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Abstract — We address the estimation of quantiles from heavy-tailed dis-
tributions when functional covariate information is available and in the case
where the order of the quantile converges to one as the sample size increases.
Such ”extreme” quantiles can be located in the range of the data or near and
even beyond the boundary of the sample, depending on the convergence rate
of their order to one. Nonparametric estimators of these functional extreme
quantiles are introduced, their asymptotic distributions are established and
an illustration on a real data set is presented.

Keywords — Conditional quantile, extreme-values, nonparametric estima-
tion, functional data.
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1 Introduction

An important literature is dedicated to the estimation of extreme quantiles,
i.e. quantiles of order 1 — a with a tending to zero. The most popular
estimator was proposed by Weissman [27], in the context of heavy-tailed
distributions, and adapted to Weibull-tail distributions in [9, 18]. We also
refer to [10] for the general case.

In a lot of applications, some covariate information is recorded simultane-
ously with the quantity of interest. For instance, in climatology one may
be interested in the estimation of return periods associated to extreme rain-
fall as a function of the geographical location. The extreme quantile thus
depends on the covariate and is referred in the sequel to as the conditional
extreme quantile. Parametric models for conditional extremes are proposed
in [8, 26] whereas semi-parametric methods are considered in [1, 21]. Fully
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non-parametric estimators have been first introduced in [7], where a local
polynomial modelling of the extreme observations is used. Similarly, spline
estimators are fitted in [6] through a penalized maximum likelihood method.
In both cases, the authors focus on univariate covariates and on the finite
sample properties of the estimators. These results are extended in [2] where
local polynomials estimators are proposed for multivariate covariates and
where their asymptotic properties are established.

Besides, covariates may be curves in many situations coming from ap-
plied sciences such as chemometrics (see Section 5 for an illustration) or
astrophysics [3]. However, the estimation of conditional extreme quantiles
with functional covariates has not been addressed yet. Two statistical fields
are involved in this study. In the one hand, nonparametric smoothing tech-
niques adapted to functional data are required in order to deal with the
covariate. We refer to [5, 16, 23, 24] for overviews on this literature. We
propose here to select the observations to be used in the conditional quan-
tile estimator by a moving window approach. In the second hand, once this
selection is achieved, extreme-value methods are used to estimate the con-
ditional quantile, see [12] for a comprehensive treatment of extreme-value
methodology in various frameworks.

Whereas no parametric assumption is made on the functional covari-
ate, we assume that the conditional distribution is heavy-tailed. This semi-
parametric assumption amounts to supposing that the conditional survival
function decreases at a polynomial rate. To estimate the conditional quan-
tile, we focus on three different situations. In the first one, the convergence
of a to zero is slow enough so that the quantile is located in the range of
the data. In the second situation, the quantile is located near the boundary
of the sample. Finally, in the third situation, the convergence of a to zero
is sufficiently fast so that the quantile may be beyond the boundary of the
sample. This situation is clearly the most difficult one since an extrapolation
outside the range of the sample is needed to achieve the estimation.

Nonparametric estimators are defined in Section 2 for each situation.
Their asymptotic distributions are derived in Section 3. Some examples are
provided in Section 4 and an illustration on chemometric data is given in
Section 5. Proofs are postponed to Section 6.

2 Estimators of conditional extreme quantiles

Let E be a (finite or infinite dimensional) metric space associated to a metric
d. Let us denote by F(.,z) the conditional cumulative distribution function
of a real random variable Y given x € E and by ¢(«,z) the associated
conditional quantile of order 1 — « defined by

Fg(a,z),x2) =1 — a,



for all z € F and « € (0,1). In this paper, we focus on the case where, for
all x € E, F(.,z) is the cumulative distribution function of a heavy-tailed
distribution. In such a situation, the conditional quantile g(., z) satisfies, for

all A >0,
lim a(Aa,z) = @) (1)
a—0 q(Oé, .%')
where 7(.) is an unknown positive function of the covariate x referred to as
the conditional tail index. Loosely speaking, the conditional quantile ¢(.,x)
decreases towards 0 at a polynomial rate driven by v(x). The conditional
quantile is said to be regularly varying at 0 with index —v(x), and this prop-
erty characterizes heavy-tailed distributions. We refer to [4] for a general
account on regular variation theory and to paragraph 4.2 for some examples
of distributions satisfying (1).

Given a sample (Y1,21),...,(Yy,x,) of independent observations, our
aim is to build point-wise estimators of conditional quantiles. More precisely,
for a given t € F, we want to estimate ¢(«,t), focusing on the case where
the design points z1,...,x, are non random. To this end, for all » > 0, let
us denote by B(t,r) the ball centered at point ¢t and with radius r defined
by

B(t,r)={x € E, d(x,t) <r}

and let h, ¢ = ht be a positive sequence tending to zero as n goes to infinity.
The proposed estimator uses a moving window approach since it is based on
the response variables Y;s for which the associated covariates x}s belong to
the ball B(t,ht). The proportion of such design points is thus defined by

n

plhe) = = ST € Bt b))

=1

and plays an important role in this study. It describes how the design points
concentrate in the neighborhood of ¢ when h; goes to zero, similarly to the
small ball probability does, see for instance the monograph on functional
data analysis [16]. Thus, the nonrandom number of observations in the slice
St = (0,00) x B(t,ht) is given by my; = my = np(ht). Let {Z;(t), i =
1,...,m} be the response variables Y/s for which the associated covariates
x}s belong to the ball B(t, hy) and let Zy , (t) < ... < Zp, m,(t) be the
corresponding order statistics.

In this paper, we focus on the estimation of conditional ”extreme” quan-
tile of order 1 — a,y,,. Here, the word "extreme” means that a,,, tends to
zero as n goes to infinity, making kernel based estimators [14] non adapted.
In the sequel, three situations are considered:

(S.1) am, — 0 and meay,, — oo,

(S.2) am, — 0, mpayy,, — c € [1,00) and |miuy,, | — |c].



(S.3) am, — 0 and muayy,, — c € [0,1),

where |z | denotes the largest integer smaller than z. Let us highlight that,
in the unconditional case, situations (S.1) and (S.3) with ¢ # 0 have al-
ready been examined by Dekkers and de Haan [10], the extreme case ¢ = 0
being considered in [20], Theorem 5.1. A summary of their results can be
found in [12], Theorem 6.4.14 and Theorem 6.4.15. In situation (S.1), ay,,
goes to 0 slower than 1/m; and the point-wise estimation of the conditional
extreme quantile relies on an interpolation inside the sample, since, from
Proposition 2 below, q¢(an,,,t) is eventually almost surely smaller that the
maximal observation Z,,, m, (t) in the slice S;. In such a situation, we pro-
pose to estimate g(ayy,,t) by:

61(amt7t) = th*LmtamtJJrl,mt (t) (2)

In the intermediate situation (S.2), estimator (2) can still be used, since
for n large enough, |mauy,,| = |¢] > 0 and thus the estimation relies on
a conditional extreme value of the sample. Let us note that, if ¢ is not
an integer, then mya,,, — c implies |[may,, | — |c¢|. Otherwise, if ¢ is an
integer, then condition |m;ay,, | — |c] is necessary to prevent the sequence
| My, | from having two adherence values and §i(am,,t) from oscillating.
In situation (S.3), o, goes to 0 at the same speed or faster than 1/m; and
the conditional extreme quantile is eventually larger than Z,, m,(t) with
positive probability e=¢ > e~!. Thus, its estimation is more difficult since
it requires an estimation outside the sample. We propose in this case to
estimate q(auy,,t) by:

Go2(myst) = G1(Bimest) By [ty ) "
= th*[mtﬁmtJJrl,mt (t) (ﬁmt/amt)vn(t) ) (3)

where (3,,,, satisfies (S.1) and 4,(t) is a point-wise estimator of the condi-
tional tail index «(t). Such estimators have been proposed both in the finite
dimensional setting [2] and in the general case [19], see also paragraph 4.1 for
some examples. Note that (3) is an adaptation of Weissman estimator [27]
in the case where covariate information is available. The extrapolation is
achieved thanks to the multiplicative term (/f3,,,/ amt)%(t) which magnitude
is driven by the estimated tail index 4, (t). As expected, the extrapolation
is all the more important as the tail is heavy.

3 Main results

We first give some notations and conditions useful to establish the asymp-
totic distributions of our estimators. In the sequel, we fix ¢ € E and we
assume:



(A) The conditional quantile function
a € (0,1) — q(a,t) € (0, +00)
is differentiable, the function defined by

1
a€ (0,1) — A, t) :’y(t)—i-oza o84

(o, t) € (0,400)

o
is continuous and such that lin%) Aa,t) =0.
a—
Assumption (A) controls the behavior of the log-quantile function with re-
spect to its first variable. It is a sufficient condition to obtain the heavy-tail
property (1), see for instance [4], Chapter 1. For all a € (0,1), let us intro-
duce

Aat) = sup |A(a8)]
a€(0,a)

The largest oscillation of the log-quantile function with respect to its second
variable is defined for all a € (0,1/2) as

g, 7)
q(a, 2')

wp(a) =sup { log

,a€(a,1—a), (z,2') € B(t,ht)Q}.

Finally, let k, € {1,...,m} and Ji, = {1,...,k:}. Our first result estab-
lishes a representation in distribution of the largest random variables of the
sample Z;(t), i € {1,...,m}.

Proposition 1 Ifk;/m; — 0 and kfwn(mt_(l%)) — 0 for some § > 0, then,
there exists an event A, with P(A,) — 1 as n — oo such that

. d .
{(log th—i-l—l,mwz € Jkt) |'ATZ} = {(log Q(V{7mt,ﬂ),l € Jkt) |'A7l}7

where Vi m, < ... < Viym, are the order statistics associated to the sample
{V1,...,Vin,} of independent uniform variables and {T1,...,Ty,} are ran-
dom variables in the ball B(t, hy).

Note that this result is implicitly used in [19], proof of Theorem 1. We also
refer to [13], Theorem 3.5.2, for the approximation of the nearest neighbors
distribution using the Hellinger distance and to [17] for the study of their
asymptotic distribution. Here, condition kZwy(m, (1+5)) — 0 shows that,
the smoother the quantile function is on the slice Sy, i.e. the smaller its
oscillation is, the easier the control of the uppest observations is, i.e the
larger k; can be.

The next proposition is dedicated to the study of the position of the
conditional extreme quantile g(a,t) with respect to the largest observation
in the slice S;.



Proposition 2 If wn(m;(1+5)) — 0 for some § > 0, then

o under (S.1), P(Zn, m, < q(m,,t)) — 0,
e under (S.2) or (S.3), P(Zm,m; < q(m,,t)) — e C.

Let us first focus on situation (S.1) where the estimation of the conditional
extreme quantile is addressed using i (o, ,t), an upper order statistic cho-
sen in the considered slice.

Theorem 1 Let (ayy,,) be a sequence satisfying (S.1).

If (mtozmt)an(mt_(Hé)) — 0 for some 6 > 0 then,

(a2 (L2 1) 4 00,520,
q(am,,t)
It appears that the estimator is asymptotically Gaussian, with asymptotic
variance proportional to 72(t)/(muy,,). Thus, the heavier is the tail, the
larger is v(t), and the larger is the variance. Besides, the asymptotic vari-
ance being inversely proportional to a,,, the estimation remains more stable
when the extreme quantile is far from the boundary of the sample. Con-
sidering now situation (S.2), an asymptotically Gaussian behavior cannot
be expected since, in this case, the estimator is based on the |c¢|th uppest
order statistic in the considered slice.

Theorem 2 Let (a,y,,) be a sequence satisfying (S.2).
If wn(m;(Ha)) — 0 for some § > 0 then,

(dl(ammt)

Q(aﬂ’Lt b t)

- 1) % g (e (1)),

where E(c,y(t)) is a non-degenerated distribution.

The asymptotic distribution £ (¢, y(t)) could be explicitly deduced from the
proof of the result. It is omitted here for the sake of simplicity. Situation
(S.3) is more complex since the asymptotic distribution of ¢ may depend
both on the behavior of ¢; and 4,. In the next theorem, two cases are
investigated. In situation (i), the asymptotic distribution of g2 is driven by
G1- At the opposite, in situation (ii), §o inherits its asymptotic distribution
from 4.

Theorem 3 Let (6,,,) be a sequence satisfying (S.1) and let (ay,,) be a se-
quence eventually smaller than (By,,). Define Cm, = (MiBm, )"/ 10g(Bm, /tm,)-
If (mtﬂmi)an(mt_(H&)) — 0 for some 6 > 0 and there exists a positive se-
quence vy (t) and a distribution D such that

Un ()G () = 1(1)) % D, (4)

then, two situations arise:



(i) Under the additional condition

G max {v, 1 (8), BBy, 1)} — 0, (5)
we have )
(i) (222 1) 2 0,920, ()
(ii) Otherwise, under the additional condition
vn(t) max {Gl, A(Bpny 1)} — 0, (7)
we have t o
et famy Uty —1) . ®)

Note that, even though the main interest of this result is to tackle the case
where (auy, ) is a sequence satisfying (S.3), it can also be applied in the more
general situation where «,, is eventually smaller than 3,,,. For instance,
it appears that, in situation (S.2), §a2(am,,t) is a consistent estimator of
q(aum,,t) in the sense that the ratio converges to one in probability whereas,
in view of Theorem 2, §i(ayy,,t) is not consistent. Some applications of
Theorem 3 are provided in the next section.

4 Examples

In paragraph 4.1, the above theorem is illustrated with a particular family
of conditional tail index estimators. The corresponding assumptions are
simplified in paragraph 4.2 for some classical heavy-tailed distributions.

4.1 Some conditional tail-index estimators

In [19], a family of conditional tail index estimators is introduced. They are
based on a weighted sum of the log-spacings between the k; largest order
statistics Zp, —k+1,me» - - - s Zme,me- LThe family is defined by

k
- (thiJrl,mt (t)

Yn(t, W) = 1lo
At W) ; I -

k¢
)W(z’/k:t,t) > W (ifkit),  (9)
=1

where W (.,t) is a weight function defined on (0,1) and integrating to one.
Basing on (9) and considering 3, = k:/m;, the conditional extreme quan-
tile estimator (3) can be written as

kt )'AYW- (t,W)

miQm,

qAQ(aﬂ’Lﬁtu W) = th—kt'i'l,mt (t) (



From [19], Theorem 2, under some conditions on the weight function, 4, (¢, W)
is asymptotically Gaussian:

ke (A (8, W) = 3(8)) S N (0,72 () AV(E, W),

where AV(t, W) = fol W?2(s,t)ds. Letting v, (t) = k:t1/2, we obtain

Cmtvgl(t) = log < ki > — 00,

in situation (S.2) or (S.3), which means that condition (5) cannot be satis-
fied. Thus, only situation (ii) of Theorem 3 may arise leading to the following
corollary.

Corollary 1 Suppose the assumptions of [19], Theorem 2 hold. Let k; — oo
such that

kt1/2A(kt/mt,t) —0 and (10)

kfwn(mt_(l%)) — 0 for some § > 0. (11)

Let (aum,) be a sequence satisfying (S.2) or (S.3). Then,

ktl/2 <€?2(amt7t7W)
log(kt/(mtaﬂ%)) q(aMt7t)

As an example, one can use constant weights W' (s,t) = 1 to obtain the
so-called conditional Hill estimator with AV(t, W") = 1 or logarithmic
weights W?(s,t) = —log(s) leading to the conditional Zipf estimator with
AV(t, W*) = 2. We refer to [19], Section 4, for further details.

- 1) L N0, 72 (1) AV, W)).

4.2 Illustration on some heavy-tailed distributions

Standard Pareto distribution is the simplest example of heavy-tailed distri-
bution. Its conditional quantile of order 1 — « decreases as a power func-
tion of « since, in this case, q(a,t) = a7, Therefore A(a,t) = 0 for all
a € (0,1) and condition (10) of Corollary 1 vanishes. Another example is
Fréchet distribution for which

—()
q(a,t) = a® 1 log ! ! .
’ a 11—«

Here, the conditional quantile approximatively decreases as a power function
of a since, in this case, g(a,t) ~ a~"® the quality of this approximation
being controlled by

Ala,t) = —%a(l +O(a)) as a — 0.



A similar example is given by Burr distributions for which

Q(Oé,t) = ai’Y(t) (1 _ a*p(t)>_ﬂ/(t)/P(t)

and
Afa,t) = =y(t)a "D (1 + O0(a~M)),

with p(t) < 0. These results are collected in Table 1. In both Fréchet and
Burr cases, A(a,t) is asymptotically proportional to a=”®) as o — 0 with
the convention p(t) = —1 for the Fréchet distribution. Note that p(t) is
known as the second-order parameter in the extreme-value theory. It drives
the quality of the approximation of the conditional quantile g(a,t) by the
power function a~7® . Furthermore, it is easily seen, that for these two
distributions, the function |A(.,t)| is increasing. Thus, condition (10) of

Corollary 1 can be simplified as m?p ®) ktl ~27() _, 0 which shows that, the
smaller p(t) is, the larger k; can be. Finally, if v and p are Lipschitzian, i.e.
if there exist constants ¢, > 0 and ¢, > 0 such that

(@) = v(@")] < eyd(z, ") and |p(z) — p(a’)| < cpd(@, )

for all (z,2') € B(t, hs)?, then the oscillation can be bounded by w,(a) =
O(htlog(1l/a)) as a — 0 and thus condition (11) of Corollary 1 can be
simplified as kZh; logm; — 0.

5 Illustration on real data

In this section, we propose to illustrate the behaviour of our conditional
extreme quantiles estimators on functional chemometric data. The dataset
can be found at http://1lib.stat.cmu.edu/datasets/tecator. It con-
sists of n = 215 samples of finely chopped meat (see for example [15] for
more details). For each unit ¢ taken among this sample, we observe one
spectrometric curve y; discretized at 100 wavelengths Aq, ..., Aiggp. The co-
variate z; is thus defined by z; = (@;1,...,2i100)" with z; ; = xi(};) for all
j=1,...,100. Each variable z; ; is the —log;, of the transmittance, that is
the absorbance, recorded by the Tecator Infratec Food and Feed Analyzer
spectrometer. Clearly, the covariate x; is in fact a discretized curve but, as
mentioned in [22], the fineness of the grid spanning the discretization allows
us to consider each subject as a continuous curve. Hence, the covariate can
be considered as belonging to an infinite dimensional space E. For each
spectrometric curve y;, the fat content Y; € [0,100] (in percentage) is given.
Since these values are upper bounded, they cannot satisfy model (1) and
we propose to use as variable of interest Y; = 100/5@ €ll,0),i=1,...,n.
The adequation of our model to the new sample (Y;,x;), i =1,...,n will be
graphically checked below.



In the following, the semi-metric distance based on the second derivative
is adopted, as advised in [16], Chapter 9:

d*(xi, x5) = / (XEZ)(t)—xg-Z)(t)fdt,

where x@ denotes the second derivative of y. To compute this semi-metric,
one can use an approximation of the functions x; and x; based on B-splines
as proposed in [16], Chapter 3. Here, we limit ourselves to a discretized
version d of d:

99

P (@iy 7)) = > (@i — i) + @ig1 — xj0-1) = 2zig — 250}
=2

We propose to estimate the conditional extreme quantiles in situation (S.3)
in a given direction of the space E. More precisely, we focus on the segment
[Xios Xi,] where x;, and x;, denote the most different curves in the sample,
1.€. ~
(i0,11) = argmax d(x;, ;).
1<i<j<n

The selected curves x;, and x;, are plotted in Figure 1. The conditional
extreme quantile to estimate is g(a, t(r)) where t(r) = rx;, + (1 —r)y;, for
r € [0,1]. To this end, the estimator ¢a2(c, t(r), W?*) defined in paragraph 4.1
is considered. Parameters hy(,) and ky() are selected thanks to the heuristics
proposed in [19] which consists in minimizing the distance between two
different estimators of the conditional extreme quantile:

(h‘t(r)’ kt(r)) = arghr]?in |(j2(0£, t(T), WH) - (22(057 t(?"), WZ)|

The estimated quantiles G2(1/300, t(r), W*) and ¢2(1/500, t(r), W*) are plot-
ted as functions of r in Figure 2. As a comparison, the maximal observa-
tion Zpm, ) m,,, in the ball B(t(r),ﬁt(r)) is also represented as a function
of r. It appears that, for most values of r, §2(1/300,%(r), W?) is larger
than the maximum observation. Unsurprisingly, we can also observe that
G2(1/500, t(r), W#%) > G2(1/300,t(r), W?) for all r € [0, 1] since this property
is ensured by the definition of the estimator itself (3). The globally decreas-
ing shape of the curves indicates that heaviest tails (i.e. largest values of
v(t(r))) are found in the neighbourhood of the curve x;, (i.e. for small val-
ues of 7). At the opposite, lightest tails are found in the neighbourhood of
the curve x;,. This observation can be confirmed on the QQ-plots obtained

by drawing some log-spacings versus standard exponential quantiles:

<10g kt(r) log th(r)7j+17mt(r) j -1 ,I%t( ))
. M ) - PR | T
J th(r)_]%t(r)'i'l’mt(r)

10



for r € {0,1}. These QQ-plots rely on the property that, under model (1),

the log-spacings 10g(Zm, ) —j+1,my /th(r)_];t(r)"'Lmt(r)) computed in the ball

B(t(r), ﬁt(r)) are approximatively distributed from an exponential distribu-
tion with scale parameter (¢(r)). See [12], Section 6.2, for a review on
exploratory data analysis methods for extremes. The obtained QQ-plots for
r € {0,1} are presented on Figure 3. Let us note that the plots are approxi-
matively linear, confirming the good adequation of the heavy-tail model (1)
to the dataset. Two lines with slopes 4(¢(0)) ~ 0.36 and 4(¢(1)) ~ 0.09
have been superimposed. These very different slopes confirm a strong het-
erogeneity of the sample in terms of tail behaviour.

6 Proofs

6.1 Preliminary results

Our first auxiliary lemma is a simple unconditioning tool for determining
the asymptotic distribution of a random variable.

Lemma 1 Let (X,,) and (Y,) be two sequences of real random variables.
Suppose there exists an event Ay, such that (X,,|Ay) 4 (Y,|A,) withP(A,) —
1. Then, Y, 4, Y implies X, 4, Y.

Proof of Lemma 1 — For all x € R, the well-known expansion
P(X, < 2) = P({Xn < 2} A0)P(An) + P{X, < 2} AT )P(AY),

where A¢ is the complementary event associated to A, leads to the follow-
ing inequalities:

P({Xn < 2}|An)P(A,) < P(X, < 2) < P({X,, < 2} An)P(An) + P(AD).
Since (X, An) 2 (Y| Ayn), it follows that:
P({Y, <z}NA,) <P(X, <z) <P{Y, <z}nA,)+PA9).
Taking into account of
P(Y, < z) —P(AS) <P({Y, <z} NA,) <P, <)
leads to:
P(Y, < z) — P(AS) < P(X, < z) <P(Y, < )+ P(A9).
The conclusion is then straightforward since P(Y,, < z) — P(Y < z) and

P(Ag) — 0. [ |

11



The next lemma provides the asymptotic distribution of extreme quantile
estimators from an uniform distribution in a situation analogous to (S.1)
in the unconditional case.

Lemma 2 Let Vi,..., Vi be independent uniform random wariables. For
any sequence (0pr) C (0,1) such that Opr — 0 and M6y — oo,

M\ 12
<%> (Vinon ), m — 1) 4 N(0,1).

Proof of Lemma 2 — For the sake of simplicity, let us introduce kj; =
| M68ys]. From Rényi’s representation theorem,

kar M+1
d
Visr =3 _Ei [ 3 Ei
i=1 i=1
where E71,..., EFjy41 are independent random variables from a standard ex-

ponential distribution. Thus,

-1
de M 1/2 M+ M 1/2
() e (55) ()

Om
X [1 %E <kﬁM—9M>+0M< %E—l)
fige)]

=1

and, in view of the law of large numbers, we have

o 2 (%)”2(%_9M><HOP< 0+t (11555 -1)

O
e M+1 s
- (M) ZE—l = &M + &M — E3.M-

Let us consider the three terms separately. First, writing ky; = M6y — 7y
with a7 € [0, 1), we have

o B (2P e (12)
~Y —_— _—_——— H
LM O M (]WQM)I/2 ’

since M60y; — oo. Second, since kps ~ M0y, the central limit theorem
entails

knr
1
So, M ~ k}f (@ zE — 1) 4, N(0,1). (13)
=1

12



Similarly, it is easy to check that

§a.1 = Op(0)7) = op(1). (14)
since 6p; — 0. Collecting (12), (13) and (14) concludes the proof. ]

6.2 Proofs of main results

Proof of Proposition 1 — Under (A) and since the random values {Z;(t), i =
1,...,m;} are independent, we have:

. d .
{log Z;(t), i=1,...,my} = {logq(V;,x;) i =1,...,m},
where x; is the covariate associated to Z;(t). Denoting by (¢) the random
index of the covariate associated to the observation Z,,,—;t1,m, (t), we obtain
. d .
{log Zmy—it1,m, (1), i =1,...,me} = {log q(Vypiy, Tyi)) 1 = 1,...,my}.
Let us consider the event A, = A;, N Az, where
Vi 5 Uy
A1, = { min log 4(Vim;, i)
i=Lke=1 q(Vid1,mes it1)

Vi U
Ao = { min  log {WVkme: W)
i=kt+1,...,m¢ Q(Vi,mtaui)

>0,V (ugy ..., u,) C B(t,ht)} and

> 07V(ukt+1>' B 7umt) - B(taht)} :

Conditionally to Aj ,, the random variables q¢(Vim,,u;), ¢ = 1,...,k; are
ordered as

Q(th,mtaukt) S Q(th—l,mwukﬁl) S e S Q(Vl,mwul)v

and, conditionally to Aj ., the remaining random variables ¢(V; m,,u;), i =
ki 4+ 1,...,my are smaller since

R max Q(Vg,mw ul) S Q(th,mt> ukt)'
i=kt+1,...,m¢

Thus, conditionally to A,, the k; largest random values taken from the
set {log ¢(Vyy(iys Ty(i)), @ = 1,...,m} are {log q(Vim,, Ty@))s i =1,..., ki }.
Consequently, for Ji, = {1,...,k} and letting T; def Ty(i), We have:

. d .
{log th—i-l—l,mt (t)v (S Jkt|~'4n} = {10g Q(%,mw Tz)a (S Jkt‘An} :

To conclude the proof, it remains to show that P(A4,) — 1 as n — oo. Let

us define 6,,, = m, (1+9) and consider the events

./437” = {‘/17mt > 6mt} N {th,mt <1l- 5mt}

. q(Vimes t)
n - log —————"—— > 2w, (0, .
Ay, {ilﬂfki 8 Vit (O )

13



Under Az, we have 6,,, < Vi, <1 — 0y, forall i =1,...,m;. Hence, for
all (u;,u;) € B(t, ht)?, it follows that, on the one hand

V. .
log M = log

( q(‘/}mtvu]) q(‘/tb mtvt)
q(‘/;,mtaui) Q( i .

(

(

Q(Vj,mw t) q(Vi,mtaui)

> log — 2wy (O, ),

and on the other hand,

Vi , . Vi ,t
min log q( kt,my ukt) min log q( kt,me )

i=ke+1,...,my qVime,wi) — — imketl,m q(Vimg:t)

Viepmeo t
Whmit) g
4(Veo 1m0 1)

— 2wy (6my)
> log

Consequently A3, N As, C A,. Remarking that

P(Azn) > P(Vim, > 0m )P Vi me < 1=6m,)—1 =2P(Vi 1, > Opm,)—1 — 1,

since Vi, = 1= Vign, and P(Vign, > 0my) = (1= 6,n,)™ — 1, it thus
remains to prove that P(A4,) — 1. From [4], paragraph 1.3.1, condition

(A) implies that there exists ¢(¢) > 0, depending only on ¢ such that, for all

a € (0,1),
(o) = e | [ 1 10800,

u

which is the so-called Karamata representation for normalised regularly
varying functions. Hence, for all 7 € Jy,,

q(Vimys 1) _/Vi“’mf (1) + Alu,t)

du,
Q(ViJrl,mt ) t) Vi,mg u

log

and it follows that

q(‘/l mtut) X ‘/i+1 me
log —"———~ > t) — A(Vg, ., t)) log ———,
8 aVisrm?) = (v(#) = A(Viyt1,me, 1)) log Vi
leading to
A . W—i—l,mt
P(A4,n) > P (V(t) - A(thJrl,mtat)) . Ilnlnk log —_— > 2wn((5mt)
1=1,...,Kt i,mt
. V;’—l—l me 4wn(5mt) x
> P 1 ’ > A 2
= P ({ g, s = 2 0 (000 <2001
. V;’—l—l my 4wn(5mt) X
> P 1 ’ > P(A 2) —1
> (i, s 222 2 ) P (A ) <0/
def

= PLmt + P2,mt — 1.

14



In view of Rényi representation for uniform ordered random variables,

. . d .
{Zlog( zmt/ z+1 mt)v (S Jkt} = {FZ7 (S Jkt}’

where F, ..., Fy, are independent random variables from a standard expo-
nential distribution, we have

F;  Awy( 4iwn, (Om,)
_ . _Z > n n me
P = F (ﬂ{}i?kt i ° ) He"p ( 7(t) )
2
= exp <_Wkt(kt + 1)wn((5mt)> - 17

since kZwp, (0, ) — 0. Furthermore, Vi, 11.m, = (kt/me)(1 + op(1)) .0 and
A(a,t) — 0 as a — 0 entail Py ,,, — 1. The conclusion follows. ]

Proof of Proposition 2 — From Proposition 1, there exists an event A,
with P(A,) — 1 such that (Z, m, (t)|An) 4 (¢(Vimy, T1)|Ar) and thus,

Q(‘/lmthl) } )
P(Zpym,(t) < q(am,,t)) = Plqlog———"—"—=-<0,NA4,
o ®) < e t)) = P (frog 212
+ P({logM<0}ﬂAg>
q(amwt)
L Py, + Pim,. (15)

Clearly, Py, < P(AS) — 0. Let us now consider the term P ,,. Introduc-
ing 6, = mt_(1+5) and As , = {Vi,m, € [6m,, 1 — .|}, we have

Vime, T
Py = P log7Q( 1me, T1) <0pNA,NAs5,
7 Q(O‘mmt) 7

+ P <{logM < 0} mAnmA§n>

Q(aﬂ’Lt ) t)
and standard calculations lead to:

P ({log 1Vimi, T1) < 0} N Ag,,n) +P(A,) — 1< Py,
q(amwt)

< P ({log 4WVimi, T1) < 0} N Ag,,n) +P(AS,).

Q(amt 9 t)

Furthermore, As ,, implies

Q(Vl,mw Tl)

<
(Vi) | = n(Ome):

‘log

15



and thus

P ({ Oimw ) < _wn((sﬂ%)} N AS,n) —I—]P)(.An) —1< P3,mt
P ({ ‘gm” ) < wn((smt)} N "45,“) + P(Ag")’

which entails

P (tog 2000 < i, (5,) ) + B(hs) + P(A) ~ 2 < Pu

amt )

o Q(Vl,mwt) w C
< P(lg—q(amﬂt) < (b)) +PUAS,). (16)

Let us now focus on the quantity

Py ™ IP><1 Wi D) iwn(dmi)>

o )
iwnwmt))] i

mg

amt )

= ( (Vi t) i“’"(‘S’W)q(amvt))]
P (113 < F (e tam.0.t) )]
= exp [mt log F (eiw”(amt)q(amt,t),tﬂ )

Since e**n(®mi)g(ayy,, t) — oo and introducing the conditional survival func-
tion F'(.,t) =1— F(.,t), we have

my log F' (ei”"(amt)q(amt,t),t) = —mF (eiw"(amt)q(amt,t),t) (1+0(1))
F (e Omi) gy, t),1)

F(q(oum,,t),1)
As already mentioned, (A) implies (1) which, in turn, shows that F(.,t) is a

(1+o(1)).

= —MOmy,

regularly function at infinity with index —1/~(t). Hence, since e=<n(®m:)
1, we thus have (see [4], Theorem 1.5.2),
Ia (eiwﬂ(am)q(amt 1), 1) .
F (q(aum,,t),t) '
As a conclusion,
Psmy = [1 = cim, (14 0(1))]™, (17)

and collecting (16) and (17) leads to:
[1 = am, (1+0(1)]™ +P(Asn) + P(An) — 2
< Py, < [1— am, (14 o(1)]™ +P(AS,).

Since P(As,,) — 1 and P(A,,) — 1, it is then straightforward that Ps,,, — 0
under (S.1) and Ps,,, — e~ ¢ under (S.2) or (S.3). Equation (15) concludes
the proof. ]
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Proof of Theorem 1 — Let us introduce, for the sake of simplicity, k; =
| My, |. From Proposition 1, there exists an event A,, such that:
a)

1/2 q1(am, ,t) 4a 1/2] 9V mes Thy)
({72108 2] 4, ) 2 (210 2 e )
1/21 q(th,mw Tkt) d 2 1
(mtamt) 0og Q(Oém“t) - N(07 v (t))7 ( 8)

where P(A,,) — 1. From Lemma 1, the convergence in distribution
is a sufficient condition to obtain

log 2@mest) 4, 5o 124,
Q(amt ) t)

A straightforward application of the §-method will then conclude the proof.
Let us prove the convergence in distribution (18). To this end, consider

q(vkt,mt 9 Tkt)
Q(th,?mvt)

and let 0,,, =m, (1+9) " Remark that, under (S.1),
P(Rn < wn(0m,)) 2 P(Vigm, € [0my, 1 = 0me]) — 1.
Thus, R, = Op(wp(6m,)) and we have

Vi T Vi t
tog Wi D) _ jo 00k . 5,,). (19)
q(am,, 1) q(am,, 1)
Let us introduce the log-quantile function g(.) = logq(.,t). Clearly, for all

a € (0,1),

(mtamt )1/2

R, = |log

Ala,t) —y(t
o
and a first-order Taylor expansion leads to:
Viemes t
(meom ) 10g BB D V20, (Ve — )
Q(amt ’ t)

my

1/2
= Oémigl(gmt) ( > (th,mt - amt)a

my
where 0,,, € [min(oym,, Vi, m, ), max(cum,, Vi, m,)]. Now, Vi, m, v Oy, entails
O, Ly am, — 0 and, from (A),
P
amtg,(emt) ~ emtg,(emt) = A(Gmt7t) - ’7(t) - _W(t)'
Then, Lemma 2 implies that
th,mtat) d

(mecm,)*1og DEme ) 2 v 1) (20)

Q(amt 9 t)
Collecting (19) and (20) concludes the proof after remarking that condition
(0t ) 2w (6, ) — 0 implies (myaum, ) %wn(0m,) — 0. |
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Proof of Theorem 2 — Since (., t) is regularly varying with index —~(t),
we have under (S.2) that q(1/my,t)/q(am,,t) ~ (Miam, )’ — @ and
the following asymptotic expansion holds

dl(amt7t) — lo ql(amw ) (1/mt> )
8 e t) %8 o078 i)
_ ( mw

J

Now, recall that in situation (S.2), for n large enough, |mia,, | = |c
Thus, from Proposition 1, there exists an event A, such that P(A,) —

nd ( ) % 1))
G1(Qm,, T d q\Vic],mer 4 |c) ‘ >
]. .~ ATL — 1 - < 7 N An .
<°gq<1/mt,t>‘ > (Og g(1/my, 1)

Mimicking the proof of Theorem 1, we obtain

aVe)me> Tie)) a(Vie)ymest)
Q(l/mtvt) (1/mt> )

To conclude, one can remark that ¢(V|c|m,,t) is the |c]Jth uppest order
statistics associated to a heavy-tailed distribution. In such a case, Corol-
lary 4.2.4 of [12] states that q(V|c|m,,t)/q(1/my,t) converges to a non-
degenerated distribution. This asymptotic distribution is explicit even though
it is not reproduced here. [ |

log = log + Op(wn(6m,))-

Proof of Theorem 3 — Observing that

log QQ(amt ’ t) = log gy (ﬁmt > t) =+ '?n( ) log (gmt )

leads to the following expansion

7612(amt’t)—1 = log———"""+ -1

8 (ame. ) e 1)
+ tog (22 Gu6) 2 (0)
Q(ammt) ﬁmt
— 18 By YO8 (am>
def

54,777,75 + 55,777,75 - 56,mt-

First remark that, under (A), as already shown in the proof of Proposition 1,

u

Q(amtvt) _ /ﬁmt V(t) + A(u’ t_) du

mg

18



and thus, &6, can be simplified as

B A(u, t
&’),mt :/ ( )du

u

my
which leads to the bound:

€6ms| < A(Bpmy 1) log (@) ,

mg

The two additional conditions are now treated separately since, under condi-
tion (5), the asymptotic distribution is imposed by 4 ,,, whereas, under (7),

the asymptotic distribution is imposed by &5, .
(i) Under (5), Theorem 1 entails that

(1048 )2 Eame > N(0,72(2))

and
(MeBrn)2E5m0 = Conevin ()0 () (B (8) = 7(1)) 2 0,

from (4) and (5). Finally,

(mtﬁmt)1/2‘§6,mt‘ < gmtA(ﬁmwt) — 0,

from (5). Collecting (21), (22) and (23) concludes the proof of (6).

(ii) Under (7), Theorem 1 implies

_o® et e @
lOg(ﬁmt /amt)£4’mt = Un (t)Cmt (mtﬁmt) 54777745 0.

Moreover, from (4),

un(t) _ X B a
oz o Jany Some = n()Ga(t) =7(1)) = D
and finally, o
Un(t )
mmﬁmﬂ < A(Bmg, t)on(t) — 0,

under (7). Collecting (24), (25) and (26) concludes the proof of (8).
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Figure 1: Selected spectrometric curves y;, and x;,.
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logarithm of estimated quantiles
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Figure 2: Estimated conditional extreme quantiles §a2(a,t(r), W?) in the
selected direction as a function of r. Continuous line: maximum, dashed
line: estimated quantile of order a = 1/300, dotted line: estimated quantile
of order ao = 1/500.
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Figure 3: QQ-plots obtained for the two selected spectrometric curves (o:
Xi, and X: x;, ). The straight lines have slope 4, (W™, ¢(r)), r € {0,1}.
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Pareto | a7 0

Fréchet aV(t){llog< ! >}W) —@a(u()(a))

Burr | o ® (1 _ o P® —y()a—PD (1 + O(a—rD))

Table 1: Some examples of heavy-tailed distributions. For all distributions,
~(t) > 0 is the tail-index and p(t) < 0 is referred to as the second-order
parameter in extreme-value theory.
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