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Abstract

From the study of a functional equation of Gibbs measures we calculate the limiting
free energy of the Sherrington-Kirkpatrick spin glass model at a particular value of (low)
temperature. This implies the following lower bound for the ground state energy ǫ0

ǫ0 ≥ −0.7833 · · · ,

close to the replica symmetry breaking and numerical simulations values.

PACS numbers: 75.10 Nr, 75.50 Lk, Keywords: Gibbs measures, fixed point, large
deviations, free energy, mean field spin glass models, ground state energy, Sherrington-
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1 Introduction and main result

During the last decade, mean field models of spin glasses have motivated increansingly
many studies by physicists and mathematicians [1, 3, 4, 5, 7, 8, 10]. The rigorous under-
standing of the infinite volume limit of thermodynamic quantities remained quite insuffi-
cient until the recent breaktrough obtained by Guerra and Toninelli [4] on their existence
and uniqueness. This major discovery followed by several important results [2, 3, 11] pro-
viding a mathematical interpretation of the original formulae proposed by Parisi [7] on
the basis of heuristic arguments.

In this note, without making use of the replica approach, we calculate, for a particular
value of the (low) temperature, the limiting free energy of the Sherrington-Kirkpatrick
model and obtain a lower bound for the density of the ground state energy.

We first recall some basic definitions. Suppose that a finite set of n sites is given.
Let σi ∈ {1,−1} be the spin variable on the site i and σ a generic configuration in the
configuration space Σn = {−1, 1}n. The finite volume Hamiltonian of the model is given
by the following real-valued function on Σn

Hn(σ) = − 1√
n

∑

1≤i<j≤n

Jijσiσj ,

where the family of couplings Jij are independed centered Gaussian random variables of
variance 1.
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For a given inverse temperature β > 0, the disorder dependent partition function
Zn(β), is defined by

Zn(β, J) =
∑

σ

exp(−βHn(σ, J)).

Moreover, if EJ denotes the expectation with respect to the randomness Jij , one can easily

check that EJZn(β, J) = 2ne
β2

4
(n−1).

We denote by µn,β(σ|J), the conditionned on fixed randomness corresponding Gibbs
probability measure, µn,β(σ|J) = e−βHn(σ,J)/Zn(β, J). The entropy S(µn,β(σ|J)) of µn,β(σ|J)
is defined by

S(µn,β(σ|J)) = −
∑

σ

µn,β(σ|J) log µn,β(σ|J).

For fixed randomness, the real functions

fn(β) =
1

n
EJ log Zn(β, J)

and

f̄n(β) =
1

n
log EJZn(β, J),

define the quenched average of the free energy per site and the annealed specific free energy
respectively.

The ground state energy density −ǫn(J) is defined by

−ǫn(J) =
1

n
inf
σ

Hn(σ, J).

For the low temperatures region (β > 1), the J-almost sure existence of the infinite
volume limits

lim
n→∞

fn(β) = f∞(β),

− lim
n→∞

ǫn(J) = lim
β→∞

f∞(β)

β
= −ǫ0

was first proved by Guerra and Toninelli [4]. More recently, Guerra, and Aizenman, Sims
and Starr [2] gave a clear mathematical interpretation of f∞(β) in terms of the variational
formula proposed by Parisi. The interest reader can find in [11] a review of the calculation
of the free energy and the rigorous formulation of the Parisi formula.

In the following section we prove the

Proposition : Let β∗ = 4 log 2 = 2.772588 · · · Almost surely,

f∞(β∗) = lim
n→∞

1

n
EJ log Zn(β∗, J) =

β2
∗

4
+

1

4
.

Lemma : The ground state energy per site of the Sherrington-Kirkpatrick spin glass

model is bounded almost surely by

ǫ0 ≥= −0.7833 · · · .
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2 Proof of the main result

Notice first that for all β > 0 the limit f∞(β) exists and it is a convex function of β [4].
Let β = 1. From the high temperature results [1], we have that f∞(1) = log 2 + 1

4 .
Our analysis will rely on the following easily verified relation:

f̄∞(β∗) =
β2
∗

4
+ log 2 = β∗(

β∗

4
+

1

4
) = β∗f∞(β1).

Indeed, we define the Gibbs probability measure µn,β∗(σ|J) by

µn,β∗(σ|J) = µβ∗
n,1(σ|J)

Zβ∗
n (1, J)

Zn(β∗, J)
.

Moreover, one can easily check that

lim
n→∞

1

n
EJ log µn,β∗(σ|J) = lim

n→∞

β∗

n
EJ log µn,1(σ|J) + α∞(β∗),

where the limit α∞(β∗) gives the deviation of the free energy from its mean value:

α∞(β∗) = lim
n→∞

β∗

n
log EJZn(1, J) − lim

n→∞

1

n
EJ log Zn(β∗, J) = f̄∞(β∗) − f∞(β∗).

Now, from the fixed point theorem we have also that

lim
n→∞

1

n
EJ log µ∗(σ|J) = lim

n→∞

β∗

n
EJ log µ∗(σ|J) + α∞(β∗),

where µ∗(σ|J) denotes the fixed point of the functional relation between the Gibbs prob-
ability measures µn,1(σ|J) and µn,β∗(σ|J).

In the following we estimate the limit limn→∞
1
n
EJ log µ∗(σ|J). We have, in particular,

that

lim
n→∞

1

n
EJ log µn,1(σ|J) = −f∞(1) +

1

4
= − log 2,

i.e. the Gibbs measure µn,1(σ|J) behaves as the counting measure (in the case
limn→∞

1
n
EJ log e−Hn(σ,J) = limn→∞

1
n

log EJe−Hn(σ,J) = 1
4), and,

lim
n→∞

1

n
log EJe−β∗H(σ,J) − lim

n→∞

1

n
log EJZn(β∗, J) =

β2
∗

4
− f∞(β∗) − α∞(β∗)

= lim
n→∞

1

n
EJ log µn,β∗(σ|J) − α∞(β∗)

= − log 2.

Then, we have following fixed point equation

lim
n→∞

1

n
EJ log µ∗

n(σ|J) =
β2
∗

4
− f∞(β∗) = − log 2 + α∞(β∗).

Now, from the functional equation between the Gibbs measures µn,1(σ|J) and µn,β∗(σ‖J),

we remark that since the limit β2
∗

4 − f∞(β∗) it corresponds, for β = 1, to the limit

limn→∞
1
n
EJ log µn, 1(σ|J) = β∗

4 − f∞(1) = −1
4 , the fixed point is given by

lim
n→∞

log
1

n
EJ log µ∗

n(σ|J) = −1

4
.
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This implies

α∞(β∗) =
β∗

4
− 1

4
= log 2 − 1

4
,

and, consequently,

f∞(β∗) =
β2
∗

4
+

1

4
.

One can remark that the obtained value β2
∗

4 + 1
4 = 2.1718 · · · is close to the spherical

bound value (2.2058 · · ·). In the context of large deviation theory, this result comes from
Chebychev’s inequality and it is detailed in [6].

We can now develop the lower bound for the ground state energy density −ǫn(J).
Notice firstly that

f∞(β∗) = lim
n→∞

1

n
EJ log Zn(β∗, J) = lim

n→∞

1

n

∑

σ

µn,β∗(σ|J) log e−β∗Hn(σ|J)+ lim
n→∞

1

n
S(µn,β∗(σ|J)),

and, the limit

s(µβ∗) = lim
n→∞

1

n
S(µn,β∗(σ|J)),

gives the (mean) entropy of the Gibbs measure. Since s(µβ∗) is ≥ 0, one has that

ǫ0 ≥ −β∗

4
− 1

4β∗
= −0.7833 · · · .

3 Concluding remarks

In this note, we calculated, for a particular (low) temperature β∗, the value of the limiting
free energy, without making use of the replica formula. One can easily check that β∗ is
given by β∗ = 2β2

c , where βc is the critical temperature of the Random Energy Model.
The lower bound for the ground state energy density is established under the assump-

tion of minimal entropy: s(µβ∗) = 0. Indeeed, one can show that the mean entropy
vanishes at β∗ and moreover the relative entropy of the Gibbs measure µn,β∗(σ|J) with
respect to the counting measure is log 2 [6].
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