Renewal series and square-root boundaries for Bessel processes
Nathanael Enriquez, Christophe Sabot, Marc Yor

To cite this version:
Nathanael Enriquez, Christophe Sabot, Marc Yor. Renewal series and square-root boundaries for Bessel processes. 2008. <hal-00289151>
RENEWAL SERIES AND SQUARE-ROOT BOUNDARIES FOR
BESSEL PROCESSES

NATHANAËL ENRIQUEZ, CHRISTOPHE SABOT, AND MARC YOR

Abstract. We show how a description of Brownian exponential functionals as a
renewal series gives access to the law of the hitting time of a square-root boundary
by a Bessel process. This extends classical results by Breiman and Shepp, concerning
Brownian motion, and recovers by different means, extensions for Bessel processes,
obtained independently by Delong and Yor.

Let \(B_t \) be the standard real valued Brownian motion and for \(\nu > 0 \), introduce the
geometric Brownian motion \(E^{(-\nu)}_t \) and its exponential functional \(A^{(-\nu)}_t \)
\[
E^{(-\nu)}_t := \exp(B_t - \nu t)
\]
\[
A^{(-\nu)}_t := \int_0^t (E^{(-\nu)}_s)^2 ds.
\]

Lamperti’s representation theorem [5] applied to \(E^{(-\nu)}_t \) states
\[
E^{(-\nu)}_t = R^{(-\nu)}_{A^{(-\nu)}_t}
\]
where \((R^{(-\nu)}_u, u \leq T_0(R^{(-\nu)})) \) denotes the Bessel process of index \((-\nu) \) (equivalently
of dimension \(\delta = 2(1 - \nu) \)), starting at 1, which is an \(\mathbb{R}_+ \)-valued diffusion with
infinitesimal generator \(\mathcal{L}^{(-\nu)} \) given by
\[
\mathcal{L}^{(-\nu)} f(x) = \frac{1}{2} f''(x) + \frac{1 - 2\nu}{2x} f'(x), \quad f \in C^2_b(\mathbb{R}_+^\star).
\]

Let us remark that, in the special case \(\nu = 1/2 \), equation (0.1) is nothing else but
the Dubins-Schwarz representation of the exponential martingale \(E^{(-1/2)}_t \) as Brownian
motion time changed with \(A^{(-1/2)}_t \).

For a short summary of relations between Bessel processes and exponentials of
Brownian motion, see e.g. Yor [10].

Let us consider now the following random variable \(Z \), which is often called a per-
petuity in the mathematical finance literature:
\[
Z := A^{(-\nu)}_\infty = \int_0^\infty (E^{(-\nu)}_s)^2 ds
\]
We deduce directly from (0.1) that
\[
A^{(-\nu)}_\infty = T_0(R^{(-\nu)}_1)
\]

2000 Mathematics Subject Classification. 60G40, 60J57.
Key words and phrases. Bessel processes, renewal series, exponential functionals, square-root
boundaries.
where \(T_0 := \inf\{u : X_u = 0\} \), and it is well-known (see [1], [2]), that

\[
\mathcal{A}_{\infty}^{(-\nu)} \overset{\text{law}}{=} \frac{1}{2\gamma_{\nu}}
\]

where \(\gamma_{\nu} \) is a gamma variable with parameter \(\nu \) (i.e. with density \(\frac{1}{\Gamma(\nu)} x^{\nu-1} e^{-x} \mathbf{1}_{x > 0} \)).

Our main result characterizes the law of the hitting time of a parabolic boundary by \(R_{\nu}^{(-\nu)} \) which corresponds to a Bessel process of dimension \(d < 2 \).

Theorem 1. Let \(0 < b < c \), and \(\sigma := \inf\{u : (R_{\nu}^{(-\nu)})^2 = \frac{1}{c}(b + u)\} \) with \(R_0^{(-\nu)} = 1 \).

\[
E[(b + \sigma)^{-s}] = c^{-s} \frac{E[(1 + 2b\gamma_{\nu+s})^{-s}]}{E[(1 + 2c\gamma_{\nu+s})^{-s}]}, \text{ for any } s \geq 0
\]

Proof: using the strong Markov property and the stationarity of the increments of Brownian motion, we obtain that for any stopping time \(\tau \) of the Brownian motion

\[
\mathcal{A}_{\infty}^{(-\nu)} = Z = \mathcal{A}_{\tau}^{(-\nu)} + (\mathcal{E}_{\tau}^{(-\nu)})^2 Z'
\]

where \(Z' \) is independent of \((\mathcal{A}_{\tau}^{(-\nu)}, \mathcal{E}_{\tau}^{(-\nu)}) \) and \(Z \overset{\text{law}}{=} Z' \).

This implies, by (0.1), that \(Z \) satisfies the following affine equation (see [3] for a survey about these equations)

\[
\mathcal{A}_{\infty}^{(-\nu)} = Z = \mathcal{A}_{\tau}^{(-\nu)} + (R_{\mathcal{A}_{\tau}^{(-\nu)}}^{(-\nu)})^2 Z'
\]

where \(Z' \) is independent of \((\mathcal{A}_{\tau}^{(-\nu)}, R_{\mathcal{A}_{\tau}^{(-\nu)}}^{(-\nu)}) \) and \(Z \overset{\text{law}}{=} Z' \).

Obviously, \(\sigma < T_0(R_{\nu}^{(-\nu)}) \). Taking now:

\[
\tau = \inf\{t : (R_{\mathcal{A}_{\tau}^{(-\nu)}}^{(-\nu)})^2 = \frac{1}{c}(b + \mathcal{A}_{\tau}^{(-\nu)})\}
\]

we get \(\mathcal{A}_{\tau}^{(-\nu)} = \sigma \), and the identity in law

\[
b + Z \overset{\text{law}}{=} (b + \sigma)(1 + \frac{Z}{c})
\]

where the variables \(\sigma \) and \(Z \) on the right-hand side are independent.

As a result, we obtain the Mellin-Stieltjes transform of \(\sigma \):

\[
E[(b + \sigma)^{-s}] = c^{-s} \frac{E[(b + Z)^{-s}]}{E[(c + Z)^{-s}]}
\]

But, from (0.2)

\[
E[(b + \sigma)^{-s}] = c^{-s} \frac{E[(2\gamma_{\nu})^s \frac{1}{(1 + 2b\gamma_{\nu})^s}]}{E[(2\gamma_{\nu})^s \frac{1}{(1 + 2c\gamma_{\nu})^s}]}
\]

which gives the result.

One can now use the duality between the laws of Bessel processes of dimension \(d \) and \(4 - d \) to get the analogous result of Theorem 1, and recover the result of Delong [4], [5], and Yor [6] which deals with the case \(d \geq 2 \).

Theorem 2. Let \(0 < b < c \), and \(\sigma := \inf\{u : (R_{\nu}^{(\nu)})^2 = \frac{1}{c}(b + u)\} \) with \(R_0^{(\nu)} = 1 \).

\[
E[(b + \sigma)^{-s}] = c^{-s} \frac{E[(1 + 2b\gamma_{\nu})^{-s + \nu}]}{E[(1 + 2c\gamma_{\nu})^{-s + \nu}]}, \text{ for any } s \geq 0.
\]
Proof: it is based on the following classical relation between the laws of the Bessel processes with indices ν and $-\nu$:

$$\mathcal{P}_x^{(\nu)}|_{\mathcal{F}_t} = \frac{(X_{t\wedge T_0})^{2\nu}}{x^{2\nu}} \cdot \mathcal{P}_x^{(-\nu)}|_{\mathcal{F}_t}$$

which implies that

$$E_1^{(\nu)}[(b + \sigma)^{-s}] = E_1^{(-\nu)}[X^{2\nu}_\sigma(b + \sigma)^{-s}] = \frac{1}{c_{\nu}} E_1^{(-\nu)}[(b + \sigma)^{-s+\nu}]$$

Theorem 1 gives the result. \(\square\)

Finally, it is easily shown, thanks to the classical representations of the Whittaker functions (see Lebedev [3]), that the right-hand sides of (0.3) and (0.6) are expressed in terms of ratios of Whittaker functions.

Acknowledgement: We would like to thank Daniel Dufresne for useful and enjoyable discussions on the subject.

References

Laboratoire Modal’X, Université Paris 10, 200 Avenue de la République, 92000 Nanterre, France

E-mail address: nenriquez@u-paris10.fr

Université de Lyon, Université Lyon 1, Institut Camille Jordan, CNRS UMR 5208, 43, Boulevard du 11 novembre 1918, 69622 Villeurbanne Cedex, France

E-mail address: sabot@math.univ-lyon1.fr

Laboratoire de Probabilités et Modèles Aléatoires, CNRS UMR 7599, Université Paris 6, 4 place Jussieu, 75252 Paris Cedex 05, France

E-mail address: deaproba@proba.jussieu.fr