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Abstract

In this paper, we prove some uniform estimates between Lebesgue
and Hardy spaces for operators closely related to the multilinear para-
products on R%. We are looking for uniformity with respect to pa-
rameters, which allow us to disturb the geometry and the metric on
R4
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1 Introduction
The purpose of this article is to prove uniform estimates on paraproducts

and similar multilinear operators. Let us first recall what is a paraproduct.
A n-linear paraproduct IT on R is a n-linear operator of the following form :

(fi, o0 fu)(a ./Hmf@ g

or of the discrete form

(1, oy fo)(@) : ZH@J « filx)

JEZ =1



Here the m/ are smooth functions which Fourier transform 7} are bump
functions adapted to the ball {¢ € R?, |¢] < 1} and we assume that there
exists one index i € {1,..,n} such that

VE>0,  m(0).

In all the sequel, a smooth function ¢ is said to be “adapted to a set” I C R?
if it is supported on this set and satisfies : for all order n € N?

1™ |oo < 11171,

Then for such a paraproduct, the classical Calderén-Zygmund theory gives
us that for all exponents 1 < p1, .., p, < 0o such that

1 1
O<—::Z—<1,
p i Pi

there exists a constant C' = C(p;) such that for all functions f; € S(R?),

T S, < C TT I fillp:
i=1

These estimates in Lebesgue spaces depend on the functions 7}. We would
like to understand how can we modify these functions, keeping uniform es-
timates.

The paraproducts are the first studied class of singular bilinear operators.
Their study began by the works of J.M. Bony in [f] and of R. Coifman and
Y. Meyer in [B, i, f], where in particular continuities in Lebesgue spaces are
shown. The first uniform result is the following one (from [f) :

Theorem 1.1. Let (M;)1<i<n be integers and (7)) jez  be smooth functions
== 1<i<n

such that 7;; is adapted to the rectangle [—29FMi 25+Mild = Assume that there

exist an integer N and an index i € {1,..,n} such that for all j,

~

Vi € [N gt MV iy (1.1)
Then for all exponents 1 < py, ..., pn < 00 satisfying
1 1 1
0<—-—=—+.+—<1
p b1 Pn

there exists a constant C' = C(N,p;), which does not depend on (M;); such

that .
2 ]I s
j oi=1

Vf; € S(RY), ‘

< TN
P 1=1



About this result, there are two different questions : what is the maximal
range of exponents with uniform estimates ? May we weaken the assumption

(L) *

The second question was solved by C. Muscalu, T. Tao and C. Thiele in
[[7], where they prove the stronger result :

Theorem 1.2. Let (M;)1<i<n be integers and 7T]i~ be smooth functions such

that 7;\; be adapted to the rectangle [—29+Mi 20+Mild — Assume that for all j,
there exists an index i € {1,..,n} with

o~

L

—
(=)

N~—
Il
]

(1.2)

Then for all exponents 1 < py, ..., p, < 00 satisfying

1 1 1
0<—=—+.+— <1,
p P DPn

there exists a constant C' = C(N,p;), which does not depend on (M;); such

that .
> IIm+s
j oi=1

pi

Vf; € S(RY), |

<cI]I
P i=1

It is even shown a little stronger version (a maximal version) than this one.
The assumption ([[.3) is much weaker than ([.1]). The proof of Theorem [.2
is a mixture of the proof of Theorem and arguments from graph theory.
Such a result was motivated by the paper [[§] from the same authors. In
this article, they study some uniform estimates for multilinear operators far
more singular than the paraproducts, closely related to the bilinear Hilbert
transforms. The “classical” time-frequency analysis, to decompose these
kind of operators, uses some information and estimates on operators, which
look like paraproducts. That is why they have first shown in [[{]] uniform
estimates for paraproducts.

In this paper, we are interested in answering to the first question. Mainly
we want to obtain uniform estimates with infinite exponents and some ex-
ponents lower than 1. In [[3], X. Li has shown uniform estimates when
1 < p1,...,pn < 00 and p may be lower than one. We would like to ex-
tend his result for some exponent p; < 1 or p; = oo. The continuities for
this range of exponents have already been proved (for example in [ by L.
Grafakos and N. Kalton). Here we would like to improve these continuities
with uniform estimates.

A second motivation for the study of paraproducts is this one : we know



how to decompose a multilinear multiplier, satisfying Hormander’s condi-
tion, with multilinear paraproducts. A n-linear multiplier 7" is given by its
symbol o € S(R?"), with the formula :

T flla)i= [ =6l [[Fie)a (1.3

The Hormander condition corresponds to the followmg assumption :

1
(&) + . 4 &)t

Note the appearance of the quantity ||+ ..+ |£,|, which corresponds to the
distance d(&,0) in the frequency plane. We are now interested in disturbing
the metric. We would like study the following distance

dx(£,0) := Z Al

i=1

VYm,; € Nd,

Ha’”l (&1, 6n)| < (1.4)

given by non vanishing reals ;. In fact it is easy to see that our parameters
A; have the same function than the parameters M; of Theorems [[.1] and
[ (we have the relation \; ~ 27Mi). So we would like to have uniform
estimates with respect to the new distance dy. The problem of disturbing
the metric appeared for example in the study of bilinear Hilbert transforms
along polynomial curves ([[]]) and was one of the X. Li motivations to study
uniform estimates for paraproducts.

We will also prove the following result :
Theorem 1.3. Let o be an x-independent symbol such that

Ty [ )

d 1 Mn
vm; € N 8 85n 1 (gl""g ) (é 0)\m1\+ Almp—1|”

Let O < p;,p < 0o exponents satz’sfyz’ng
i1 pi

Let us denote the three disjoint sets (which may be empty) Sy, S2 and Ss
such that
{1, ooy TL} = Sl U SQ U Sg,
with
Vie S, pi=1, Vi€ Sy, pp=o00 and Vi€ S;, p; €{1,00}"

Then we know that the multilinear multiplier T' defined by ([I.3) can be con-
tinuously extended from @, F; to G in the three following cases :

4



e if0 <p< oo withG=LP, F;=HPi forie€ S;US; and F; = LY for
1€ .5,,

o if0 < p<oowithG=LP® F;,=L'foric S, F; = H" foric S
and F; = L fori e Sy,

e if p =00 (and also for alli € {1,..,n} p; = 00) with G = BMO and
F, =L for alli € {1,..n}.

In addition we have the two following improvements :
Part 1) : All these continuities are uniformly bounded with respect to the
parameters \; under one of the two following assumptions :

a—) V1<i<n, p; < 00
1 1
b— v = — > —.
) DI

je{L,.,n}
A |~max{|A;[, 1<i<n}

Else the continuity bound depends on the ratio

max{| x|, 1 <k <n}
min{|[A\¢], 1 <k <n}’

Part 2) : We don’t know if the conditions a-) or b-) are sufficient to get
uniform bounds, however we will show that if p < co and v = 0 then we
cannot have a uniform bound.

In this result we write LP = LP(R?) for the “classical” Lebesgue spaces and
H? = HP(R?) for the Hardy spaces (which is equivalent to the Lebesgue
spaces LP if 1 < p < oo) and BMO = BMO(R?) the space of functions of
“bounded mean oscilaation”. We write L2° for the set of bounded compactly
supported functions, equipped with the L°°-norm.

Remark 1.4. Our proof, show that in particular case, we can obtain the
continuity with the whole space L*> instead of Lg°. For convenience and
technical difficulties (see the proof of Corollary [.11]), we prefer to only work
with the space Lg°.

Remark 1.5. By Taking \; ~ 27  the paraproducts of Theorems [[.] and
.2 verify ([LH) uniformly with respect to A because the symbol is given by

(&, 6) = ZH@(&)

So Theorem [[.3 improves the uniform estimates of Theorem [[.4 and answer
to the asked question.



Remark 1.6. By using time-frequency tools such as “tiles” and “trees” as in
M4, L3, it should be possible to prove some uniform “weak type restricted
estimates” in LP, which are stronger than our continuity in L? for p < 1.

Remark 1.7. The continuities are already known from the papers [ and
Q] of L. Grafakos and N. Kalton. In fact our operators are multilinear
Calderon-Zygmund operators and so their continuities are a consequence
of the paper [[1] of L. Grafakos and R. Torres. The improvement is the
fact that we can have uniform bounds and we must be careful because the
constants, as multilinear Calderén-Zygmund operators, are not uniformly
bounded. So we will use the ideas of the Calderén-Zygmund theory with a
few improvements.

There is an other interest to study such uniform estimates. The symbols ver-
ifying ([L.5) uniformly with respect to A satisfy the Marcinkiewicz condition :

Vmi € NT|momn (&, .., K|“m\ (1.6)

However, from [ we know that the condition (E) is in general not sufficient
to guarantee continuity, as in the previous Theorem. So our result allows
us to almost describe the “limit case” between ([[.4) and ([.F) to get these
continuities.

To prove our Theorem, we will use model operators, which generalize and are
more symmetric than the paraproducts. In the definition of paraproducts,
there has to be one (or more) index i € {1,..,n} such that ([.1]) or ([.2) is
satisfied, so there is a lack of symmetry in their definition (see Remark B.3).

The plan of this paper is the following one. In Section B, we define nota-
tions and our model operators. We first prove Theorem [.J for our model
operators : in the case where all exponents belong to (1,00) in Section
(this part only uses Littlewood-Paley theory) and after for others exponents
in Section [ (this part uses Carleson measures and an improved Calderon-
Zygmund theory). Then we complete the proof of Theorem [[] for general
multipliers in Section f.

2 Definition of our model operators.

For the rest of this paper, we use the well-known notations : let { be a
function on RY, ¢ # 0 be a real and ¢ € R? be a vector. We set ¢; and (;,
for the L'-normalized functions defined by

1 -1 ._ 1 -1
Gi(x) = Wﬁ(t z) and  (e(z) = Wﬁ(t (z —q)).



We will work with the Hardy spaces on RY, so let us first recall one of its
definitions.

Definition 2.1. Let ¥ be a smooth function. We define Sg to be the
continuous or the discrete Littlewood-Paley square function, given by

sutn)= (| m*ffdt) o S(f) = (Z%n*ﬁ)m.

nel

We use these functionals to get the following definition of Hardy spaces (See
B :

Definition 2.2. Let ¥ be a non null smooth function whose spectrum is
contained in a corona around 0. For 0 < p < oo, we define the Hardy space
H? = HP(RY) as the set of distributions f € &'(R?) satisfying :

1F 1w = 15w ()]l < oo

From the book [B0] we know that for 1 < p < oo the Hardy space H?
corresponds to the Lebesgue space LP. In addition, we have the choice to
keep a discrete or a continuous square function : the definition of the space
does not depend on it or on the choice of the function W.

We have to control norms in the Schwartz space, so we set for an integer K

cr(C) = Suﬂgl(l + )" sup [0;¢(x)]- (2.1)
la|<K

Now we define our model operators.

Definition 2.3. Let ¥ be a smooth function on R? whose spectrum is con-
tained in a corona around 0 and let ® be smooth functions whose spectrum
is bounded. Let L be a bounded function on Z, A = (A, .., \,) € (R*)"
and p = (p1,..,pn) €]0,1]" be parameters. Then we define the following
operator :

n

Topar(frs o f => L(k) / Ui (y) [ [[®4,0 * £l — pidiy)dy.

keZ 1=1

We also have the continuous version with a bounded function L on RT,
defined by

00 n d
Uprp(f1s 5 fo) (@) :/0 (t) / () [ T1@4,0 * fil(x Pz‘)\z‘?/)dy?t-
i=1



It is easy to see that these operators continuously act from S(R4)®" to S(R?).
In addition, the operator T}, 1, is associated to the following symbol o :

(&1, 6n) =D L)Y (2 (s + .+ puaén) H@Az’m

keZ =1
which satisfies ([.LJ) uniformly on .

We want now to make the link with the “classical” paraproducts.

Proposition 2.4. The parameters p; allow us to get the “classical” para-
products as limit of our previous operators : for all fi, .., fn € S(R?)

Upni(Frs oo fu) () 2% / DO o i) [0 A0 T (22

Here the convergence is in the S(R?) sense.

We do not write the details of this result. With the good assumptions about
the functions f;, it is easy to prove this convergence.

Remark 2.5. Our model operators have a symmetry : the definition is in-
variant by permutations on the n functions, which is not the case for the
“classical” paraproducts. For example in the bilinear case, we want to esti-
mate in L? the two different paraproducts (for f € L™ and g € L?) :
[ g P aa [ e g 5P
uniformly on (A1, A2) with |As| > |A\|. These two paraproducts are a little
different and so their study ask some different arguments.

That is why we prefer working with our model operators, which own sym-
metry invariance and allow us to get by a limit argument these two kinds of
paraproducts.

Remark 2.6. Tt is quite easy to show that our model operators satisfy the
assumptions of Theorem with uniform bounds with respect to A and p.
We let to the reader the details of this claim.

Before to prove the positive part (part 1) of Theorem [[.3 for our model
operators, we would like to explain the negative claim of this Theorem (part
2) in the bilinear case :

Proposition 2.7. Let py = py = 1 be fized and |A\i| < |Xo| be reals.
There exists operators U, x, (also satisfying the assumptions of Theorem
[[.3) which cannot be continuous from L x L* into LP for 1 < p < oo with
an uniform bound with respect to \.



Proof : Let us choose ® = ( a smooth and nonnegative function whose
integral is equal to 1 and set

dyd
Ualdg)e) = [ B 1 Aot 2o

When \; tends to 0, we have
Vf e S(RY, »r € R? /\limog“,\lt*f(x—kly):f(:c).

Due to the presence of the € > 0, we have for f,g € S(R?)

d dt
wwem m U0 =0 [ [ B o
R

We can now take ¢ — 0 and we get

et dydt > dydt
hm/ / ‘I’t(y)Qgt*g($—>\zy)—t :/ / Wi (y) gt ¥ 9(T — A2y) P
R4 0 R4

e—0
€

Then we can choose good functions ¥ and ( in order to find the linear
Hilbert transform H. With these ones, we conclude

veeR:,  lim lim Ua(f,9)(x) = f(2)H(g) )

So if we have uniform estimates on U, from LP x L* into L, by using
Fatou’s lemma, we get :

Vf,9€ SRY),  (FH I, S Ifllpllgllo-
Such an estimate implies the boundedness of H on L* which is not possible.
So we cannot have uniform estimates for the operators U . U

After these remarks, we are going to prove Theorem [[.3 for our model op-
erators.

3 The study of 7,),; with Littlewood-Paley
square functions.

In this section, we obtain the uniform bounds of Theorem [[.3 with the
Hardy spaces when all the exponents p; are finite. As we will see in Section
fl, our model operators can be considered as multilinear Calderén-Zygmund
operators. Consequently, with similar arguments to those of L. Grafakos and

9



N. Kalton used in [[(J], we can have boundedness of our operators on the
sets of atoms associated to the considered Hardy spaces. For several years,
many papers (see for example [}, [4, [J]) emphasize the following problem
: how can we extend a linear operator bounded on the set of atoms to the
whole Hardy space ? This abstract question is a really problem and does not
admit a general positive answer. For example there is a counter-example in
[L3] for the classical Hardy space.

For this reason, we prefer to describe an other proof, which does not use
the atomic decomposition of Hardy spaces. That is why, we are going to
directly work with the Littlewood-Paley square functions.

For convenience, we deal only with the bilinear case : n = 3. First remember
the definition of our operator : we choose two smooth functions ®! and
®? with bounded spectrum and we choose a smooth function ¥ whose the
spectrum is included in a corona around 0. Then we construct the operator

Tp,)\,L(fa g) (l‘) =
S L) [ 0 0) [+ £ pi ) @09l = prda)y

kEZ

To study this last one, we decompose the two functions f and g with the
classical wavelets decomposition :

Lemma 3.1. Let ¥ a smooth function such that

2dt
t

otw)i= [ e

be a nonnegative constant independent with respect to £ (for example, we
can just assume that the function 1 is odd and radial). Then we have the
decomposition :

*° dtd
Fecwor [ [, (31)

In addition, the integral is absolutely convergent for a function f € S(RY).

Proof : The result is well-known for f € L?(R?), it is shown in the book
[{] at the chapter 5.6. When f € S(R?), integrations by parts give us fast
decay for (f,,) and so permit us to prove the absolute convergence. [

From now, we will choose a smooth function 1) which verifies the assumption
of the previous Lemma and whose the spectrum is included in a corona

10



around 0. We decompose also the two functions f and g with the previous
lemma and we have also to study the following quantity :

F(k,u,v,q,s, )=
L) [ W)@, 4 i~ €)@ ]~ pdan)
R
With the inverse Fourier transform, we get :

F(k,u,v,q,s,z)=

—

L(k) AQd @(€)©§12k((§ - a)pfl)\fl)@((g _ a)pfl)\l_l)ei(f_a)xpflkfl

B2 (A5 03 ) s (3 ' A7 @) P27 (py po| M M)~ dands.

Due to the spectral conditions, we have a dependence for the three frequency
parameters :

max{|pi A |u!, [pade|v ™t} = 27F
F(k,u,v,q,8,2) # 0 = or
o1 |~ = [pada| o < 2
In addition the product q)/}\;g\l/fu\q is non vanishing only if |A;Ju~! < 27% and
similarly for v. As the coefficients p; are bounded by 1, we are always in the
first case i.e.
max{|pi A1 |u", [pa oot} ~ 27K,

In addition, we have shown the stronger condition
max{ |\ |u"t, | Agv7!} ~ 27F

uniformly with respect to the parameters p; €]0, 1].

After having study the frequency properties of F'(k,u,v,q, s, x), we will re-
member spatial estimates :

Proposition 3.2. We have the following estimate :

inf{2%| Ay, v}4

|z — 5| M
F v,8 = |P v,s S 1 7
kws(X) = | Pyor * Yy s(T)| S 024 ( T max{|\o| 2%, v}

for any exponent M as large as we want. This estimate is uniform with
respect to k and .

11



Proof : The proof is essentially written in Appendix K-2 of [§] and we only
give the sketch of the proof.
Let ¢ be an other smooth function, whose the spectrum is included in a

corona around 0 and such that ¢ = 1 on the spectrum of . We set ( =
Dy or * Uy 5. It is also easy to check that

||

) -M
@IS = (1 + max{2k|A2|,v}) ’

for all exponent M as large as we want. Due to the spectral properties of ¢
and 1), we get :

Fk,v,s<x> = |C * wv,s<x)‘ .

Then we can directly estimate the convolution product and prove what we
want. U

After this study, we decompose our operator :

p)\Lfg

Z//de/ / {fs Yua)(9 Yos) E(k 0,0, 9,8, x)@d—udqu

We have seen by a spectral analysis that we can restrict this double integral
over v and v on the set

{(u,v), max{|Ai|u", [Ag|o™ '} = 27F}.

In the study of paraproducts (see paragraph 8.4 of [§]), we decompose the
product as fg = II;(g) + IL,(f) + D(f, g) where the two paraproducts and
the diagonal terms have different estimates. For the same reasons here we
have to singly study the two following terms : ) =T, , ; + T, ; With

Tpl)\L f9)(

//de/ / (f, ug) g, Yo sV F(k,u, v, q, 5,2)1 4, (u, U)d“d“dqu
and

Tp2,)\,L<f7 g)(.ﬁl}) =
; //R?d/(; /0 <f> wu7Q><ga ¢U,S>F(/€,u,v, q, 87x)1Bk(U,U) Zuudqu,

12



We write A;, and Bj, for the two sets :

Ak =
{(u,v), max {|AiJu™", [Aofv '} = 27" and min{u,v} < C7" max{u,v}}
and
By == {(u,v), max {|\]u", [ NoJv'} 227" and u ~ v},

where C' is a numerical constant, we later choose. Due to this constant, we
can use spectral separation to study Tpl’ Az With the Littlewood-Paley square
functions for f and g.

Theorem 3.3. For 0 < p; < 1 and \; € R, the operator T, ; can been
continuously extended from H™ x H™ to H", if the exponents 0 < ri,79,73 <
oo satisfy the homogeneity condition

1 1 1
—_t — = —
T T r3

In addition we control the continuity bounds, uniformly with respect to A and
p by the quantity
en (P)en (D) en (%)L oo,

for N a large enough integer.

Proof : To estimate T;W ; in the Hardy space H", we have to study its
square function : Sg (7, , ;(f,9)). We can compute the Fourier transform
and get :

o —

(k. 0,2,5.)(€) =L(k) / Ty (€~ (o — pii)a)
Vug(6 — )DL (€ = )82 () ths(@)da.  (3.2)

Consequently by writing £ = (£ — «) + «, the spectrum of F(k,u,v,q,s,.)
is contained in

%spectrum(z/}) + %spectrum(w) Cc {¢& ¢l @ max{u=", v "}}. (3.3)

For the last inclusion, we have used a large enough constant C' in the defi-
nition of the set A; and so

min{u, v} < max{u,v}.

13



By symmetry we may assume u < v and then by choosing a continuous

square function Sy, we have
S L] o)
RQd 0

keZ

STy o (F29)) () < < / N

2 1/2
d d
W, % F(k,u,v,,5,.)(@)| Ly (u, “>deqd5] EU) |

where A) = {(u,v) € A, u < v}. We have also to estimate the following

quantity
> [ [ 1)

|0

d
Wy * F(k,u, 0,4, 8,.)(2)| L (u, v)%}dqu

2 1/2
du
U

r3,dx

With the notations of Proposition B3, we have that for all z € R¢

F(k,0,0,5,2)| L] | 10 0)] Fanal = Mpis) Proaz = prdes)dy,
R

By using the estimates of Proposition B.3 and the fast decay of ¥, we get :

— o\ —
|F(kyu,v,q,5,2) S Lo [ 2% ( 1+ lyl 14+ |2 — prhy — ¢
R4

o |12k — ooy — s\ M
‘)\l‘kou72d| 2| <1+ |z — p2day 3|) dy.

v2d v
As the parameters p; < 1 and (u,v) € A}, we obtain with an other exponent :

|F(k,u,v,q,8,2)] S (3.4)

N —-M - —-M 2%\ d
I ]loc (H—'Z S|) (H—'Z q') (7””@22'2 ) . (35)
v Uu usv

The exponent M is not always the same, but it always corresponds to an
integer as large as we want. Now by estimating the convolution product, we
get

|\Ilu * F(kau7U7Q787 )(l‘)| S

~

-M -M d
- - Arl|Ag|2%
I L] oo (1 i M) (1 X M) (%) _
U U U“v

14



Computing this estimate in the expression of (), we have

o] e (iaid)

keZ

-M 2\ @
— 2
(1+ |2 q|) 1A;€(u,v) (7|)\1||)\2| ) —dvdqu
v

U u2p?

Q< [ Ll

2,du/u r3,dz

We change the two variables

T —q T — 5
—a and
U v

— b,

to get

Q3

gf/uw /OOO |(f Yuso—ua) (9 Yoo—u) | (1 + a]) ™ (1 + )~

Al Ae|22\ * d
14 (u,v) (M) %)dadb

!
k uv

2,du/u r3,di

We write ¢* for ¢¥*(y) := (2 — y) and ¢7 := (¢*);. With these notations,

we have :

QS

;// /OOO % % f(2)|[08 % g(@)] (1 + Ja))™ (1 + p)) ™

M| h2[226\ ¢ d
1 (u,v) (M) Y dadb
v

!
k uv

2,du/u rs.de

The definition of the set A} allows us to have a finite number of choice for
k. Therefore we have

Qx| [, [ s st sl s s

inf -1 —1,12\ 4
1u<c_1v(M1\M2\ln{M1\ u, | Ao v}) v,
- v

uv

2,du/u r3,di

15



Then we use the Cauchy-Schwarz inequality with

(1) = /oo ('Al”&' inf {1 ", |A2|1v}2)2d dv

Cu uv v

< [ (R el )d_
~ Jow \max{M] 1w, ol M0} )
</OO <|)\1\_1U)2d@+/maX{Cv|A2)\11}u(‘)\2‘_11))211@
h A2AT Hu | Ag| 1w v Cu A Tu "

Ao 7! 2 —11\2d 2d
<1+ R [maX{C’, | AAT [} = C }
1

\ 2d
S1+ (H) [[AAT P = min{C, Aoy [}]
2

<14 [1—min{C|A\;"\ ], 1}2‘1} <1,

2

to finally get

Q@3

H//R 2 £(2)] Sya(g) (@) (1 + [al)™ (1 + (b)) dadb

2,du/u ra,dx

With Minkowski inequality, we may write the last inequality as

s H/ [ S ()@)Sys0) @) (14 Jal) ™ (1 o)™ dad

(3.6)

r3,dx

We must have a pointwise estimate on the square functions when r3 < 1,
because of the lack for the triangle inequality in L™. We also use this lemma, :

Lemma 3.4. Let ( be a smooth function satisfying

2 dt
o1 (3.7)

wro [ [l g

Forp an other function satisfying (B-1) too, we have the pointwise estimate :
for all r > 0, there exists a constant C,. and an integer N such that

1/2
vreS®)  Sur) < CanlOent) ([ MG O]

Here My is the Hardy-Littlewood mazimal operator, M%; corresponds to
MHL o MHL and

M2(g) = (Miz2(lg1)""

16



Let assume first this Lemma. By applying it with 1 = ¢* and ¢ = ¢°, we

get :
// (L+|a)™ (1 + o)™ (/ [Mr2<<t*f)]2%)l/2

(/ [MZ (G * g)f?) (L4 o)™ + |a|)™ dadb

0

Q=<

3

Also by choosing a large enough integer M, we have :

</O°° [Mf(Ct*f)f%)l/Q </OOO [Mf(Ct*g)f%)l/z

With Holder inequality, we obtain :

(/OOO MG+ 1)) dt

We study only the first term with 71, the other one is identical. By definition,

H (/OOO (M2 (¢, + f)]2 &

For r small enough such that min{r,/r,2/r} > 1, the Fefferman-Stein in-
equality (Theorem 4.6.6 of [§]) in L?™ applied to the operator M7, gives

Q3

3

Q5 . (38)

1/2
H M2 Ct *g)] %)

1/r

o)r @ r/2
t

H Ml 71

ri/r

° 2 2 dt 1/2 2/ dt 1/T
([ oD ") < ([ w6 )"
0 0
ri/r
In other words :
L di\ /2
H P )| SISO,
By replacing this estimate in (B.§), we obtain the desired result :
Q S N larllgll e
uniformly with respect to A\; # 0 and 0 < p; < 1. U

17



We have now to show the Lemma [.4. This Lemma is “quite classical”, it
permits to understand for example that Definition of Hardy spaces (Defini-
tion P.3) does not depend on the used function W. It is almost proved in a
discrete version in the book [f], from which we take the notations. We only
give the sketch of the proof.

Proof : We define the maximal operator :

B [ty x f(x —y)|
Mb,t(f,w)—;;@ (1+ty))"

Then it is obvious that

e * f < Mys(f, ). (3.9)

In the proof of Theorem 6.5.6. of [B, one may choose a function © satisfying
(B7) and such that © > 0. Then it is shown that :

Mi(F0) 5 [ exw)ex(@)int{lt =, e = s| '} Mo, 0)
Consequently with (B.9), we get :
L ds\ 2
5. S evtien(@) ([P E) L @)

Now Lemma 6.5.3. of [§] with b = n/r gives us,
My (f,©) S M (O * [).

To substitute the function ¢ to the function ©, we use the spectral condition
and the fact that

2 du
@t*f:/ O * Cru * f—.
1/2 U
Then with the estimate (6.5.8) of [§] :

1O % G [ ()] S en(©) M (G f)(2),

we obtain that

Mys(f,0) S Mo(©4 % f) S en(©)en (O MM (G x f) S en(OM7 (G f).
By computing this estimate in (B.10), we get the Lemma. U

To finish the study of 7}, 5 1, we have to estimate the second operator Tp27 AL

18



Theorem 3.5. For 0 < p; <1 and \; # 0, the operator T;AvL 1S continuous
from H™ x H™ to L™, for all exponents 0 < 1,179,173 < 00 satisfying

In addition we may control the continuity bounds, uniformly with respect to
A and p by the quantity

en (P)en (¥)en (@) en (P7)]|L oo,
for N a large enough integer.

Proof : The operator 77, ; is defined as

Tp2,)\,L<f7 g) =
Z //H{;2d /0 /(; <f’ wU7q><g’¢U’S>F(k’U7U7Q787x)13k(u7v) Zuudqua

kEZ

with
By i= {(u,0), max{[Afu~, Molo™} = 2% and u =~ v}

By using the previous estimate, we have to control

Q= ”T,i,\,L(fa g)Hrg

Z//de /OOO /OOO [(fs Yug) (9, Yo,s)| (1 i ‘:L’v;ﬂ)M

kez
—M d
— Al Ao |22k dvd
(1—|— [= q|) 1p, (u,v) <| 1o ) Y udqu

U u2v? UV

S

r3,dx

In this case (B.3) is not satisfied. We compute the same changes of variables
as in the end of the proof for Theorem B.3. By using Cauchy-Schwarz in-
equality and the definition of the set By, we obtain the same estimate as
(B-§) and so we can conclude by the same arguments as before. 0

Finally we get the following result :

Theorem 3.6. Let 0 < p; <1 and \; # 0 be reals, then the operator T, » 1,
1s continuous from H™ x H™ to L™ for all exponents 0 < ri,ry,1r3 < 00
satisfying



In addition we can estimate the continuity bound uniformly with respect to
A and p by the quantity

en (P)en (¥)en (@) en (P)]|L] oo,
for N a large enough integer.

Proof : We have decomposed the operator T}, , 1, as
1 2
Tp7>‘7L = Tp,)\7L + Tp,)\7L

The embedding H"s — L™ (see Theorem 2.5 of [B1]]), Theorems B.3 and B.5
allow us to prove the desired result. U

This result proves the first part of Theorem [[.3 : under the assumption 1-)
we have uniform estimates.

In the next section, we are going to prove a similar result for some infi-
nite exponents with the concept of Carleson measure and ideas based on
Calderén-Zygmund theory.

4 The study of 7, ) ; with Carleson measures
and Calderén-Zygmund decompositions .

We use ideas of the book [fl], where R. Coifman and Y. Meyer have already
studied paraproducts with a Carleson measure. We adapt here their argu-
ments to our model operators. As we have seen in Remark P.5, our operators
permit us to understand all the “different kinds” of paraproducts. In [H],
the authors studied only one “kind” of paraproducts (which with other and
extra arguments is sufficient to study the other ones).

That is why the use of our model operators seems interesting as we obtain
a (only one) direct proof simultaneously for all the paraproducts.

We will (for convenience) work on the continuous version of them :

Ui (o fu) (@) 1= /OOO 0 [ w [][#0 £] (0 = pdins.

=1

where L is a bounded measurable function. By symmetry, we can assume
that A, satisfies :
|An| = max{|\;|, 1 <i<n}. (4.1)

In this case we have the following result :
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Theorem 4.1. Under the assumption ({{.1), the operator U, » 1, can be con-
tinuously extended from (L°°)*"~1 x L? to L. In addition the continuity
bound is controlled by ||L|l with car(¥) and cyr(®Y) (for a large enough
integer M ) independently with respect to the parameters p; €]0,1] and \.

Proof : By symmetry on the (n —1) first coordinates, we can assume that
A1l == min{|\;],1 <j <n-—1} (4.2)
n [l] (Chap. VI prop 3), the following result (that we call the (x)-result) is

shown : the operator V is continuous from (L>)*"~! x L? to L? where V

is defined by
V(f1, - fa)(@) = Uy 0, 022 (1, 5 fn) (@)

:/OOO [T pnge * 3y * f1] (2 Hcp x [l <t>

The estimate on V' is independent on A and p; due to the assumptions ([L.1])
and (f.2). Our idea is also to disturb our coefficients (p;)a<;<, and to bring
them to 0. We temporarily forget in the notation the dependence on p, A
and L, by writing :

Upsalhioesf) =V b+ 30 [ Wl fids
seqzn) s’
where
W s(f1, - f / / Uy (y 11t*f1(5€+/)1)\1y)
Lt
HTy (V@) n fya+ s, ) Dy
je
with

Since V' is estimated by the (x)-result, p; < 1 and the set of J being finite,
we have only to bound the operators W ;. We now decompose the gradient
in the d coordinates :

W s(f1, - fo)(w) = U (y) @), * fr(x + prhry)
le{lzd}f/ /Rd "

Y, L(t
[ [0, @)% 1] 2+ 5000 (. 2 Dy

EERLCH
ml\ 3
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By setting
U(x),

@l(gj) = [H SL’lj

jeJ

the function ©' is again a smooth function whose the spectrum is far away
from 0. We have

Worlfioesfo)0) =32 [ [ 40 (G A @+ pidun)

I1 [0, @00+ 1) (e Ao, Dyt
JjeJ

Now the interest of this operation is that J being not empty there exists an
index j for which @(O) = 0 (what is false for the initial function ®7)!.
The (x)-result for V' is based on the following quadratic estimate (due to the
notion of Carleson measure, see [f]) :

TPt * f1 (@) [CR0 % 9] (@),

uniformly on A and p for 0 < p; < 1 and 0 < |A] < |Ag|]. We are going
also to produce the same proof for our operator W, ;. We have to show a
quadratic estimate : for an index [ € {1,..,d}!! :

dttdac S ||f||oo||g||27

()= ‘

[ elwek  file = maw)
R

H(axlj )50 % fi(z 4 Ajs;y) H Dy;e * fi(w + Njy)dy

JjeJ jeJe

2 dat
n—1

S fallz TT 1 filloo- (4.3)
i=1

x First case : n € J. The convolution operators are bounded on L*>, so we
get :

@ =TTl | [ 104001100, 9% Ao = Ausa]

i£En

2, d:idt

We use Minkowski inequality for the norm in L?(dt/t) and after we can
compute the integral over y. Then with the reminder ([), we get (£.3).

! In this case, we know from [[f] that 10, ®J); * Fllg azae S I1S12

22



x Second case : n € J° We use a Carleson estimate by keeping an other
function f; with k € J (due to J # 0).

)
CSE ) N RC O ey AT )

i#{n,k}

‘(amlkq) )t * fr(x — )\ksk)‘ dy

2
After changing the variable on y, we have :
@< TT Ul [ 16012505 o = 2
i#{n.k}
(O, @)+ e = Atsey)| dy

2 e
We write ¢ for ®*(- — a) and also get

(< I il

ik}
H/ |0%(y) ‘(ID Lk o ” Oxlkéks’“y)/\kt*fk(x)‘ dy

dxdt
2,45

We now use Minkowski inequality on the measure dzdt/t and after the Car-
leson estimate to finally obtain :

<Ihmmwnm/@l (L + [seyl)**2dy.

i#n

The function ©' is smooth and 0 < s, < 1, consequently we have shown
(#); in this last case. All the estimates are uniform on A due to [Ag| < |\,|.

Hence (f-3) is shown in the two cases. We have now just to copy the proof
of the (x)-result of [A] by putting the previous quadratic estimate instead of
the Carleson estimate. The details of this part of the proof are left to the
reader. U

As for “classical” Calderéon-Zygmund operators, we use a Calderén-Zygmund
decomposition to obtain continuity results with other Lebesgue exponents.
Our multilinear operators are multilinear Calderén-Zygmund operators (as
defined in [[T]]), however the bounds are not uniformly controlled with re-
spect to \;. By using the main result of [[LI]], we obtain our desired conti-
nuities for U, ; with a certain dependence on X. The rest of this section
is based on an improvement of the “classical” arguments, adapted to our
problem.
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Definition 4.2. A function K defined on R? x R4\ {(z, z), x € R} is called
a “standard kernel of order N if for all x # y

1
a0 |z — y| @Bl

Va,B € {1,..,d}, |a|,|B| < N 0500 K (z,y)| < A

A linear operator T', continuously acting from S(R?) to S’'(R?) and satisfying
the integral representation

Vf e C5°, Va ¢ supp(f) / K(z,y)f(y)dy,

is said to be associated to the kernel K. Such an operator is called a
”Calderén-Zygmund operator of order N if it is bounded on L?(R%) and
associated to a ”standard kernel of order N”.

We have also the well-known following proposition (see for example the book

B :

Proposition 4.3. Let T be a Calderon-Zygmund operator of order N. Then
T admits a continuous extension from LP to LP for 1 < p < 2, from L' to
LY and from HP to L? for d/(N +d) < p < 1. In addition the continuity
bounds only depend on the constants ||T'||f2—r2 and (Ao g)s-

Remark 4.4. The other constants A, g with a # 0 are useful to study the
dual operator T* and also to get boundedness for 7" on L? with 2 < ¢ < o0.

We will use this proposition for our problem.

Proposition 4.5. Let fi,.., fn_1 be smooth fized functions (considered in
L>). Then the operator :

V= fo—=Uio(fis fn)

1s a Calderon-Zygmund operator at any order. In addition the constants
A(0, B) are uniformly bounded with respect to A and p for 0 < p; < 1.

Proof : The boundedness on L? of V is given by Theorem [I. We have
only to check the desired estimates on the kernel. Let K be the kernel of V|
which is given by :

/ / Wiy chmfj oA = pohy — ) D dyar
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We can differentiate the kernel and directly obtain :

oo n—1

a2k, 2)| S w e | LIz
j=1

[y\~ & = paday = 2\ e dydt
L (” e) Ut At e

By using p,_1 < 1, we get :

‘8a0ﬁK X,z ‘ <

a 0o « —M
Al \ |/ 1\ /BlIHlel - |z — 2| I @
min, || o At Ant " e

For M a large enough exponent, we can conclude that

||
00K (2, 2)| (L) 2 — 2|18l L

We have also the desired estimates on the kernel and for o = 0 the estimates

do not depend on . U

With the two previous propositions, we get the following corollary.

Corollary 4.6. The operator U, 1, is continuous from (L>®)®—1 x [P
into LP for all exponent 0 < p < 2 and from (L>®)®"=Y x L into LY. The
continuity bounds are uniformly controlled with respect to 0 < p; <1 and A

satisfying (. 1).

Here we do not know if a similar result for p > 2 is possible.

Now we would like to get continuities with finite exponents instead of infinite
exponents. To do this, we first prove the abstract following result :

Theorem 4.7. Let T be a linear operator, continuously acting from LP* to
LP with 1 <p; < oo and 0 <p <p;. We setr >0 the exponent defined by

1 1 1

p pT
We assume that T is associated to a kernel K (see definition [[.9) satisfying

1
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with a function h € L™*°. Then T can be continuously extended from L9 to
L2 for all exponents (q1,q) such that

1 1 1
S and I<q <pr
9 @ T

In addition the continuity bounds are controlled by ||hl|,. By real interpo-
lation, we obtain the strong type (q1,q) when 1 < ¢ < p;.

Proof : We follow the “classical proof” for r = oo and h = 1ga. So let f
be a normalized function of L7 : || f]|, = 1. We want to show

{z, [T(N)] > a}f S o™ (4.4)

We use a Calderén-Zygmund decomposition of the function f at the scale
a9 We have also the following decomposition

f=g+0,

with a “good” function g and a “bad” function b satisfying :

gl SUflle =1, llgllee S a¥/™,
b=> be,  supp(b) C Qs,
k

bl < Q02| Qu Yo, / b = 0,
MR Sa™f|E S and Y Ty, S 1.
k k

The (Qp)x is a collection of balls (of R?), associated to the “bad” function
b. By linearity, we have

{z, TN > aj] <[z, [T(9)] > /24 + [{z, [T(b)] > a/2}].

1—) The case of the function g.
This is the easiest case. We use the continuity of T" with the exponents p;
and p to get

{z, [T(9) > a/2} S " IT(9)];

< a?gl,
By the assumption on ¢ and the fact that ¢; < p; :

lgllp, S gl gl /o S asi=u/m/a,
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We also obtain
H{z, [T(g)| > a/2}| o PoPil—a/p)/a
< o PPt/ a=1/p) < o =para(l/a=1/p)

—q
S a

)

which corresponds to the desired result ([f.4).
2—) The case of the function b.

First we have
GEe
k

In order to show (f.4), we can also assume that x € Ni(5Q;)¢ and just
estimate

—q
Sa

{z € Ne(5Qk)% [T ()] > a/2}].

Let also z be fixed and use

D) <D |T(be)()

k>0

With the vanishing moment of the function by, we have :

x) = /K(az, 2)bp(2)dz = / [K(x,z) — K(x,c)] bp(2)dz.
Here we write ¢, for the center of the cube Q;. As x is far away the support

of by, the integral representation has really a sense. Then by using the
estimates of the kernel, we have

1
K (2, 2) = K(z, c)| S ]2 = Ckl/ VK (2,2 +t(c, — 2))| dt
0

1
1
<|z— ——h(z)dt
sl '/ EEraTaed

|z — ¢kl

Y Wh(az).
Therefore
|7 (b) /IQk 1/ p— |d+1b w(2)dz.
With
1ol < @il =Y [bkllgy S 1@l ™,
we obtain

1+1/d . q/
T (k) ()| S h(2)| Qe[ ™ o
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By computing the sum over the index k, we finally have

T (b)(2)] S h(x)a?™ -
k (1 + |$k_c’“‘ >d+

We find the Marcinkiewicz function associated to the collection (Qy), we
write it M(g,),. So we have

T(0)(2)] S h(x)a?™ Mg, ().

However the collection (10Q%)x is a bounded covering on the whole space,
so we know (see [I9]) that for 1 < ¢; < 0o, M(q,), is of weak type (q1,q1).
By using Holder inequality on the weak Lebesgue spaces, we get

17Oy 0 S 1llrcc0®® Mg (@)]],, o S 10 QkIY Al eca™.

q,00 ~v q1,00 "~

We obtain also the desired estimate :

17O g.00 < [1Pllr00-

q,00 v

We now prove a similar result for the Hardy spaces :

Theorem 4.8. Let T be a linear operator, continuously acting from LP' to
LP with 1 < py < oo and p < p;. We set r > 0 the exponent satisfying

1 1 1

popoT
We assume that T is associated (see Definition [[.3) to a kernel K verifying :

1

Va,laf <N [O7K(z, 2)] < mh(l’)

with a function h € L. Then for all exponents (qi,q) such that

1_1+1 d <g <1
—-—=—+ - an ,
q QT N—l—d_ql_

there is a constant C' such that for all atoms a € H
1T ()l o < C. (4.5)

In addition the continuity bounds are controlled by ||hl|;. By real interpo-
lation, T can be continuously extended from H? to L? when NLM <q < 1.
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Proof : We use the atomic decomposition of the Hardy spaces H? (See
Theorem 6.6.10 of [{]). Let a be an atom of H%, that is meaning there exists
a cube () such that

supp(a) C @, laflz < [Q['*7®
d

Va,|a| < [— —d], /:paa(:p)d:p = 0.
01

We write [] for the integer part. We want to estimate 7'(a). Assume first
that x € (5Q)°. By assumption ¢; > d(N +d)~! so N, := [(;il —d] < N-1.
We have also

T(a)(z) = | K(z,y)aly)dy

R4

:/Rd K- 3 4D e, (@) | aly)dy,

Q!
‘O‘|§Nq1

where ¢(Q) is the center of the cube ). We can estimate the difference
between the square brackets by

Ky - 3 YA o o(q)

o!
‘C“|§Nq1
5 Z (y_CEQ)) 8;[((37 y)H
la|=Ng, +1 @ 00,y€Q
< |Q|(Nq1+1)/d h(z) .
~ |7 — (@) Nt
We also get
h(x)
|T<CL)(37)‘ f, / ‘Q|(N(“+1)/d|x — C(Q)|d+qu+1 Ia(y)\dy
h(x)

S Q| Q.

|z — (@)

Therefore with the Holder inequality on the weak Lebesgue spaces LP*° and
by integrating = € (5Q))¢, we obtain

1
Ng, +1)/d 1-1
q,00,(5Q)° S |Q|( “ / ||h||r,oo |Q‘1—1/Q1+(Nq1+1)/d |Q| /o

<1

17 (a)]
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We compute the proof by studying the case x € 5@) with the Hélder inequal-
ity and the LP-boundedness of T :

1T (@)l 00,5 S 1QI* P IT ()],
< |Q|1/q‘1/”||a||p1 < |QVa /=121 2= e <

Here we have assumed that p; < 2. If it is not the case, we have to consider
the L*-atoms of H? with s > p; or use first our previous theorem to have
continuities for T" with p; = 1. By consequence, we have shown that T is
bounded on all the atoms of H? into L%°. U

Remark 4.9. Nowadays, it is well known that an operator, which is bounded
on whole the set of atoms, does not always admit a continuous extension to
the whole Hardy space. There is a counterexample for the Hardy space H*

in [[5.
We now apply this abstract result to our operator.

Proposition 4.10. Let fi,.., fn_2 be fized and smooth functions belonging
to S(RY) C L™ and f, be a smooth function belonging to HY with ¢ < 2 (or
L'). Then the operator

V= fnfl — U, ,A,L(fla <oy fn)
satz’sﬁes the assumptions of Theorems [[.7] and [[.§ for py =00, p=q=17r

and h < My, . (fa, ®") at any order N. In addition the bounds can be

umformly controlled with respect to p and X under the condition ({.1). Here
we set My* for the following mazimal operator :

My (f,®")(w) = sup sup (141" [y]) " @)  f(x — y)].

t>0 yERd

Proof : The assumption of the boundedness is given by Corollary .. So
we have just to check the assumption about the kernel K (z,z), which is
given by

K(z,z) = / /Rd ‘I’t(?/)‘bf\b:lt(x — Pr-1An_1Y — 2)
L(t
H O fi(x = oAy @8, * fula pnAny)¥dydt-

We can dif‘ferentlate the kernel and we obtain

© 2 — puoidoy — 2]\
aﬁK < 1o 1 - Pn—=1"\n-1Y —
el s [T [ (e

A ooy |yt
Ayt 4 (1+ t 7 Mijgi1(fn, ") (@ >T'
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With the arguments, used in the proof of Proposition .3, we can estimate
the integrals. We also get the desired result :

n—2

(07K (2, 2)] S TTIfllool LllowM7a (s @) ()| — 2|74,

J=1

uniformly with respect to A. U

Corollary 4.11. The operator U, can be continuously extended from
(L)®=2) x HP x HY into L* for all exponents 0 < ¢ <2 and 0 < p < o0

such that
1 1 1

s P q
In addition if p =1 or ¢ = 1, we are allowed to substitute the Hardy space
H' by the Lebesque space L' with changing the final space L>* instead of
L?. All these continuity bounds are uniform on 0 < p; < 1 and X\ satisfying

H-).

Proof : It is a direct consequence of the previous Proposition and the
two previous Theorems. We use the fact the maximal operator M;}‘q L1 18
continuous from H? to L? for all exponent 0 < ¢ < oo and from L' to
LY. This claim is proved in Theorem 6.4.4 of [§]. So for fi, .., fn_2 fixed
bounded and compactly supported functions and f, € H?, we obtain that
the operator

Vi=foor = U o(fis o fo)

is bounded on all the HP-atoms into L*. Now we use that U, ) 1 is bounded
from (L?)®*=2) x HP x HY into L! (for the corresponding exponent ¢, see
Theorem B.0) and that the functions f; are in L? (beeing compactly sup-
ported) in order to be able to extend V' on the whole Hardy space H?. This
is a classical argument (see for example the proof of Theorem 6.7.1 in [{]).
We also obtain the continuity of U, ) 1, from (LZ)®("=2) x HP x HY into L°.
We use the same ideas for the space L! instead of H? with p = 1. U

By producing the same reasoning over each component and by using inter-
polation results, we can prove Theorem for our model operators.

Proof of Theorem for the model operators : The case where
Sy = ) was shown in Section B : Theorem B.g (with the discrete equivalent
model) and is a consequence of Theorem [[.7 and Proposition [I.] for the con-
tinuities in weak Lebesgue spaces. The case where Sy # ) is a consequence

of Theorems (1], .1, (.§ and Proposition [L.F. U
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5 Decomposition of multipliers with our model
operators

In this section we will prove how to decompose a multilinear multiplier of
Theorem with our model operators. This reduction will also conclude
the proof of this Theorem. The way to decompose a multilinear multiplier
with paraproducts is well known (see for example [[]). We quickly remember
this operation and check that we keep the uniformity with respect to the
important parameter \.

So let T' be an operator of Theorem [[.3. It is also associated to a symbol o
which satisfies

d 1M1 My, Hi:l |>\z |
Ym; € N gt o o1y 6n)| S I (E, 0)lm T (5.1)

As we have seen in Proposition .4, our model operators allow us to get the
paraproducts. So we use the “classical” decomposition of an Hormander
multiplier with paraproducts. Let us recall it (we use the ideas of [f]).

For any index [ € {1,..,n}, we choose a smooth homogeneous function ¢; on
(RY)™ supported in the cone :

{g c (RH™, NG| ~ max |Aj§j|} .

We can choose them in order that

n

vee R D G =1

=1

Let ¥ be a real and smooth function on R? whose the spectrum is contained
in a corona around 0 and such that

meRN{0} Y |82t

kezd

‘2 ~1. (5.2)

Let ¢ be a smooth function on R? whose the spectrum is bounded and such
that

vi e {17 --an}v v§ € Supp(gl) \/I}(Qk)‘lgl) 7& 0= \V/j 7& l7 &\)(Qk)\Jgj) =1
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We have also a partition of the unity on the whole frequency plane and we
get

T(flu' fn>( ):
ZZ/ ot (£1+..+§n)@2(2k)\l£l)ﬁ(§l)H@2(2kkjfj)ﬁ(fj)0(f)df-

kez 1=1 j#£l

Let us define new symbols

o-l,k(g) ()\géka ) )\£2k {I\/ gl Hq) 6]
J#l

Hence the operator T' can be written by

T(f1, .., f ZZ/ iz (€1+.+6n)

keZ 1=1

BN Fi(&) [T 2N F(€)or(@Ngs, ., 250n60)dE.
i

With the assumption (b)), we get that
Ok € L and AN(TLk e}

uniformly with respect to k and [ for an integer N as large as we want. So
the symbols oy, satisfy

L
ok (§) :/ elg'ui(l’k’u)jvdu
rin (14 [ul?)

with a function L € L®({1,..,n} x Z x R%"). Then we have

T(frs-s fu)( ZZ// ol (£1+..+£n)Mv§>N

keZ 1—1 (14 Jul?)

U (2508 f1(6) H &\)(QkAjgj)ﬁ(gj)eiT’“(Aflsh..mlgn).udgdu
#

n

/ ZZ l k u / eix.(§1+..+£n)

1+|u|

2N (&) [ [ 7 ®(25N6) (&) dédu
i
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Here we are writing 7, for the translation of the vector y € R%. We also
obtain

T(frs o for) () = / ! =

rin 1= (14 |uf?
> L k) (70, W) 50 % fi(@)] [ [0, @2, % f5(2)] du. (5.3)

keZ j#l

n

For [ and u being fixed, we also find “classical” paraproducts.

We now can finish the proof of Theorem ;

End of the proof of Theorem :

We have seen in Proposition .4 that the “classical” paraproducts are ob-
tained as limit objects of our models operators when some p; tends to 0. So
the uniform results of Theorem [[.3, proved for our model operators (at the
end of the previous section), are also satisfied for the paraproducts.

So for each [ and u fixed, the operator

(fioor fu) = > LK) (1 ©)nze + fi] T [ ®)aen, * £]

kez £l

satisfies all the continuities of Theorem [[.3. These continuities are bounded
by a weight (1 + |u|)¥ for a large enough integer K (uniformly with respect
to A).

So if the exponent of the final space p is bigger than 1, by using the trian-
gular inequality with an integer N > K, we get the same continuities for
the operator T.

If p < 1 we cannot use the triangular inequality.

« If all the exponents are finite (first part with the Littlewood-Paley square
functions) : we exactly use the same proof. The spectral study is identi-
cal due to the fact that the parameters v and [ have no importance. With
Lemma B.4 we can have a pointwise estimates of the different square func-
tions which permit us to obtain the result.

« If some exponent are infinite (second part with Carleson measure and
Calder6n-Zygmund decomposition), the proof is based on the first continu-
ity from (L>®)"~! x L? into L? (which is satisfied for T" by the triangular
inequality) and on estimates about the multilinear kernel (which are again
satisfied for T' by the linear correspondance between the kernel and the op-
erator).

In the two cases, the continuities of Theorem are proved for T U

We have also finish the proof of our Theorem [[.J. A question stays open : is
one of our condition a-) or b-) (in Theorem [[.3) necessary to have uniform
estimates 7
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