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Multi-variable Constrained Control Approach for a Three-Dimensional

Eel-like Robot

M. El Rafei, M. Alamir, N. Marchand, M. Porez and F. Boyer

Abstract— In this paper, a multi-variable feedback design
for the 3D movement of an eel-like robot is presented. Such a
robot is under construction in the context of a national French
robotic project. The proposed feedback enables the tracking of
a desired 3D position of the eel’s head as well as the stabilization
of the rolling angle. The control design is based on a recently
developed reduced model that have been validated using a 3D
complete continuous model described in [3]. Several scenarios
are proposed to assess the efficiency of the proposed feedback
law.

I. INTRODUCTION

In this paper, current researches on the control of an

eel-like robot are presented. This work is carried out in

the context of a multidisciplinary French national research

project 1. The aim of this project is to design, construct and

control the 3D motion of an eel-like robot. The prototype

under construction is obtained by connecting many parallel

platforms (see figure 1). The eel’s body will then be covered

by a deformable “skin” in order to achieve high performance

swimming. As it has been underlined by many researchers

in this field, understanding the dynamics of such robots may

be of a great interest in improving the manoeuvrability of

under-water vehicles [15], [8], [11], [9], [6], [12], [14], [2].

A 3D continuous model of the target prototype has been

proposed in [3] using the geometrically exact theory of

beams under finite deformations [13]. This model that is not

suitable for use in advance control derivation was used to

identify and validate a low dimensional and computationally

efficient reduced mean model that can be used in advanced

control design. This 3D reduced model is clearly used here

to design and validate the proposed 3D control feedback.

However, for the lack of space, the reduced model derivation

is not treated by this paper. Nevertheless, it is still briefly

described in section II.

There exist many works in the literature that studied the

eel-like robots movements. In [9] and the related works,

the 2D movement of an eel-like robot has been studied.

The rolling cart analogy is used in order to derive state
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feedback that tracks some reference trajectory. Another in-

teresting approach was proposed in [10], [11], [16] where

averaging formulas have been derived to describe the mean

behavior over an undulatory cycle. A design procedure for a

biomimetic robot-fish based on improved kinematic propul-

sive model has been described in [17] where the basic motion

control laws were presented. For a detailed review of existing

works on the mechanics and the control of swimming, the

reader can refer to [6]. However, few research have been

Fig. 1. The experimental assembly (under construction)

conducted on the control design for 3D motion of the eel-

like robots. Results on the 3D control of an eel-like robot are

presented in [1] and [7] where a complete control scheme

for 3D movement of the continuous model [3] was proposed.

The motion and the velocity in the transverse plane are

controlled by monitoring the oscillatory gait characteristics

while the altitude changes and the rolling stabilization task

are handled by means of two pectoral fins that are attached to

the eel’s head [1] or by 3D robot’s body movements without

using pectorals fins [7]. These decoupled control laws suffer

however from a high sensitivity to the choice of the control

parameters. That is why a coupled multi-variable control are

still to be developed.

In this work, a coupled control scheme for 3D movement

of the robot’s reduced model is proposed. Basically, given

the robot state and the targeted position, a desired velocity is

computed that enables to incrementally achieve the tracking

mission. This desired velocity is then used to build a con-

straint quadratic optimization problem in which, the decision

variable are incremental actions to be taken over the current

sampling period. This optimization problem is used also to

achieve roll angle stabilization.

This paper is organized as follows : First, the reduced

model is summarized in section II. Section III clearly states

the 3D control problem. The control strategy is then pre-

sented in section IV, namely, the tracking of a desired 3D

position as well as the rolling angle stabilization. Some 3D
scenarios are proposed in section V. The paper ends by some

concluding remarks together with the road map for future

works.



II. THE EEL-LIKE ROBOT REDUCED MODEL

This section presents a simplified dynamic model for the

3D Eel-like robot. This model is used for the control purpose

and it is based on the continuous model [3]. It consists in

modeling the eel’s head linear and angular mean velocities as

dynamical functions of the control input. Figure 2 illustrates

the basic notations used in the description of the model where

the following notations are used :

• (0, E1, E2, E3) denotes the earth frame assimilated to

a galilean reference.

• (0, t10, t20, t30) refers to the mobile frame attached to

the eel’s head.

• t10, t20 and t30 are respectively the head’s roll, pitch

and yaw axes.

• V0 =
(

V1 V2 V3

)

denotes the mean linear velocity

of the eel’s head expressed in the head frame. Moreover

V0 = 1

T

∫ t

t−T
‖V0(τ)‖dτ

• T is the undulation period. Note that the 3D control

of the eel-like robot is achieved here without use of

pectoral fins through the deformations of the end part

of the deformable body [7]. The key idea consists in

applying torsion and pitch movements to the tailing part

of the body (see figure 3) in phase with its undulatory

movement in order to generate pressure wave and fluid

forces that are used by the control law.

• w0 =
(

wp wq wr

)

denotes the mean rotation vec-

tor (angular velocity) of the head. Moreover w0 =
1

T

∫ t

t−T
‖w0(τ)‖dτ

• wp, wq and wr are respectively the head’s roll, pitch and

yaw mean velocities.

Fig. 2. Frames and parametrization of the reduced eel-like robot model

Our experience based on the continuous model [3] suggests

to use the following structure for the reduced mean model :

V̇1 = −λ1(u3, u2)[V1 − V ∞
1 (u3, u2)] (1)

V̇2 = 0 (2)

V̇3 = −λ3(uq, V1)[V3 − V ∞
3 (uq, V1)] (3)

ẇp = −λp(up, V1)[wp − w∞
p (up, V1)] (4)

q̇1 = −λ1q(uq, V1)q1 − λ2q(uq, V1)uq (5)

ẇq = (1 − 2µq(uq, V1)|q1|)q̇1 (6)

ẇr = ρV̇1 − λrV1(ρ − u1) (7)

ρ̇ = −λr(ρ − u1) (8)

Q̇ =
1

2
M(w)Q (9)





ẋ
ẏ
ż



 = Rq(Q)





V1

0
V3



 (10)

where :

• q1 is an internal variable.

• ρ is the eel’s body curvature. Note that the control law

applies a uniform additional curvature (uniform along

the body but variable in time) that is added to the non

uniform curvature needed to enhance the undulation

wave.

• wr = ρV1.

• Q =
(

q0 qx qy qz

)

is the quaternion that

represents the head frame’s orientation with respect to

the inertial frame. We can also represent this orientation

by a rotation matrix Rq(Q). The quaternion (and its

time derivative) can be related to the rotation vector

w. This relation (9) enables to have Q as a function

of w. For more informations about quaternion related

formalism, the reader can refer to [5].

• M(w) =









0 −wp −wq −wr

wp 0 wr −wq

wq −wr 0 wp

wr wq −wp 0









is a skew-

symmetric tensor.

• O(x, y, z) represents the 3D coordinates of the eel’s

head.

• u = (up, uq, u1, u2, u3) is the control input (see section

III for more details).

• λ1, V
∞
1 , λ3, V

∞
3 , λp, p

∞, λ1q, λ2q, µq are the identified

parameters as functions of the control vector u and the

leading velocity component V1.

• λr is a fixed constant parameter that directly monitors

the body curvature.

This model is used here to derive the coupled 3D control for

the robot’s 3D motion.

III. STATEMENT OF THE CONTROL PROBLEM

Recall that the reduced model is identified and validated

based on the complete continuous model presented in [3].

In the later, the robot is viewed as a beam defined by a

continuous assembly of rigid cross sections. For this model

a vector field K(t, X) =
(

K1(t, X) K2(t, X) K3(t, X)
)

is the control input in which, t is the time, X designates

the material abscissa along the eel’s mean line. The last

two components of K, namely K2 and K3 stand for the

curvatures of the beam in the two planes (G, t1, t3)(t, X)
and (G, t1, t2)(t, X) (see figure 3) while the first component

K1 stands for the torsion strain field. G(X) the center of

mass of the X section.

As mentioned previously, the 3D control of the eel-

like robot is realized here by 3D robot’s body movements

without using its pectoral fins. For more informations about

the without pectoral fins swimming feasibility problem, the

reader can refer to [7].

The robot’s back part can be defined by (See figure 3) :

χback = [Xb, L] (11)



where Xb is a given material abscissa and L is the robot’s

length.

G(X)

Fig. 3. Frames and parametrization.

The control law is based on the following predefined

temporal structure of the undulation laws K1 and K2 :

∀X ∈ χback, K1(X, t) = uq(t) · cos(
2π

T
t) (12)

K2(X, t) = up(t) · cos(
2π

T
t) (13)

where uq ∈ [−umax
q , umax

q ] and up ∈ [−umax
p , umax

p ] are

used as control variables. uq is the twist angle and up is the

pitch angle.

As for the undulation law K3, the following structure is

adopted in accordance with biological observations [4] :

K3(t, X) := u3(t) · A(X, u2(t)) sin(
X

λ
−

t

T
) + u1(t), (14)

where u3 ∈ [0, umax
3 ], u2 ∈ {−1, 1}, and u1 ∈ [0, umax

1 ].
The control input u2 ∈ {−1, 1} defines whether the ampli-

tude of undulations is bigger at the eel’s tail or the eel’s head.

This is used to enhance acceleration or deceleration accord-

ing to the velocity related control requirements. When the

undulation law (14) is used with u1 ≡ 0, a strait movement is

asymptotically obtained while constant non vanishing values

of u1 asymptotically lead to circular trajectories.

Note that (12)-(13)-(14) define a finite dimensioned

parametrization of the control input leading to the control

vector

u := (up, uq, u1, u2, u3) (15)

The controller has to appropriately modify the control vector

in order to steer the head towards the desired 3D position

as well as to realize the rolling angle stabilisation and the

velocity control.

IV. THE PROPOSED FEEDBACK

After Linearization and using a small sampling period τs,

the equations (1), (3), (4), (6) and (7) become :

δV1 = −λ1τs[V1 − V ∞
1 ] (16)

δV3 = −λ3τs[V3 − V ∞
3 ] (17)

δwp = −λpτs[wp − w∞
p ] (18)

δwq = −(1 − 2µq|q1|)(λ1qq1 + λ2quq) (19)

δwr = ρτs(V̇1 − λrV1) + λrτsV1u1 (20)

where for all variable F , F (k) is a short notation for F (kτs)
and δF = F (k + 1) − F (k).
Recall that λ1, V

∞
1 , λ3, V

∞
3 , λp, p

∞, λ1q, λ2q, µq are the

identified parameters as functions of the control vector u

[see (15)]. Let :

δ =
(

δV1 δV3 δwp δwq δwr

)T
(21)

=
(

δ1 δ2 δ3 δ4 δ5

)T
(22)

δ ∈ ∆(τs, V1,u) = [δmin, δmax] (23)

denotes the intermediate unknown vector that has to

be computed in order to achieve the tracking objective.

Once these increments are computed, this gives reference

values for the lower level control vector u. The later is

then computed by a constrained optimization step. More

precisely, having the robot’s velocity VA(k) at a given

instant k, the control strategy consists in the computation of

the desired velocity V d
A(k +1) to reach at the next sampling

time (k + 1). Once this desired velocity is computed,

the increment δV that is directly linked to the increment

vector δ [through equations (16)-(17)] enables to derive an

optimization problem in which the roll angle stabilization is

also taken into account. The whole formalism is precisely

given in the next sections.

The δ’s lower and upper bounds (δmin, δmax) are computed

on line according to the current robot’s state. More precisely,

at each sampling period, given the robot’s state, the control

vector saturation levels (u ∈ [umin,umax]) and the static

maps of the different model’s parameters (that are dependent

of the control input), the δ’s lower and upper bounds are

computed using the equations (16)-(20).

A. Defining the desired velocity V d
A(k + 1)

Let PA, VA designate the robot’s position and velocity at

a given instant k and PC the desired objective (see figure

4). P+
A0

, V +
A0

are respectively the position and velocity that

would be obtained at the next sampling instant (k + 1) if

δ(k) = 0 is applied during the sampling period.

Fig. 4. Control strategy

Note that all quantities are expressed in the earth frame.
The ideal velocity that can realize the robot’s mission is



directed by EAC , where EAC =
P+

A0
PC

‖P+

A0
PC‖

More precisely, the ideal velocity would be given by :

VId = min

(

Vmax,
‖P+

A0
PC‖

τs

,

√

2‖P+

A0
PC‖γdmax

)

EAC (24)

since this takes into account the achievable maximum

velocity Vmax, the sampling nature of the control law and the

fact that one would like to reach the objective at zero velocity

which imposes some deceleration margin that is compatible

with the maximum deceleration module γdmax.

Now the ideal velocity is generally not achievable in

within the actuator constraint, that is why an interpolation is

introduced through the parameter λ leading to the following

desired velocity :

V d
A(k + 1) = V +

A0
+ λ(VId − V +

A0
) (25)

where λ ∈ [0, 1] is a parameter that is adapted on line

according to the current configuration in order to tackle

dynamically the actuator saturations. In this paper however,

this parameter is determined through worst case calibration

for simplicity.

B. Velocity tracking related term

The constrained optimization problem leading to the com-

putation of δ is obtained via constrained trade-off between

the velocity tracking consideration and the roll angle stabi-

lization concern. In this section, the velocity tracking related

term used in the optimization problem is derived. The robot

velocity in the earth frame at an instant k is given by the

equation (10) :

VA(k) = Rq(Q(k))





V1(k)
0(k)
V3(k)



 (26)

Simple computations show that as long as the linear

approximation is used, the conditions of perfect tracking

VA(k+1) = V d
A(k+1)) is equivalent to the following linear

equation in the unknown vector δ :

A · δ = B (27)

where :

A = A(Q(k), V d
A(k + 1)) (28)

B = B(Q(k), V d
A(k + 1), V0(k)) (29)

in witch A is a (3 × 5) matrix, B is a (3 × 1) matrix and

V0(k) =





V1(k)
V2(k)
V3(k)





is the robot velocity in the head mobile frame [see (1), (2)

and (3)].

C. Rolling angle stabilization related term

The control of the rolling angle amounts to control prol :=
t20 · E3 around 0. This amounts to control the head’s roll

velocity wp suggesting the following ideal relation :

ẇp = −γ1(wp − wd
p) ; wd

p = −γ2prol

that can be written after Linearization as follows :

δwp = −γ1τs(wp + γ2prol)

γ1 and γ2 are control parameters.

Here again, using the incremental equations (18)-(20), the

above can be written in terms of the incremental vector δ in

the following compact form :

A1 · δ = B1 (30)

where :

A1 =
(

0 0 1 0 0
)

(31)

B1(k) = −γ1τs(wp(k) + γ2prol(k)) (32)

D. Controller formulation

Gathering together the two requirements, the following

constrained optimization problem can be derived for the

computation of δ :

min
δ∈∆

(η · δT δ + α1‖Aδ − B‖2 + α2‖A1δ − B1‖
2) (33)

δ ∈ ∆(τs, V1,u) = [δmin, δmax]

where :

• δ is the increment to be computed and u is the current

control value. [see (15)]

• η, α1, α2 are control parameters.

• τs is the sampling period.

The first part of the equation (33) is a regulation term,

the second part allows to take into account the velocity

tracking while the third part accounts for the rolling angle

stabilisation.

This optimization problem can be written as a time varying

quadratic problem :

min
δ∈∆

(
1

2
δT Sδ + fT δ) (34)

with the constraints :

δmin ≤ δ ≤ δmax

where :

S = 2(α1A
T A + ηE + α2A

T
1 A1)

f = −2(α1A
T B + α2A

T
1 B1)

V. SIMULATIONS

In this section, some numerical simulations are proposed

to assess the efficiency and underline some interesting fea-

tures of the proposed solution, using the reduced and the

complete continuous model.



A. The robot parameters

The exhaustive definition of the model parameters is given

in [3]. Let us mention here that the length of the robot

is L = 2.08 m and all the cross sections are ellipsoidal

with evolutive dimension that reproduces a quite realistic

and faithful form (the tail is thinner than the central body).

B. Control related parameters

• The sampling period τs = 1.2 s.

• 35 % of the robot’s length are used as the robot’s

back part that realize the pitch and the twist movements

(swimming without pectoral fins)[see (11)].

• The control input u3 ∈ [0, 1.4] and u2 = [−1, 1] (see

section III) : For u3 = 1.4, we obtained a maximal

velocity of 50cm/sec (u3 = 1) in acceleration mode

(u2 = −1).

• The twist angle uq ∈ [−20◦, 20◦] (see section III).

• The pitch angle up ∈ [−4◦, 4◦] (see section III).

• The maximal body curvature umax
1 = 0.5.

(u1 ∈ [0, umax
1 ]), see section III.

• λr = 1.0 [see (8)].

• λ = 0.5 [see (25)].

• γ1 = 1, γ2 = 1 [see (30)].

• α1 = 1, α2 = 10−2 [see (33)].

• η = 10−10‖AT A‖ + 10−6 [see (33)].

• Vmax = 40 cm/sec [see (24)].

C. Manoeuvre description

Two set-point changes are successively and simultaneously

done on the three coordinates of the desired position Pd. The

robot is initially at rest. The desired state is then defined by

the following expression :
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Fig. 5. Behavior of the controlled robot under the two successive set-point
changes given by (35). Solid and squared lines represent the behavior for
two different control input bounds [see (37) and (39)].

Pd(t) =

{

(

6,−3, 1
)T

for t ≤ 60 s
(

14,−5,−1
)T

for t > 60 s
(35)

Figure 5 shows the behavior of the head’s coordinates as

well as the evolution of the rolling angle arcsin(prol) for two

different control input bounds [u := (up, uq, u1, u2, u3)] :

umin = (−4◦,−20◦, 0,−1, 0) (36)

umax = (4◦, 20◦, 0.5, 1, 1.4) (37)

or

umin = (−4◦,−10◦, 0,−1, 0) (38)

umax = (4◦, 10◦, 0.5, 1, 0.8) (39)

The evolution of the control input (up, uq, u1, u2, u3)
during these scenarios is depicted on figure 6.
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Fig. 6. Evolutions of the control input u during the scenarios of figure 5.
The solid and squared lines correspond to the constraints (36), (37) and
(38), (39) respectively

The evolution of the robot velocity in the earth frame

during the same scenarios is presented in figure 7.

Figures 8 and 9 show the evolution of the different

variables in a trajectory tracking scenario tested on the

continuous complete model [3]. The desired trajectory is

geometrically defined as shown in figure 8.

VI. CONCLUSION

In this paper, a complete control scheme for 3D movement

of an eel-like robot is proposed. A multi-variable feedback

design that enables the tracking of a desired 3D position of

the Eel head as well as the stabilization of the rolling angle is

presented. This is done using the reduced model that enabled

the derivation of a constrained quadratic optimization prob-

lem that can be solved on-line in order to better achieve the

trajectory tracking as well as the roll angle stabilization tasks.

The controller is tested using the reduced and the continuous

model [3] for many 3D scenarios. Future work concerns the

implementation on the prototype (under construction) as well

as the explicit handling of the actuator saturation in terms of



0 10 20 30 40 50 60 70 80 90 100 110 120 130
-0.2

-0.1

0

0.1

0.2

0 10 20 30 40 50 60 70 80 90 100 110 120 130
-0.2

-0.1

0

0.1

0.2

0 10 20 30 40 50 60 70 80 90 100 110 120 130
0

0.1

0.2

0.3

0.4

0.5

Evolution of VA1 (m/s) [see (26)]

Evolution of VA2 (m/s)

Evolution of VA3 (m/s)

Time (seconds)

Fig. 7. Evolutions of the robot velocity components in the earth frame
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torque rather than in terms of amplitudes of undulation as it

is done in the current paper.
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Fig. 8. The 3D trajectory of the eel’s head during a 3D trajectory tracking
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Fig. 9. Behavior of the controlled robot in the scenario of figure 8.


