s» =1 U(Yn—kn)-
We apply this inequality to t = n/k and « = (k/n)Y,_kn. We get for any € > 0

b EYkn)” 1
log Xp—p,n — log U (n/k) =" vlog ( an) + A(n/k)w

" 2L =Ly omamm (Evn)

Since k is an intermediate number such that vkA(n/k) — X and using the fact that
k d
VE (=Y pn—1) 5 N(0,1)
n

(see for instance de Haan and Ferreira, 2006, Corollary 2.2.2) we deduce easily that

10:;5” (log Xp—t.n —logU(n/k)) = op(1). (11)
Similarly, it can be proved that
VEk n+1
1 —1 —_— =o(1). 12
e (1ot n/h) ~ 1o (37 ) ) = o) (12)

On the other hand, we have for any ¢ > 0

n+1 1 n+1Y\al —1 n+1
logU ( ——= ) —logU = —yloga, — A n DA [ —— ) a2t=.
og (k+1) ogU(p~") = —yloga (k:+1) 5 +o(1) (,Hl)an

Since it is assumed that p < 0 one can choose € > 0 such that p + e < 0. Then, using the fact that
VEA((n+1)/(k+ 1)) — A, we obtain

vk n+1 .
g a. <logU (k—i— 1> —logU(p )+710gan> =o(1). (13)

In summary, (10) combined with (11), (12) and (13) yields

~ 1/«
g . (logx57k7p(g, a) — 1ogzp) =1k (Fn{k (9, ) — 'y) + op(1).

The result follows by application of Corollary 1. O
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6.3 Proofs of Section 4

Proof of Proposition 3. Using the same arguments as in Proposition 3.2 of Gomes et al. (2002), we may write
that

ala

1
Myi(g. ) = *Tiw(g, ) + A(n/k)oy* ' To k(g a, p) + A*(n/k)(1 + Op(l))T)V“_QTs,k(g, @, p)

+A(n/k)B(n/k)(1+ op(1))ar* " Ty k(g, o, p, 3) (14)

with T (g, @) and T (g, @, p) already defined in the proof of Proposition 2 and where

k . —p 2
1 i ne2 (U -1
T3 (g, ,p) = Ezg<k—+1) (10gUi,k1) (%) )
1=1

k . —(p+8) —p
1 i “ne-11 (U, -1 U -1
Tak(g,000,8) = Ezg(kJrl) (logUi’kl) B( e ) '
i=1

By application of Theorem 1 to the function J, ,, we get

P y Oy
TQ,k(gvavp) = /’L(gv Ja.ﬁ) +O—(g;<]a,p)% (15)

where Py (g, , p) is asymptotically standard normal. Now, we apply the weak consistency, contained in Theo-
rem 1, to the functions K, , and L, , g in order to get

P
T37k(g,Oé,p) - M(g7Ka,p)7 (16)
P
Tak(g; 0, p; 8) = 11(9; Lap,p)- (17)
The relations (14), (15), (16), (17) lead to the conclusion. O

Proof of Proposition 4. Let g1 and g2 be some weighted functions satisfying (G). When (Hz) and (K) hold we
can expand

(o3

Lni(g,@) —Tok(ge, 1) =% —=(5(91,La)Pr(g1, @) — @G (g2, [1) Pr(g2, 1))

+ay* T (flg1, Jap) — Alg2, J1,p)) A(n/k) (1 + 0p(1)).
For sequences k = k(n) such that vkA(n/k) tends to infinity as n — oo, this implies

;Q

Fnﬁk(glva) 71—‘”7]@(9271)& B} a—1 (

A(n/k) ay (g1, Ja,p) — (g2, J1,p)) -

Under Assumption (G) and if (g, a1, ae, p) and ¥(h, as, a4, p) are well defined and nonzero, it follows that

P .
Vo k(g, a1, a2) — y*1 (g, aq, a2, p) (18)
and
U, k(g, a1, 02) P ai—az—(az—as) (g, a1, az, p)
(W, x(h, a3, )] Y2(h, as, o4, p)
The rest is straightforward taking into account the values of the /s in Proposition 4. O

Proof of Proposition 5. If g1 and g satisfy (G), if (H3) and (K) hold we have

{63

Tok(g1,0) — Tok(ge, 1) =4 % (0(91,1a)Pr(g1, ) — ad (g2, I1) Pr(g2, 1))

+ay* (i1, Ja,p) — (g2, J1,p)) A(n/k)
A(n/k)

+ay* (T (g1, Jop) Prl(91, @, p) — 3(92, J1.5) Pi(g2, 1, p)) VEk

Oé(Oé — 1) a—2

57" (891, Kap) = 292, J1,0)) A%(n/k) (1 + 0p(1))
+ay* 7 (Alg1, La.p.p) — fi92: L1.p.5)) A(n/k)B(n/k) (1 + op(1)) .
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Moreover for k = k(n) such that vkA(n/k) tends to infinity as n — oo we see easily that

Fn,k(gla a) - Fn,k(QQa 1)04 _d a—1 (

Aln/k) =1 a7 (Algr, Jap) = g2 1.p))
e _ ~
+m (7(g1, 1o) Pe(g1, @) — ad (g2, 1) Pr(g2, 1))
wrﬁi? (g1, Ka,p) — 7 (g2: J1,0)) A(n/k) (1 + op(1))

+ay* 7 (191, La,p,p) — B(92, L1,p,5)) B(n/k) (1 + 02(1)).
Whenever the weighted functions satisfy (G) and are such that (g2, Jas,p) 7# £(g4, J1,p), it follows that

+ yo—eatl <042Vk(917937041) — a1 Vi (g2, 94, a2)9(g, 041704270))
VEA(n/k) ara (g2, Jag,p) — (94, J1,p))
+l,ya17a271 (al - 1) [ﬂ(ghKahﬂ) - ﬂ2(937 Jl,P)] - ((1’2 - 1) [ﬂ(927Ko¢2,p) - ﬂ2(g47 JI,P)] ¢(9704170427/’)
ﬂ(927 J0427P) - p‘(g47 Jl,ﬂ)

\Iang(g,O{l,OéQ) :d Otlfazw(g7a1’a27p)

) A(n/k) (1 + op(1))

(92, Joz,p) — 1i(g4, J1,p)
where Vi (g, h, «) := (g, o) Pr(g, &) — ad(h, Iy )Py (h, 1).
@2 Vi(g1, 93, 01) — a1Vi(g2, g4, 22)p(g, a1, az, p)

Q12 (ﬁ(gQ, Ja27p) - ﬂ(g4a JI,P)) w(ga aq, (2, p)
the assumptions of Proposition 5 and using (1 +x)? =1+ 2z +o(z) and 1/(1+2) =1 — 2+ o(x) as x — 0,
we get

e ( [(91; Loy p,8) = (93, L1,p,8)] = [A(92, Lay,p,8) = (94, L1,p,8)] w(gyahamp)) Bn/E) (1 + op(1))

Let us introduce the process Wi (g, a1, asg, p) :=

. Thus, under

Wi(g,2a,2L,p) — 2Wi(h,a + £, 2L, p)
VEA(n/k)
S _ S
JrmA(g, 20,20, p) — 2m3 (h, a0 + £, 2¢, p)A(n/k)
2y
+ (mi(g, 20,20, p, ) — 2mfi (b, + €20, p, B)) B(n/k) | (1 + 0p(1)

Sni(g h,al) =% s(g,h,a,l,p) |1+

with mi and m% introduced in Section 4.1. Then we can conclude since ks(g1, g3, h1, b3, a1, ag) is the asymp-
totic covariance between Vi (g1, 93, 1) and Vi (h, hs, as) and since cs(g, b, a1, ao, as, oy, p) is the asymptotic
covariance between Wi (g, a1, oo, p) and Wi (h, as, ag, p). O

Proof of Proposition 6. The proof is a direct consequence of the convergence obtained in (18). O
Proof of Proposition 7. With the same arguments as those used in the proof of Proposition 5, one checks that

Wi(g, ag, a9 +£,p) — Wi(h, ap, o + £, p)
VEA(n/k)

+mi(gaagaag +£ap) B mi(h’aahaah +£ap) A(?’L/k’)
2y

+ (m%(gaagaag +£apaﬁ) - m%(haahaah +£apaﬁ)) B(n/k) ] (1 + O[P(l)) .

Qn,k(g7haagaaha€) :d q(g7h7agaaha€a p) [ 1 + v

The result follows taking into account the covariances given at the end of the proof of Proposition 5. |

Proof of Proposition 8. First note that we may write

af /0 2,002 7/62
(oo™ - (osage)™) sy

N /03 ‘ o T/64 ’
(o)™ - (fzea) ™) st
Using the distributional representation (3), we observe that under (Hs)

(rn,k<g,a9>)”9

7&0

(I)n,k(gaaaeaT) = (19)

— 14 L5(g, Iae)w +A(n/k) (1 + 0p(1)) %

9 ﬁ(ga Ja@,p)-
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For sequences k = k(n) such that v/kA(n/k) tends to infinity as n — co we have

(Fn,k(gmBl))T/el B (Fn,k(927a92))7—/92

,Yael ,yaeg P QT
—

A(n/k) k3

and the result follows immediately. O

(ﬂ(glv ‘]0491,/1) - ﬂ(g% Ja927P))

Proof of Proposition 9. The distributional representation (5) implies

Iy k(g,a0) 7/6 B T_ Pi(g,a0) aT _
( ,yag ) =4 1+ 50'(9, IOLG)_ 7@ + A(n/k)TM(g7 Jagﬁp)
#4000 2. Ta0, ) LA 40 B0/ 2 g, L) (14 05(1)

aT _ _
A (n/F) 35 (06 = D), Kag,p) + (T = O (g, Jas,p)) (1 +0p(1))
Hence the numerator in the fraction (19) satisfies

(Fn,k(91a91))7/91 B (Fn,k(gma@z))T/BZ
d T

afq afgy B B Zk 7 ,ao 7@9
; - o (71(91, Ja,.p) — (g2, Javs.p)) + T (91,92, 001, aby)

A(n/k) A(n/k)\Wk
+B(n/k) (1 + op(1)) % (191, Loty p,5) — (92, Labs,p,8)) + A(n/k) (1 + 0p(1)) ;‘—; x

((aby = 1)ji(g1, Kas, p) + T — 01)32(91, Jab, ) — (@02 — 1)a(92, Kap,.p) — a(T — 02)[i% (g2, Jas,.p))

. 6 )IOq 6 )IOtZ
with Zx (g1, g2, 01, 2) := ka(ghfh) _ 992 1an)

Py (g2, @2). Using the notations introduced in Sec-
o1 (%)
tion 4.3, it yields

gl Zi(91, 92, 001, ab2) — Zi(g3, ga, a3, ab4) (g, @, 0, p)
(n/k)Wk 1193, Javs,p) — (94, Javs,p)
mg (g1, 92, 001, 0y, p, B) — mg (g3, g1, a6, aba, p, B) (g, o, 0, p)
(935 Javs,p) — (945 Jabs,p)
mi (g1, 92, b1, aba, at, p) — mi (g3, 94, b3, aby, at, p)d(g, a, 0, p)

2y (ﬂ(g?n Jaes,ﬂ) - ﬂ(g4a Joz94,P))

(I)n,k(gaaaevT) = ¢(gaa507p) + A

+B(n/k)(1 + 0r(1))

+A(n/E)(1 4 0p(1))

The result follows since the asymptotic covariance between Zi (g1, g2, a1, a2) and Zi(gs, ga, a3, cq) is given by
co (91, 92, 93, g4, 1, a2, 3, Q). 0
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