
HAL Id: hal-00292259
https://hal.science/hal-00292259

Submitted on 30 Jun 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On-The-Fly Metadata Stripping For Embedded Java
Operating Systems

Christophe Rippert, Damien Deville, Gilles Grimaud

To cite this version:
Christophe Rippert, Damien Deville, Gilles Grimaud. On-The-Fly Metadata Stripping For Embedded
Java Operating Systems. 6th IFIP Smart Card Research and Advanced Application Conference, 2004,
Toulouse, France. pp.Cardis04. �hal-00292259�

https://hal.science/hal-00292259
https://hal.archives-ouvertes.fr


ON-THE-FLY METADATA STRIPPING FOR

EMBEDDED JAVA OPERATING SYSTEMS

Christophe Rippert
INRIA Futurs, IRCICA/LIFL, USTL — Lille 1 ∗

Christophe.Rippert@lifl.fr

Damien Deville
INRIA Futurs, IRCICA/LIFL, USTL — Lille 1 ∗

Damien.Deville@lifl.fr

Abstract Considering the typical amount of memory available on a smart card,
it is essential to minimize the size of the runtime environment to leave
as much memory as possible to applications. This paper shows that
on-the-fly constant pool packing can result in a significant reduction of
the memory footprint of an embedded Java runtime environment. We
first present Jits, an architecture dedicated to building fully-customized
Java runtime environments for smart cards. We then detail the op-
timizations we have implemented in the class loading mechanism of
Jits to reduce the size of the loaded class constant pool. By suppress-
ing constant pool entries as they become unnecessary during the class
loading process, we manage to compact constant pools of loaded classes
to less than 8% of their initial size. We then present the results of
our mechanism in term of constant pool and class size reductions, and
conclude by suggesting some more aggressive optimizations.

Keywords: Java class loading, constant pool packing, embedded virtual machine

Introduction

Embedding Java applications on resource-limited devices is a major
challenge in a highly heterogeneous world where computing power is
found in all kind of unusual devices. The portability of Java is an in-
valuable asset for the programmer who needs to deploy applications on

∗This work is partially supported by grants from the CPER Nord-Pas-de-Calais TACT LOMC
C21, the French Ministry of Education and Research (ACI Sécurité Informatique SPOPS),
and Gemplus Research Labs.



18 Christophe Rippert and Damien Deville

these heterogeneous platforms. However, embedded Java virtual ma-
chines are typically very restricted because of the limitations of the un-
derlying hardware. For instance, the Java Card virtual machine [Chen,
2000] does not support multi-threading or garbage collection due to the
typical computing power and memory space available on smart cards
[Rippert and Hagimont, 2001]. Memory is an especially scarce resource
in most embedded systems due to technical constraints and prohibitive
costs which prevent the miniaturization of large memory banks. For in-
stance, a smart card typically includes 1–4 KB of RAM used as working
space, 32–64 KB of persistent writable memory (usually EEPROM) used
to preserve data when the card is not connected to a power source (and
sometimes also a working space if the RAM is not large enough), and
256 KB of ROM which usually contains the kernel of the runtime envi-
ronment. Thus, reducing the size of the virtual machine and its runtime
memory consumption are critical objectives if complex applications are
to be executed on the system.

Reducing the memory space consumed by classes obviously means try-
ing to obtain smaller code and smaller data. Previous work has shown
that bytecode compression can be used to reduce the memory space used
by the code [Bizzotto and Grimaud, 2002]. However, the compressed
code size usually cannot be reduced to more than 2

3 of the initial code
size, which does not result in a significant reduction of the overall class
size considering that most classes include much more data than code.
So it seems interesting to try and compress the constant pool of each
class, which stores most of the data used by the class (e.g. immediate
values, external method names and prototypes, etc.). A careful analy-
sis of the constant pool shows that many of its entries are only needed
during the class loading process and can be removed before execution.
Moreover, some data is duplicated in different classes and could be fac-
torized. Thus, we have devised a new class loading mechanism which
compacts the constant pool on-the-fly by suppressing entries as soon as
they are unnecessary, and implemented it in Jits, our architecture for
building customized Java operating systems. A valuable asset of our
mechanism is that it does not imply disabling important features of the
virtual machine, such as dynamic type checking or garbage collection.
Jits advocates a very different philosophy than the Java Card environ-
ment, since Java Card can be seen as a customization of the specification
of Java, whereas Jits implements the standard Java specification while
making it possible to customize the code of the environment to fit to the
underlying hardware.

We first present the Jits platform we have developed to build cus-
tomized Java virtual machines for embedded systems. We then detail



On-the-fly metadata stripping for embedded Java operating systems 19

the class loading scheme we have chosen in Jits and present the opti-
mizations we have implemented to reduce the memory space needed by
loaded classes. Some evaluations of the memory consumption of various
loaded classes are then presented, and we conclude by detailing the fu-
ture optimizations we plan to implement in Jits. A trace showing the
evolutions of the constant pool of a classical embedded application is
described in an appendix.

1. JITS: Java In The Small

Jits is an architecture dedicated to building embedded Java operating
systems. Jits is composed of a full-featured virtual machine (including
garbage collection, multi-threading, etc.) and a complete Java 1 API.
Developers can use the services and packages provided to build a tailored
Java Runtime Environment fitting the needs of the application and ex-
ploiting the resources available in the best way. Developers can therefore
choose which services they want to include, which contrasts with other
embedded environments which usually provide a restricted Java runtime
environment with little support for customization [Deville et al., 2003].
For example, a developer building a Java Card compliant environment
does not need to include a TCP/IP stack and can replace it by a much
smaller APDU automaton.

Jits also offers some tools dedicated to help building the embedded
environment, as presented in Figure 1. These tools include a program
dedicated to generate the binary image of the environment which will be
embedded in the device (we call this binary image a “Rom” though it
can be stored in other kinds of memory on the embedded device). This
program, called the Romizer, first loads all classes selected to be part
of the embedded API, and brings them to an initialized state using the
loading scheme presented below. After loading the classes, the Romizer
takes a snapshot of the objects created in memory and dumps it to a
C file which will be compiled with the core of the virtual machine to
build the binary image of the runtime environment. The Romizer is
a program entirely written in Java and can be run on any virtual ma-
chine1, which differs from standard romization schemes which usually
impose a dedicated building environment [Sun Microsystems, 2000][Sun
Microsystems, 2002]. Similarly, the Jits API can be used as any other
Java API by programs executed on a standard virtual machine. Jits is
programmed mostly in Java, so as to ease its porting to various hard-

1Though it needs the part of the Jits API in charge of loading classes, namely the classes
Class, ClassLoader, Field and Method.



20 Christophe Rippert and Damien Deville

ware platforms and to reduce as much as possible its memory footprint.
Native code is limited to parts which cannot be programmed in Java
and implemented using strict ANSI C to ease the porting.

vm.c

object

object

class loading code writer gcc

.class

.class

JITS API memory

rom.c jre.bin
card loader

Smart card

ROM

Figure 1. The romization process

It is important to note that Jits is not a replacement of Java Card
since it is not dedicated only to smart cards. It is meant to build ded-
icated Java operating systems for various types of hardware. It can be
used to build a Java Card compatible runtime environment, but the
generated system will be implemented in a very different way than stan-
dard Java Card environments. A major difference concerns the class
loading mechanism, since in Java Card class loading is done outside the
card, when converting classes to .cap files [Schwabe and Susser, 2003],
whereas in Jits the class loader is part of the runtime environment. This
means that the same class loader is used during romization and when
dynamically loading new classes. Thus, the class loader in Jits takes
into account the limitations of the underlying hardware and is devised
to minimize its memory consumption when optimizing the memory foot-
print of loaded classes, whereas the .cap file converter can use as much
memory as needed since it is always executed off-card. This on-card
reduction of the memory footprint of loaded class is to our knowledge
very rarely supported by embedded Java runtime environments.

2. Class loading in JITS

2.1 Principles

The class loading mechanism in Jits is different from the one imple-
mented in a standard Java runtime environment [Lindholm and Yellin,
1999]. In Java, classes are loaded and linked only when they are actually
used (i.e. when one of their methods is called or one of their fields is ac-
cessed). On the other hand, in Java Card, classes are compacted in .cap

files containing closed packages, which means that all classes are pre-
linked when inserted in the .cap file. In Jits we chose an intermediate
scheme. Jits class loading mechanism supports the standard Java class



On-the-fly metadata stripping for embedded Java operating systems 21

loading scheme, but also permits to recursively load and link all classes
referenced by the class currently being loaded2. This scheme is useful for
an embedded Java runtime environment executing on a platform which
might not be connected permanently to the network and which there-
fore needs to load all classes available when actually connected. Another
difference with the standard Java class loading scheme is that Jits pro-
vides both the standard defineClass method which takes a .class file
stored in a byte array as parameter, but also a defineClass method
taking an InputStream as a parameter. This permits to create the in-
ternal representation of the class being loaded on-the-fly without having
to load the whole .class file in memory, thus preserving memory.

Most classes loaded by Jits go through the four states presented in
Figure 2. Primitive types and arrays are exceptions to this scheme, since
they are directly created by the virtual machine without having to load
any class file. This class loading scheme is used both for classes loaded
during romization and for classes dynamically loaded when the virtual
machine runs on the embedded system, except for the initialization of
static fields as explained below. For classes loaded during romization,
our mechanism permits to reduce the footprint of the binary image which
will be loaded in ROM. For classes loaded during the execution of the
environment, the loading scheme we propose permits to reduce the space
consumed in EEPROM where dynamically loaded classes are stored. So
we are able to preserve memory both when the environment is created
and during its execution.

readyunloaded loaded linked

initialize static

references

resolve internal

resolve external

type checking

referenceschecking

structural

read class file

fields

Figure 2. The four states of class loading

2Recursive linking is also supported in Java Card through the export file mechanism, though
this linking is not done automatically as in standard Java.



22 Christophe Rippert and Damien Deville

2.2 State unloaded

A class is unloaded when its Class object is first created by a class
loader (i.e. by using a new Class() instruction). This Class object is
basically an empty container which is filled as the class is loaded from its
.class file. Figure 3 details the structure of a .class file as specified in
Section 4.1 of [Lindholm and Yellin, 1999]. A class in state unloaded is
typically a class which is referenced by another class but which has not
yet been loaded by a class loader. This differs from the applet loading
scheme in Java Card where a .cap file is made of all classes needed by
the application. In Jits, classes are loaded one by one and are only
required to be loadable when they are actually used.

ClassFile {

id_info; // magic and version number

constant_pool; // stores all constants used by the class

base_info; // access flags, class name and superclass

interface_list; // interfaces implemented by the class

field_list; // fields of the class

method_list; // methods of this class (including their bytecode)

attribute_list; // attributes (e.g. debug info, etc.)

}

Figure 3. .class file structure

2.3 State loaded

A class is loaded when the loadClass method of a class loader is
called. After having checked that the class has not already been loaded
and having found its class file in the classpath, the class loader calls the
load method of class Class. This method first reads the basic informa-
tion of the class (i.e. its version number, name, superclass, etc.) before
loading its constant pool. When loading a class, Jits ignores attributes
not useful during execution of the program (e.g. line number table,
source file, etc.). This can save a significant memory space, especially if
the class file contains lots of debugging information.

The constant pool of classes is loaded from the .class file in two
tables, named atable and vtable. The atable is an array of Object

which is used at first to store Utf8 constants (represented as String

objects), whereas the vtable is an array of int in which immediate
values are encoded. The atable is used later on to store other kinds of
objects, such as Class, Method or Field objects.



On-the-fly metadata stripping for embedded Java operating systems 23

The constant pool is then prelinked, which consists in resolving the
accesses to the structures which represent metadata in the constant pool
(i.e. the Constant info structures defined in Section 4.4 of [Lindholm
and Yellin, 1999]). For instance, a class is represented in the .class file
by a structure (called Constant Class info) containing an index point-
ing to an array of characters (a Constant Utf8 info entry) representing
its name. In Jits, a class constant is represented by a correspond-
ing Class object stored in the atable. Thus, the Constant Utf8 info

entry does not need to be mapped in memory. The Class object is cre-
ated if it does not already exist (which means that the referenced class
has not yet been loaded or referenced). If the class has already been
loaded, we use the Class object created when the referenced class was
in state unloaded. If it has already been referenced, we use the Class

object created when the class was first referenced. Thus, we preserve
memory since the Class object is needed to load the referenced class
anyway and we do not create any intermediate object to represent it.
We apply the same transformation to metadata representing strings and
name-and-type constants. Figure 4 details the transformation applied
to Constant NameAndType info entries. These structures are used to
describe fields and methods. A name-and-type is composed of the name
of the entity (field or method) and a string representing its type (using
the convention presented in Section 4.3 of [Lindholm and Yellin, 1999]).

String type

Constant_NameAndType_info {

u1 tag;

u2 name_index;

u2 descriptor_index;

}

Constant_Utf8_info {

u1 tag;

u1 bytes[length];

}

u2 length;

Constant_Utf8_info {

u1 tag;

u1 bytes[length];

}

u2 length;

String {

}

...

String {

}

...

u2 nameIx u2 typeIx

vtable

atable

String name

Figure 4. Constant pool prelinking (phase one)

A second pass of the prelinker transforms the metadata representing
fields, methods, and interface methods (e.g. Constant Fieldref info,
Constant Methodref info and Constant InterfaceMethodref info)
into an int stored in the vtable. This int is composed of the 16-bit
index of the corresponding Class object and the 16-bit index of the
Field or Method object representing the constant. These objects are



24 Christophe Rippert and Damien Deville

added to the atable. Once more, we are able to preserve some memory
by discarding unused Constant Utf8 info entries. Figure 5 details the
transformation applied to Constant Fieldref info entries.

Class class

class {
...

}

field {
...

}

u2 classIx u2 fieldIx

vtable

atable

Field field

Constant_Fieldref_info {

u1 tag;

u2 class_index;

u2 name_and_type_index;

}

Constant_Class_info {

u1 tag;

u2 name_index;

}

See Figure 4 Constant_Utf8_info {

u1 tag;

u2 length;

u1 bytes[length];

}

Figure 5. Constant pool prelinking (phase two)

After loading the constant pool, the load method reads the interfaces
implemented by the class, then its fields and its methods. The static
fields of the class are stored in two tables, aStaticZone which contains
reference fields, and vStaticZone for immediate values. Reading the
methods consists of loading the bytecode, reading the exception table,
loading stack maps if they are included in the class file, and finally
building the class virtual method table. When loading the bytecode of
a method, some instructions are replaced by an optimized version which
will be interpreted faster at runtime and can also save some memory
space. These optimized instructions are usually known as quick byte-
codes. For instance, the anewarray instruction includes a constant pool
index pointing to the type of the elements of the array. This instruction
is replaced by anewarray quick, which takes as a parameter an index
pointing to an entry in the atable containing a Class object of the ar-
ray component type. Thus, we can suppress the Constant Class info

and Constant Utf8 info entries representing the type of the elements
of the array.

Another interesting example of instruction replacement concerns the
ldc, ldc w and ldc2 w instructions which are used to load constants from
the constant pool onto the operand stack. When loading the bytecode,
these instructions are replaced by their quick counterparts which directly
access the immediate value stored in the vtable without needing the
Constant Integer info, Constant Float info, Constant Long info

and Constant Double info structures which can be discarded. Thus,
a ldc instruction is replaced by a ldc quick a instruction if the con-
stant is a reference, a ldc quick i if the constant is an int, and a



On-the-fly metadata stripping for embedded Java operating systems 25

ldc quick f if the constant is a float. It would be possible to use the
same instruction for both int and float constants since they are both
32-bit immediate values, but that would compromise the type-checker
which needs to be able to differentiate int and float. By replacing ldc

instructions by a type-specific opcode, we can preserve necessary type
information without keeping complete constant pool entries, and so pre-
serve both memory space and functionalities of the virtual machine.

2.4 State linked

Classes reach the linked state after being linked to each others. The
linking process starts by recursively loading all the classes referenced by
the constant pool of the class being linked. Then every method of the
class is prelinked, which consists of type-checking its bytecode, com-
pacting invokevirtual instructions, and marking the constant pool
entries used by the method code. During prelinking of a method,
invokevirtual instructions are compacted if the index of the method
in the constant pool and the number of arguments of the method are
both less than 256. Compacting these instructions simply consists of
replacing the index of the method in the constant pool, which is en-
coded in 16 bits in the instruction, by the number of arguments of the
method and its index in the virtual method table of the class declaring
it. Thus, at runtime the interpreter can call the method directly with-
out accessing the constant pool, which speeds up the calling process.
It also saves memory space, since the constant pool entry representing
the called method can be deleted. During method prelinking, constant
pool entries which are used by the bytecode are marked so that unused
entries can be detected during the compaction of the constant pool.

Static fields referenced in the vtable are then converted to references
pointing to the vStaticZone and aStaticZone. Static fields are treated
differently than virtual fields since their value can be accessed directly
since we know the class to which they belong (whereas finding a virtual
field requires looking up the inheritance tree to find the first class defining
that field). The index pointing to the Field object representing the
field is replaced by a 16-bit immediate value containing the 13-bit offset
of the field in the corresponding static zone and the 3-bit type of the
field (which is necessary in order to know which static zone contains
the field and how many bytes should be read). Thus, constant pool
entries representing static fields can be suppressed. Figure 6 presents
the compacting of static fields.

The constant pool is then packed and resized, thereby losing all unused
entries. Finally, each method is linked, which basically means modifying



26 Christophe Rippert and Damien Deville

}

class {

...

}

...

}

field {

u2 classIx u2 fieldIx

vtable

atable

Field fieldClass class

u2 classIx

vtable

Class class

atable

<off.;type>

value

staticZone

class {

...

Figure 6. Linking of static fields

the bytecode by replacing indices to the original constant pool entries
by indexes to the corresponding compacted constant pool entries.

2.5 State ready

A class reaches the final state ready after initializing its static fields
to their initial values. If the class is loaded during romization, this is
done by using the underlying virtual machine class loader to load the
class and then copying the values set by the static initializer to the
Jits instance of the class. This rather heavy mechanism is necessary
since the <clinit> method of a class cannot be called directly from a
Java program executing on a standard virtual machine. On the other
hand, if the class is being dynamically loaded by a running Jits virtual
machine, <clinit> methods are called directly by the virtual machine
as specified in [Lindholm and Yellin, 1999]. A final optimization can
be done here, as the <clinit> method of each class can be removed
after it has been used to initialize the static fields of the class. This is
done simply by removing the Method object representing the <clinit>

method from the linked list of the methods included in each class, and
letting the garbage collector free the corresponding memory space.

3. Benchmarks

We monitored the memory footprint of the Jits API when loaded us-
ing the scheme presented above. The API currently contains most classes
from the base package java.lang, and some classes from java.awt,
java.io and java.net, including a full TCP/IP stack.

We first counted the number of constant pool entries discarded while
loading the classes. Results are presented in Figure 7, with state un-
loaded refering to the number of entries in the .class files.



On-the-fly metadata stripping for embedded Java operating systems 27

Class state unloaded loaded linked

Number of entries 8,416 3,067 1,426

% of initial number 100% 36.44% 16.94%

Figure 7. Number of constant pool entries for the whole Jits API

These results show that most of the reduction of the number of con-
stant pool entries is done while loading the class, i.e. when resolving ac-
cesses to the constant pool and removing unnecessary indirections. We
still manage to divide by two the number of entries while linking, i.e. by
compacting invokevirtual instructions and packing static fields (which
implies suppressing unreferenced metadata for methods and fields).

We then monitored the memory footprint of the constant pool in
bytes. We tried and suppress as many strings as possible since they
are the most space-consuming data in the constant pool. Unfortunately,
some of them (e.g. field names, method descriptors, etc.) are needed
by the java.lang.reflect package, so we need to keep them if we
want to support introspection. Figure 8 presents the size of the constant
pool with and without those strings to illustrate the cost of supporting
introspection.

with introspection without introspection
Class state unloaded loaded linked loaded linked

Size in bytes 152,154 48,203 40,455 19,435 11,687

% of initial size 100% 32.68% 26.59% 12.77% 7.68%

Figure 8. Size of the constant pool for the whole Jits API

The size of the constant pool can be reduced to less than 8% of its
original size if introspection is not supported. This is due to the fact that
direct references to Constant String info represent only a small part
of all the Constant Utf8 info constant pool entries, so most of them
can be eliminated during loading. If those strings are not removed, we
manage to pack the constant pool to nearly one fourth of its original
size, while preserving a complete support for introspection.

Since most of our optimizations concern compacting the constant pool
(apart from disregarding unused attributes, which are seldom included in
.class files except when debugging), we can use the results presented in
Figure 8 to compute the size reduction for entire classes of the Jits API.



28 Christophe Rippert and Damien Deville

The total size of all .class files is 271,117 bytes3, which includes 152,154
bytes for constant pools. Since we manage to reduce the size of constant
pools to 40,455 bytes with support for introspection and to 11,687 with-
out introspection, we obtain a memory footprint for the API which is
only 58.8% of the total size of the .class files (48.19% without support
for introspection) in state linked. Suppressing the <clinit> method
of each class allows to save 54812 bytes for the whole API (including
50KB from java.awt), which means that the final memory footprint of
Jits API in state ready is only 38.58% of the total size of the .class files
with support for introspection and 27.97% without it. Figure 9 sums up
the reduction of the total size of classes with and without support for
introspection.

% of original size

50%

100%

LinkedLoadedUnloaded Ready

27.97%

38.58%

58.80%
51.05%

61.66%

48.19%

with support for introspection

without support for introspection

Figure 9. Reduction of the total size of classes

These results are similar to those obtained using the JEFF class for-
mat [The J-Consortium, 2002], which reduces the size of the .class

files by merging constant pools of different classes. We make a similar
optimization when factorizing entities used to represent data. For in-
stance, most classes in a Java API includes an entry in their constant
pool representing the class String (since most classes implement the
toString method). In Jits, we replace each entry by a reference to one
Class object representing the class String. Thus we are able to bene-
fit from optimizations similar to those done in the JEFF class format,

3The total size of the whole API is over 260KB. However, this includes packages like java.net
and java.awt which will probably not be included on a very constrained platform such as a
smart card.



On-the-fly metadata stripping for embedded Java operating systems 29

while loading standard .class files and staying compliant with Sun’s
specification.

4. Future work

An optimization similar to the one applied to static fields can be done
for private virtual fields and methods. In Jits, objects are implemented
as a C structure containing a pointer to the related class and the virtual
fields of the object. When the getfield and putfield bytecodes are
interpreted, the virtual machine accesses the required field by adding the
offset stored in the bytecode to the base address of the object. Thus, it
is possible to suppress all constant pools entries referencing private fields
since all accesses to these fields are made in the class declaring them and
so the getfield and putfield instructions can be modified to contain
the proper offset. Similarly, entries describing private virtual methods
can be removed from the constant pool. This optimization cannot be
applied to protected, package-accessible or public fields or methods, since
they could be accessed by a method of a class loaded dynamically after
romization. In that case, the constant pool entry representing the target
field or method would be necessary to link the new method.

However, if we define an additional state, called package-closed, we
can apply this optimization to all non-public fields. The state package-
closed is reached by classes in a package when no new class can be added
to that package. Locking a package this way can be useful for instance
to prevent an application from modifying a fundamental package such
as java.lang. If a class is package-closed, all constant pools entries
corresponding to its non-public fields can be suppressed since all accesses
can be linked before romization of the package.

Similarly, it is possible to define a state closed to be able to extend this
optimization even to public fields. A class reaches the state closed if we
can assure that no dynamically loaded class will need to be linked to this
class. In practice, this state is most useful for embedded virtual machines
romized with all the applications and that do not need to dynamically
load new classes. These last two optimizations implies disabling some
features of the virtual machine (namely restricting or even forbidding
dynamic class loading) so they will be made optional when implemented
in Jits.

Preliminary results show that these optimizations would allow a re-
duction of the constant pool to below the 7.68% lower limit presented in
Figure 8. In state closed, all Constant Utf8 info representing name or
type metadata would become useless, as well as all metadata represent-
ing fields or methods in the constant pool. Thus, we can assume that



30 Christophe Rippert and Damien Deville

7.68% is the upper limit of the results we can expect when state closed is
reached by a class, noting of course that closing a class prevents loading
of any new class referencing it.

Another optimization especially interesting for smart cards would con-
sist in minimizing the reorganizations of the constant pool of dynami-
cally loading classes. These classes are stored in EEPROM, a type of
memory much slower than RAM and which life expectancy diminishes
with each write. So it would increase the performance of the dynamic
loading process and prolong the lifetime of the smart card if we could
devise a loading mechanism which compacts the constant pool of a class
with only the minimal amount of entry reorganizations.

Conclusion

This paper shows that it is possible to greatly reduce the memory
footprint of the class loading mechanism by applying on-the-fly pack-
ing of the constant pool of loaded classes. This allows saving memory
space on the embedded system without sacrificing functionality of the
virtual machine, since for instance we can still type-check the bytecode
of the class while suppressing type information from the constant pool.
Coupled with the flexibility of Jits which permits to choose precisely
which components need to be included in the runtime environment (as
a garbage collector would not be relevant to a Java Card compliant
platform for instance), this makes it possible to generate a Java virtual
machine fully tailored for the target device, thus exploiting the limited
resources in the best possible way.

Acknowledgments

We would like to thank our shepherd, Erik Poll, for his helpful advice
on enhancing this paper.

Appendix

We present in Figure A.1 a piece of the classical example of the Purse application to
illustrate the reduction of the constant pool during romization. This partial example
shows the drastic reduction of the constant pool which can be achieved by discarding
unnecessary entries.

Figure A.2 presents meaningful information from the constant pool (i.e. vtable

and atable) of class Purse after it has been loaded. Method prototypes and type
descriptions are still included in the atable since they are necessary to link the class.
Besides the initial value for the field Purse.id, the vtable only contains references
to entries of type class which are stored in the atable.

Figure A.3 shows the constant pool after linking the class, which permitted dis-
carding most method prototypes and type descriptions. The vtable still includes the



On-the-fly metadata stripping for embedded Java operating systems 31

public class Purse extends Object {

private static int id;

private Float sum;

static { id = 0x12345678; }

public Purse(float b) {

this.sum = new Float(b);

}

final public void credit(float n) {

this.sum = new Float(this.sum.floatValue() + n);

}

}

Figure A.1. The original Java source of the Purse class

vtable:

[0]: 0 [3]: 18

[1]: 17 [4]: 19

[2]: 0x12345678

atable:

[0]: null

[1]: id [14]: fr/lifl/rd2p/jits/test/Purse

[2]: java/lang/Float [15]: java/lang/Object

[3]: sum [16]: floatValue

[4]: ()F [17]: class fr/lifl/rd2p/jits/lang/Float

[5]: <init> [18]: class fr/lifl/rd2p/jits/test/Purse

[6]: (F)V [19]: class fr/lifl/rd2p/jits/test/Object

[7]: I [20]: JMethod <init> ()V access=0x1001

[8]: ()V [21]: JField private fr/lifl/rd2p/jits/-

[9]: Ljava/lang/Float; lang/Float sum

[10]: credit [22]: JMethod <init> (F)V access=0x5001

[11]: <clinit> [23]: JField private static int id

[12]: getSum [24]: (F)Ljava/lang/Float;

[13]: JMethod floatValue ()F access=0x1001

Figure A.2. The constant pool in state loaded

vtable:

[0]: 0x12345678

atable:

[0]: class fr/lifl/rd2p/jits/lang/Float

[1]: class fr/lifl/rd2p/jits/test/Purse

Figure A.3. The constant pool in state linked

value used to initialize the static field Purse.id since this has not yet be done by the



32 Christophe Rippert and Damien Deville

Romizer. Similarly, the atable contains the fully qualified name of the class Purse

since it is needed by the static initializer to find the Purse.id field.

vtable:

empty

atable:

[0]: class fr/lifl/rd2p/jits/lang/Float

Figure A.4. The constant pool in state ready

Figure A.4 shows the final state of the constant pool, after the static initializer of
class Purse has been executed and discarded. The constant pool entries which were
associated with it have been removed too, resulting in a constant pool with only 1
entry left. This entry describing class Float could probably be suppressed in most
Java runtime environments since class Float is part of the package java.lang which
is typically completely romized. However, we chose to keep it in case the programmer
decides not to include support for floating point arithmetics in the base system and
then load it dynamically during execution.

References

[Bizzotto and Grimaud, 2002] Bizzotto, G. and Grimaud, G. (2002). Practical Java
Card Bytecode Compression. In Proceedings of RENPAR14 / ASF / SYMPA.

[Chen, 2000] Chen, Z. (2000). Java Card Technology for Smart Cards: Architecture
and Programmer’s Guide. Addison Wesley.

[Deville et al., 2003] Deville, D., Galland, A., Grimaud, G., and Jean, S. (2003).
Smart Card operating systems: Past, Present and Future. In The 5th
NORDU/USENIX Conference.

[Lindholm and Yellin, 1999] Lindholm, T. and Yellin, F. (1999). The Java Virtual
Machine Specification, Second Edition. Addison Wesley.

[Rippert and Hagimont, 2001] Rippert, C. and Hagimont, D. (2001). An evaluation
of the Java Card environment. In Proceedings of the Advanced Topic Workshop
”Middleware for Mobile Computing”.

[Schwabe and Susser, 2003] Schwabe, J. E. and Susser, J. B. (2003). Token-
Based Linking. US Patent Application number US 2003/0028686 A1.
http://www.uspto.gov/.

[Sun Microsystems, 2000] Sun Microsystems (2000). J2ME Building Blocks for Mo-
bile Devices. http://java.sun.com/products/kvm/wp/KVMwp.pdf.

[Sun Microsystems, 2002] Sun Microsystems (2002). The CLDC Hotspot Implemen-
tation Virtual Machine.
http://java.sun.com/products/cldc/wp/CLDC_HI_WhitePaper.pdf.

[The J-Consortium, 2002] The J-Consortium (2002). JEFF Draft Specification.
http://www.j-consortium.org/jeffwg/index.shtml.


