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ON KAZHDAN-LUSZTIG CELLS IN TYPE B

CÉDRIC BONNAFÉ

Abstract. We prove that, for any choice of parameters, the Kazhdan-Lusztig
cells of a Weyl group of type B are unions of combinatorial cells (defined using
the domino insertion algorithm).

Let (Wn, Sn) be the Weyl group of type Bn, where Sn = {t, s1, . . . , sn−1} and

where the Dynkin diagram is given by

i i i · · · i
t s1 s2 sn−1

Let ℓ : Wn → N = {0, 1, 2, 3, . . .} be the length function. Let Γ be a totally ordered

abelian group and let ϕ : Wn → Γ be a weight function (in the sense of Lusztig [10,

§3.1]). We set

ϕ(t) = b and ϕ(s1) = · · · = ϕ(sn−1) = a.

To this datum, the Kazhdan-Lusztig theory (with unequal parameters [10]) asso-

ciates a partition of Wn into left, right or two-sided cells [10, Chapter 8].

In [3, Conjectures A and B], Geck, Iancu, Lam and the author have proposed

several conjectures for describing these partitions (at least whenever a, b > 0, but

this is not such a big restriction, as can be seen from [2, Corollary 5.8]): they

involve a domino insertion algorithm. Roughly speaking, one can define a partition

of Wn into combinatorial (left, right or two-sided) (a, b)-cells (which depend on a,

b and which are defined combinatorially using the domino insertion algorithm):

the combinatorial (left, right or two-sided) cells should coincide with the Kazhdan-

Lusztig (left, right or two-sided) cells. The aim of this paper is to prove one of the

two inclusions (see Theorem 1.24):

Theorem. If two elements of Wn lie in the same combinatorial (left, right or two-

sided) cell, then they lie in the same Kazhdan-Lusztig (left, right or two-sided) cell.

In the case of the symmetric group, the partition into left cells (obtained by Kazh-

dan and Lusztig [7, Theorem 1.4]) uses the Robinson-Schensted correspondence, and

the key tool is a description of this correspondence using plactic/coplactic relations
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2 C. Bonnafé

(also called Knuth relations). For Wn, whenever b > (n − 1)a, the partition into

left, right or two-sided cells was obtained by Iancu and the author (see [4, Theorem

7.7] and [1, Corollaries 3.6 and 5.2]) again by using the translation of a generalised

Robinson-Schensted correspondence through plactic/coplactic relations.

Recently, M. Taskin [13] and T. Pietraho [12] have independently provided plac-

tic/coplactic relations for the domino insertion algorithm. Our methods rely heavily

on their results: we show that, if two elements of Wn are directly related by a plac-

tic relation, then they are in the same Kazhdan-Lusztig cell. The key step will be

the Propositions 2.14 and 2.15, where some multiplications between elements of the

Kazhdan-Lusztig basis are computed by brute force. We then derive some conse-

quences (see Propositions 4.1 and 6.1), where it is proved that some elements are in

the same left cells. Then, the rest of the proof just uses the particular combinatoric

of Weyl groups of type B, together with classical properties of Kazhdan-Lusztig

cells.
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1. Notation

1.A. Weyl group. Let (Wn, Sn) be the Weyl group of type Bn, where Sn =

{t, s1, . . . , sn−1} and where the Dynkin diagram is given by

i i i · · · i
t s1 s2 sn−1

Let ℓ : Wn → N = {0, 1, 2, 3, . . .} be the length function. Let In = {±1, . . . ,±n}: we

shall identify Wn with the group of permutations w of In such that w(−i) = −w(i)

for all w ∈ In. The identification is through the following map

t 7−→ (1,−1) and si 7−→ (i, i + 1)(−i,−i− 1).

The next notation comes from [4, §4]: it is rather technical but will be used

throughout this paper. We set t1 = r1 = t and, for 1 6 i 6 n− 1, we set

ri+1 = siri and ti+1 = sitisi.

We shall often use the following well-known lemma:

Lemma 1.1. Let w ∈Wn, i ∈ {1, 2, . . . , n− 1} and j ∈ {1, 2, . . . , n}. Then:

(a) ℓ(wsi) > ℓ(w) (that is, wsi > w) if and only if w(i) < w(i + 1).

(b) ℓ(wtj) > ℓ(w) if and only if w(j) > 0.

As a permutation of In, we have

(1.2) ti = (i,−i)
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and

(1.3) ri(j) =











−i if j = 1,

j − 1 if 2 6 j 6 i,

j if i + 1 6 j 6 n.

An easy computation shows that, if j ∈ {1, 2, . . . , n− 1} and i ∈ {1, 2, . . . , n}, then

(1.4) sjri =



















risj if j > i,

ri+1 if j = i,

ri−1 if j = i− 1,

risj+1 if 1 6 j < i− 1.

Note also that, if l > 2, then

(1.5) rlrl = rl−1rls1.

We set a0 = 1 and, if 0 6 l 6 n, we set

al = r1r2 · · · rl.

As a permutation of In, we have

(1.6) al(i) =

{

i− 1− l if 1 6 i 6 l,

i if l + 1 6 i 6 n.

In particular,

(1.7) a−1
l = al

and, if i ∈ {1, 2, . . . , n− 1} \ {l}, then

(1.8) alsial =

{

sl−i if i < l,

si if i > l.

Note also that

(1.9) ℓ(al) =
l(l + 1)

2
.

We shall identify the symmetric group Sn with the subgroup of Wn generated by

s1,. . . , sn−1. We also set I+
n = {1, 2, . . . , n}. Then, as a group of permutations of

In, we have

(1.10) Sn = {w ∈Wn | w(I+
n ) = I+

n }.

If 1 6 i 6 j 6 n, we denote by [i, j] the set {i, i+1, . . . , j} and by S[i,j] the subgroup

of Wn (or of Sn) generated by si, si+1,. . . , sj−1. If j < i, then we set [i, j] = ∅ and

σ[i,j] = 1. As a group of permutations of In, we have

(1.11) S[i,j] = {w ∈ Sn | ∀k ∈ I+
n \ [i, j], w(k) = k}.

The longest element of Wn will be denoted by wn (it is usually denoted by w0,

but since we shall use induction on n, we need to emphasize its dependence on n).



On Kazhdan-Lusztig cells in type B 5

We denote by σn the longest element of Sn. The longest element of S[i,j] will be

denoted by σ[i,j]. As a permutation of In, we have

(1.12) wn = (1,−1)(2,−2) · · · (n,−n).

Note also that

(1.13)











wn = t1t2 · · · tn = tn · · · t2t1
wn = anσn = σnan,

σn = σ[1,n]

and that

(1.14) wn is central in Wn.

1.B. Decomposition of elements of Wn. If 0 6 l 6 n, we denote by Sl,n−l the

subgroup of Sn generated by {s1, . . . , sn−1} \ {sl}. Then Sl,n−l = S[1,l]×S[l+1,n] ≃

Sl ×Sn−l. We denote by Yl,n−l the set of elements w ∈ Sn which are of minimal

length in wSl,n−l. Note that al normalizes Sl,n−l (this follows from 1.8).

If w ∈Wn, we denote by ℓt(w) the number of occurences of t in a reduced decom-

position of w (this does not depend on the choice of the reduced decomposition).

We set ℓs(w) = ℓ(w)− ℓt(w).

Lemma 1.15. Let w ∈Wn. Then there exists a unique quadruple (l, α, β, σ) where

0 6 l 6 n, α, β ∈ Yl,n−l and σ ∈ Sl,n−l are such that w = αalσβ−1. Moreover, there

exists a unique sequence 1 6 i1 < i2 < · · · < il 6 n such that αal = ri1ri2 · · · ril. We

have

ℓ(w) = ℓ(α) + ℓ(al) + ℓ(σ) + ℓ(β),

ℓt(w) = l

and {i1, . . . , il} = {i ∈ [1, n] | w−1(i) < 0}.

Note also that

ℓ(α) =

l
∑

k=1

(ik − k).

Proof. See [4, §4, and especially Proposition 4.10]. �

If l ∈ [0, n] and if 1 6 i1 < · · · < il 6 n and 1 6 j1 < · · · < jn−l 6 n are two

sequences such that [1, n] = {i1, . . . , il} ∪ {j1, . . . , jn−l}, then it follows easily from

1.3 that

(1.16)

{

(ri1 · · · ril)
−1(ik) = k − l − 1 if 1 6 k 6 l,

(ri1 · · · ril)
−1(jk) = l + k if 1 6 k 6 n− l.
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The elements α, β and σ of the previous lemma will we denoted by αw, βw and

σw respectively. We have

(1.17) ℓt(w
−1) = ℓt(w), αw−1 = βw, βw−1 = αw and σw−1 = al(σw)−1al.

We shall now describe how the multiplication by the longest element wn acts on

the decomposition given by Lemma 1.15. For this, we denote by σl,n−l the longest

element of Sl,n−l.

Proposition 1.18. Let w ∈Wn and let l = ℓt(w). Then:

(a) ℓt(wnw) = n− l.

(b) αwnw = αwσnσn−l,l and βwnw = βwσnσn−l,l.

(c) σwnw = σnσσ−1
n σn−l,l.

(d) Let 1 6 i1 < · · · < il 6 n be the sequence such that αwal = ri1 · · · ril. Then

αwnw = rj1 · · · rjn−l
, where 1 6 j1 < · · · < jn−l 6 n is the sequence such that

{i1, . . . , il} ∪ {j1, . . . , jn−l} = [1, n].

Proof. (a) is clear. (d) follows from Lemma 1.15. We now prove (b) and (c) simul-

taneously. For this, let α′ = αwσnσn−l,l, β ′ = βwσnσn−l,l and σ′ = σnσwσ−1
n σn−l,l.

By the unicity statement of the Lemma 1.15, we only need to show the following

three properties:

(1) α′, β ′ ∈ Yn−l,l.

(2) σ′ ∈ Sn−l,l.

(3) wnw = α′an−lσ
′β ′−1.

For this, note first

σnSl,n−lσ
−1
n = Sn−l,l,

so that (2) follows immediately. This also implies that σnσn−l,lσ
−1
n = σl,n−l because

conjugacy by σn in Sn preserves the length.

Let us now show (1). Let i ∈ {1, 2, . . . , n} \ {n − l}. We want to show that

ℓ(α′si) > ℓ(α′). By Lemma 1.1, this amounts to show that α′(i + 1) > α′(i). But

α′ = αwσl,n−lσn. Also σn(i) = n + 1− i > σn(i + 1) = n− i and n + 1− i and n− i

both belong to the same interval [1, l] or [l+1, n]. Hence σl,n−lσn(i) < σl,n−lσn(i+1)

and αwσl,n−lσn(i) < αwσl,n−lσn(i + 1) since αw ∈ Yl,n−l. This shows that α′ ∈ Yn−l,l.

Similarly, β ′ ∈ Yn−l,l. So (1) is proved.

It remains to show (3). We have

α′an−lσ
′β ′−1 = (αwσnσn−l,l) · an−l · (σnσwσ−1

n σn−l,l) · (σ
−1
n−l,lσ

−1
n β−1

w )

= αwσnσn−l,lan−lσnσwβ−1
w
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But σn−l,l = σ[n−l+1,n]σn−l and σnσ[n−l+1,n]σ
−1
n = σ[1,l] = σl so

α′an−lσ
′β ′−1 = αwσlσnσn−lan−lσ

−1
n σwβ−1

w

= αwσlσnwn−lσ
−1
n σwβ−1

w ,

the last equality following from 1.13. Now, σnwn−lσ
−1
n = wlwn (see again 1.13) so

α′an−lσ
′β ′−1 = αwσlwlwnσwβ−1

w

= αwalwnσwβ−1
w

= wnαwalσwβ−1
w = wnw,

the second equality following from 1.13 and the third one from the fact that wn is

central (see 1.14). �

1.C. Subgroups Wm of Wn. If m 6 n, we shall view Wm naturally as a subgroup

of Wn (the pointwise stabilizer of [m + 1, n]). It is the standard parabolic subgroup

generated by Sm = {t, s1, . . . , sm−1}: we denote by X
(m)
n the set of w ∈ Wn which

are of minimal length in wWm. For simplification, we set Xn = X
(n−1)
n . It follows

from Lemma 1.1 that:

Lemma 1.19. Let w be an element of Wn. Then w belongs to X
(m)
n if and only if

0 < w(1) < w(2) < · · · < w(m).

If I = {i1, . . . , il} ⊆ [1, n− 1] with i1 < · · · < il, then we set

cI = si1si2 · · · sil and dI = sil · · · si2si1.

By convention, c∅ = d∅ = 1. We have

(1.20) Xn = {c[i,n−1] | 1 6 i 6 n} ∪̇ {d[1,i]tc[1,n−1] | 0 6 i 6 n− 1}.

1.D. Hecke algebra. We fix a totally ordered abelian group Γ (denoted additively)

and a weight function ϕ : Wn → Γ. We set

ϕ(t) = b and ϕ(s1) = a (= ϕ(s2) = · · · = ϕ(sn−1)).

Note that

(1.21) ϕ(w) = ℓt(w)b + ℓs(w)a

for all w ∈Wn.

We denote by A the group algebra Z[Γ]. We shall use an exponential notation:

A = ⊕
γ∈Γ
Zeγ , where eγ · eγ′

= eγ+γ′

for all γ, γ′ ∈ Γ. We set

Q = eb and q = ea.
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Note that Q and q are not necessarily algebraically independent. We set

A<0 = ⊕
γ<0
Zeγ ,

and we define similarly A60, A>0 and A>0.

We shall denote by Hn the Hecke algebra of Wn with parameter ϕ: it is the free

A-module with basis (Tw)w∈Wn
and the multiplication is A-bilinear and is completely

determined by the following rules:










TwTw′ = Tww′ if ℓ(ww′) = ℓ(w) + ℓ(w′),

(Tt −Q)(Tt + Q−1) = 0,

(Tsi
− q)(Tsi

+ q−1) = 0 if 1 6 i 6 n− 1.

We also set

H<0
n = ⊕

w∈Wn

A<0Tw.

Finally, we denote by : Hn → Hn the unique A-semilinear involution of Hn such

that eγ = e−γ and Tw = T−1
w−1 for all γ ∈ Γ and w ∈Wn.

1.E. Kazhdan-Lusztig basis. We shall recall here the basic definitions of

Kazhdan-Lusztig theory. If w ∈ Wn, then [10, Theorem 5.2] there exists a unique

Cw ∈ Hn such that
{

Cw = Cw

Cw ≡ Tw mod H<0
n .

Note that [10, §5.3]

(1.22) Cw − Tw ∈ ⊕
w′<w

A<0Tw′,

where 6 denotes the Bruhat order on Wn. In particular, (Cw)w∈Wn
is an A-basis of

Hn, called the Kazhdan-Lusztig basis of Hn.

1.F. Cells. If x, y ∈ Wn, then we shall write x
L
←− y (resp. x

R
←− y, resp.

x
LR
←− y) if there exists h ∈ Hn such that the coefficient of Cx in the decomposition

of hCy (resp. Cyh, resp. hCy or Cyh) is non-zero. We denote by 6L (resp. 6R, resp.

6LR) the transitive closure of
L
←− (resp.

R
←−, resp.

LR
←−). Then 6L, 6R and 6LR

are preorders on Wn and we denote respectively by ∼L, ∼R and ∼LR the associated

equivalence relations [10, Chapter 8]. An equivalence class for ∼L (resp. ∼R, resp.

∼LR) is called a left (resp. right, resp. two-sided) cell. We recall the following result

[10, §8.1]: if x, y ∈Wn, then

(1.23) x ∼L y ⇐⇒ x−1 ∼R y−1.

1.G. Domino insertion. If r > 0 and w ∈ Wn, then the domino insertion

algorithm (see [8], [14], [15]) into the 2-core δr = (r, r − 1, . . . , 2, 1) associates to w
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a standard domino tableau Dr(w) (with n dominoes, filled with {1, 2, . . . , n}). If D

is a domino tableau, we denote by sh(D) its shape: we shall denote by shr(w) the

shape of Dr(w) (which is equal to the shape of Dr(w
−1), loc. cit.).

If x and y ∈ Wn we shall write x ∼r
L y (resp. x ∼r

R y, resp. x ∼r
LR y) if

Dr(x
−1) = Dr(y

−1) (resp. Dr(x) = Dr(y), resp. shr(x) = shr(y)). These are

equivalence relations on Wn. Note that ∼r
LR is the equivalence relation generated

by ∼r
L and ∼r

R.

We denote by ≈r+1
L (resp. ≈r+1

R , resp. ≈r+1
LR ) the equivalence relation generated

by ∼r
L and ∼r+1

L (resp. ∼r
R and ∼r+1

R , resp. ∼r
LR and ∼r+1

LR ). Recall the following

conjecture from [3, Conjectures A and B]:

Conjecture. Assume that a, b > 0. Let r > 0 and ? ∈ {L, R, LR}.

(a) If ra < b < (r + 1)a, then the relations ∼? and ∼r
? coincide.

(b) If r > 1 and b = ra, then the relations ∼? and ≈r
? coincide.

The main result of this paper is the following partial result towards the previous

conjecture:

Theorem 1.24. Assume that a, b > 0. Let r > 0, ? ∈ {L, R, LR} and x, y ∈ Wn.

Then:

(a) If ra < b < (r + 1)a and x ∼r
? y, then x ∼? y.

(b) If r > 1, b = ra and x ≈r
? y, then x ∼? y.

The other sections of this paper are devoted to the proof of this theorem.

Comments - If one assumes Lusztig’s Conjectures P1, P2,. . . , P15 in [10, Chapter

14], then Theorem 1.24 implies that the statement (a) of the Conjecture is true.

Indeed, Lusztig’s Conjectures imply in this case that the left cell representations are

irreducible, and one can conclude by a counting argument. It might be probable

that a similar argument applies for the statement (b), using results of Pietraho [11]:

however, we are not able to do it.

In the case where b > (n− 1)a, Theorem 1.24 was proved in [4, Theorem 7.7] (in

fact, the conjecture was also proved) by using a counting argument. The proof here

does not make use of the counting argument. �
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2. Kazhdan-Lusztig polynomials, structure constants

Hypothesis and notation. From now on, and until the end of

this paper, we assume that a, b are positive. Recall that Q = eb and

q = ea, so that Z[Q, Q−1, q, q−1] ⊆ A. If p ∈ A> 0, we denote by τA(p)

the coefficient of 1 = e0 in the expansion of p in the basis (eγ)γ∈Γ.

2.A. Recollection of general facts. If x and y are elements of Wn, we set

CxCy =
∑

z∈Wn

hx,y,zCz,

where the hx,y,z belong to A and satisfy

hx,y,z = hx,y,z.

We also set

Cy =
∑

x∈Wn

p∗x,yTx and px,y = eϕ(y)−ϕ(x)p∗x,y.

Recall [10, Proposition 5.4] that

(2.1)



























p∗y,y = py,y = 1,

p∗x,y ∈ A<0 if x 6= y.

p∗x,y = px,y = 0 if x 66 y,

px,y ∈ A>0,

τA(px,y) = 1 if x 6 y.

Now, if s ∈ Sn, Lusztig [10, Proposition 6.3] has defined inductively a family of

polynomials (Ms
x,y)sx<x<y<sy by the following properties:

(2.2a) Ms
x,y = Ms

x,y,

(2.2b) Ms
x,y +

∑

x<z<y
sz<z

p∗x,zM
s
z,y − eϕ(s)p∗x,y ∈ A<0.

With this notation, we have [10, Theorem 6.6]:

Theorem 2.3 (Kazhdan-Lusztig, Lusztig). Let s ∈ Sn and let y ∈Wn. Then:

(a) CsCy =







Csy +
∑

sx<x<y

Ms
x,yCx if sy > y,

(eϕ(s) + e−ϕ(s)) Cy if sy < y.
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(b) If sy < y, and if x 6 y, then

px,y =











q2px,sy + psx,sy −
∑

x6z<sy
sz<z

eϕ(y)−ϕ(z)px,zM
s
z,sy if sx < x,

psx,y if sx > x,

and p∗x,y =











qp∗x,sy + p∗sx,sy −
∑

x6z<sy
sz<z

p∗x,zM
s
z,sy if sx < x,

e−ϕ(s)p∗sx,y if sx > x.

Corollary 2.4. If s, s′ ∈ {s1, . . . , sn−1} and x, y ∈ Wn are such that sx < x <

s′x = y < sy, then x ∼L y.

Proof. See [9, Proposition 5 (b)]. �

2.B. Special features in type B. The previous results of this section hold

for any Coxeter group (finite or not). In this subsection, we shall investigate what

is implied by the structure of Wn. The particular ingredient we shall need is the

following lemma [4, §4]:

Lemma 2.5. {al | 0 6 l 6 n} is the set of elements w ∈ Wn which have minimal

length in SnwSn. If x < al for some l ∈ {1, 2, . . . , n} and some x ∈ Wn, then

ℓt(x) < ℓt(al) = l.

It has the following consequences (here, if p ∈ Z[q], we denote by degq p its degree

in the variable q):

Corollary 2.6. Let x and y be two elements of Wn such that x 6 y and ℓt(x) = ℓt(y).

Then:

(a) px,y ∈ Z[q] and, if x 6= y, then degq px,y < ℓ(y)− ℓ(x).

(b) If 1 6 i 6 n− 1 is such that six < x < y < siy, then Msi
x,y ∈ Z: it is equal to

τA(qp∗x,y) (note also that qp∗x,y ∈ Z[q−1]).
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Proof. We shall prove (a) and (b) together by induction on the pair (ℓ(y), ℓ(y)−ℓ(x))

(with lexicographic order). The result is obvious if ℓ(y) = ℓ(x) or if ℓ(y) 6 1. So

assume now that ℓ(y) > 1, that ℓ(y) − ℓ(x) > 0 and that (a) and (b) hold for all

pairs (x′, y′) such that (ℓ(y′), ℓ(y′)− ℓ(x′)) < (ℓ(y), ℓ(y)− ℓ(x)). First, note that

eϕ(y)−ϕ(x) = qℓ(y)−ℓ(x),

because ϕ(y) − ϕ(x) = (ℓt(y) − ℓt(x))b + (ℓs(y) − ℓs(x))a = (ℓs(y) − ℓs(x))a =

(ℓ(y)− ℓ(x))a.

Let us first prove (a). So we have x < y and ℓt(x) = ℓt(y). By Lemma 2.5, this

implies that there exists i ∈ {1, 2, . . . , n − 1} such that siy < y or ysi < y. In the

second case, one can exchange y and y−1 (and x and x−1) by using [10, §5.6], so that

we may assume that siy < y. Then, Theorem 2.3 (b) can be rewritten as follows:

px,y =











(q2px,siy − qℓ(y)−ℓ(x)Msi
z,siy

) + psix,siy −
∑

x<z<siy
siz<z

qℓ(y)−ℓ(z)px,zM
si
z,siy

if six < x,

psix,y if six > x.

If six > x, then the result follows from the induction hypothesis. If six < x, then

q2px,siy − qℓ(y)−ℓ(x)Msi
x,siy

= qℓ(y)−ℓ(x)(qp∗x,siy
−Msi

x,siy
)

belong to Z[q] and has degree < ℓ(y)− ℓ(x) by the induction hypothesis. The other

terms in the above formula also belong to Z[q] and also have degree < ℓ(y)− ℓ(x)

by the induction hypothesis. So we get (a).

Let us now prove (b). So we assume that six < x < y < siy. Then, using the

induction hypothesis and 2.1, the condition 2.2 (b) can be rewritten

Msi
x,y − qp∗x,y ∈ A<0.

Now, the result follows easily from (a). �

Now, if tx < x < y < ty are such that ℓt(x) = ℓt(y), let us define an element

µx,y ∈ A by induction on ℓ(y)− ℓ(x) by the following formula:

µx,y = px,y −
∑

x<z<y
tz<z

px,zµz,y.

It follows easily from Corollary 2.6 (and an induction argument on ℓ(y)− ℓ(x)) that

(2.7) µx,y ∈ Z[q] and degq µx,y < ℓ(y)− ℓ(x).

Moreover:

Corollary 2.8. Assume that tx < x < y < ty and that ℓt(x) = ℓt(y). Then:

(a) If b > (ℓ(y)− ℓ(x))a, then M t
x,y = Qqℓ(x)−ℓ(y)µx,y + Q−1qℓ(y)−ℓ(x)µx,y.
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(b) If b = (ℓ(y)− ℓ(x))a, then M t
x,y = µx,y + µx,y − τA(µx,y).

Proof. Let us assume that b >(ℓ(y)− ℓ(x))a. We shall prove the result by induction

on ℓ(y)− ℓ(x). By the induction hypothesis, the condition 2.2 (b) can we written

M t
x,y −Qqℓ(x)−ℓ(y)px,y +

∑

x<z<y
tz<z

p∗x,z

(

Qqℓ(z)−ℓ(y)µz,y + Q−1qℓ(y)−ℓ(z)µz,y

)

∈ A<0.

But, if x < z < y and tz < z, then

p∗x,zQ
−1qℓ(y)−ℓ(z)µz,y ∈ A<0

because p∗x,z ∈ A<0, µz,y ∈ A60 and Q−1qℓ(y)−ℓ(z) = e−b+(ℓ(y)−ℓ(z))a ∈ A<0 (since

ℓ(y)− ℓ(z) < ℓ(y)− ℓ(x)). Therefore,

M t
x,y −Qqℓ(x)−ℓ(y)px,y +

∑

x<z<y
tz<z

Qqℓ(x)−ℓ(y)px,zµz,y ∈ A<0.

In other words,

M t
x,y −Qqℓ(x)−ℓ(y)µx,y ∈ A<0.

Let µ = Qqℓ(x)−ℓ(y)µx,y. Two cases may occur:

• If b > (ℓ(y) − ℓ(x))a, then µ ∈ A>0 and so the condition 2.2 (a) forces

M t
x,y = µ + µ, as required.

• If b = (ℓ(y) − ℓ(x))a, then µ = µx,y ∈ A>0 and now the condition 2.2 (a)

forces M t
x,y = µ + µ− τA(µ), as required.

The proof of the Corollary is complete. �

We conclude this subsection with two results involving the decomposition of

Lemma 1.15.

Lemma 2.9. Let x and y be two elements of Wn and let s ∈ Sn be such that

sx < x < y < sy, ℓt(x) = ℓt(y) and βx = βy = β. Then Ms
x,y = Ms

xβ,yβ (note that

βxβ = βyβ = 1).

Proof. See [4, Proposition 7.2]. Strictly speaking, in [4], the authors are generally

working with a special choice of a function ϕ (“asymptotic case”): however, the

reader can check that the proof of this particular result, namely [4, Proposition 7.2],

remains valid for all choices of parameters. �
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Proposition 2.10. Let l ∈ [0, n], let σ and σ′ ∈ Sl,n−l be such that σ ∼L σ′ and let

β ∈ Yl,n−l. Then

alσβ−1 ∼L alσ
′β−1.

Proof. By the description of Kazhdan-Lusztig left cells in the symmetric group [7,

Theorem 1.4 and §4], we may assume that there exist two elements s and s′ in

{s1, . . . , sl−1, sl+1, . . . , sn−1} such that σ′ = s′σ and sσ < σ < σ′ < sσ′. Let u = alsal

and u′ = als
′al. Then u and u′ belong to {s1, . . . , sl−1, sl+1, . . . , sn−1} by 1.8, and

ualσβ−1 < alσβ−1 < u′alσβ−1 = alσ
′β−1 < ualσ

′β−1.

So (∗) follows from Corollary 2.4. �

2.C. ∗-operation. We shall recall the definition of the ∗-operation (see [7, §4])

and prove some properties which are particular to the type B. Let us introduce

some notation. If 1 6 i 6 n− 2 and x ∈Wn, we set

Ri(x) = {s ∈ {si, si+1} | ℓ(xs) < ℓ(x)}.

We denote by Di(Wn) the set of x ∈Wn such that |Ri(x)| = 1. If x ∈ Di(Wn), then

it is readily seen that the set {xsi, xsi+1} ∩ Di(Wn) is a singleton. We shall denote

by γi(x) the unique element of this set (it is denoted by x∗ in [7, §4], but we want

to emphasize that it depends on i). Note that

γi ◦ γi = IdDi(Wn) .

We recall Kazhdan-Lusztig result [7, Corollary 4.3]: if x and y ∈ Di(Wn), then

(2.11) x ∼L y ⇐⇒ γi(x) ∼L γi(y).

The fact that t is not conjugate to any of the sk’s implies the following easy fact:

Proposition 2.12. Let x ∈Wn and let 1 6 k 6 n− 1. Then xsk > x if and only if

txsk > tx.

Proof. Indeed, by Lemma 1.1, we have xsk > x if and only if x(k) < x(k + 1). But,

for any j ∈ I+
n , there is no element j′ ∈ In such that t(j) < j′ < j. So x(k) < x(k+1)

if and only if tx(k) < tx(k + 1) that is, if and only if txsk > tx (again by Lemma

1.1). �

The proposition 2.12 implies immediately the following result:

Corollary 2.13. Let x ∈ Wn and let 1 6 i 6 n − 2. Then x ∈ Di(Wn) if and only

if tx ∈ Di(Wn). If this is the case, then γi(tx) = tγi(x).
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2.D. Two relations
L

←−. The crucial steps towards the proof of Theorem 1.24

are the following two propositions, whose proofs will be given in sections 3 and 5

respectively.

Proposition 2.14. Let l ∈ {1, . . . , n − 1} and assume that b >(n − 1)a. Then

M t
r1···rlσ[l+1,n],r2...rlrnσ[l+1,n]

6= 0.

Proposition 2.15. Let l ∈ {1, . . . , n− 1} and assume that (n− 2)a < b 6(n− 1)a.

Then al−1σ[l,n]
L
←− alσ[l,n].

3. Proof of Proposition 2.14

Notation. If u, v ∈ Wn are such that u 6 v, we denote by [u; v]

the Bruhat interval between u and v. In this section, and only in

this section, we assume that l > 1 and b >(n − 1)a and we set x =

r1 · · · rlσ[l+1,n] and y = r2 . . . rlrnσ[l+1,n].

3.A. Easy reduction. Note that

tx < x < y < ty,

so it makes sense to compute M t
x,y. Moreover, ℓ(y)− ℓ(x) = n− 1 so, by Corollary

2.8, we only need to prove that µx,y 6= 0 (even if b = (n − 1)a). For this, we only

need to show that

(?) τA(µx,y) 6= 0.

3.B. The Bruhat interval [x; y]. First, note that

x = alσ[l+1,n] = σ[l+1,n]al

and y = s1 · · · sl−1sn−1 · · · slx = s1 · · · sl−1sn−1 · · · slσ[l+1,n]al = c[1,l−1]σ[l,n]al.

Since al has minimal length in Snal, the map

[σ[l+1,n]; c[1,l−1]σ[l,n]] −→ [x; y]
z 7−→ zal

is an increasing bijection [10, Lemma 9.10 (f)]. Since the support of c[1,l−1] is disjoint

from the support of σ[l,n], the map

[1; c[1,l]]× [σ[l+1,n]; σ[l,n]] −→ [σ[l+1,n]; c[1,l−1]σ[l,n]]
(z, z′) 7−→ zz′
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is an increasing bijection (for the product order). Now, σ[l,n] is the longest element

of S[l,n] and σ[l+1,n]σ[l,n] = c[l,n−1]. Therefore, the map

[1; c[l,n−1]] −→ [σ[l+1,n]; σ[l,n]]
z 7−→ zσ[l,n]

is a decreasing bijection. So, if we denote by P(E) the set of subsets of a set E,

then the maps

P([1, l − 1]) −→ [1; c[1,l−1]]
I 7−→ cI

and
P([l, n− 1]) −→ [σ[l+1,n]; σ[l,n]]

J 7−→ cJ̄σ[l,n]

are increasing bijections (here, J̄ denotes the complement of J). On the other hand,

the map

P([1, l − 1])× P([l, n− 1]) −→ P([1, n− 1])
(I, J) 7−→ I ∪ J

is an increasing bijection. Finally, by composing all these bijections, we get an

isomorphism of ordered sets

α : P([1, n− 1]) −→ [x; y]
I 7−→ cI∩[1,l−1]cI∩[l,n−1]σ[l,n]al.

3.C. The elements z ∈ [x; y] such that tz < z. If I ⊆ [1, n− 1] is such that

tα(I) < α(I), we set µ̃I = τA(µα(I),y). So we can rephrase (?) as follows:

(??) µ̃∅ 6= 0.

But, by the induction formula that defines the µ-polynomials and by 2.1, we have,

for all I ⊆ [1, n− 1] such that tα(I) < α(I),

(3.1) µ̃I = 1−
∑

I J⊆[1,n−1]
tα(J)<α(J)

µ̃J .

Let

E = {I ∈ P([1, n− 1]) | tα(I) < α(I)}.

The set E is easy to describe:

Lemma 3.2. Let I ⊆ [1, n− 1]. Then tα(I) > α(I) if and only if [1, l − 1]  I.
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Proof of Lemma 3.2. By Lemma 1.1, we just need to show that

(#) α(I)−1(1) > 0 if and only if [1, l − 1]  I.

For simplification, we set A = [1, l − 1] ∩ I and B = I ∩ [l, n− 1]. So α(I) =

cAcBσ[l,n]al.

First, assume that [1, l− 1] 6⊆ I. Then 0 < c−1
A (1) < n, so σ−1

[l,n]c
−1
B c−1

A (1) = c−1
A (1)

and α(I)−1(1) = a−1
l (c−1

A (1)) < 0 by 1.6. This shows (#) in this case.

Now, let us assume that [1, l − 1] = I. Then cA = s1 · · · sl−1 and cB = sl · · · sn−1

and so c−1
A (1) = l and c−1

B (l) = n. In particular, α(I)−1(1) = a−1
l σ[l,n](n) = a−1

l (l) =

−1 < 0 by 1.6. This shows (#) again in this case.

Now, let us assume that [1, l − 1]  I. Then c−1
A (1) = l and c−1

B (l) < n and so

σ−1
[l,n]c

−1
B c−1

A (1) > l. So α(I)−1(1) > 0 by 1.6. The proof of (#) is complete. �

3.D. Computation of the µ̃I. We shall now compute the family (µ̃I)I∈E by

descending induction on |I|, by using the formula 3.1. For this, the following well-

known lemma will be useful.

Lemma 3.3. If S is a finite set and I  S, then
∑

I⊆J⊆S

(−1)|J | = 0.

To obtain the value of µ̃∅, the proof goes in three steps.

(3.4) If [l, n− 1] ⊆ I  [1, n− 1], then µ̃I = (−1)n−|I|.

Proof of 3.4. First, note that I ∈ E by Lemma 3.2. We argue by descending in-

duction on |I|. If |I| = n − 2, then µ̃I = 1, as desired. Now, let us assume that

[l, n − 1] ⊆ I  [1, n− 1] and that µ̃J = (−1)n−|J | for all I  J  [1, n− 1]. Then,

by 3.1, we have

µ̃I = 1−
∑

I J [1,n−1]

(−1)n−|J |.

Therefore,

µ̃I = 1 + (−1)n−|I| + (−1)n−(n−1) −
∑

I⊆J⊆[1,n−1]

(−1)n−|J | = (−1)n−|I|,

the last equality following from Lemma 3.3. �

(3.5) If I ∈ E is such that [l, n− 1] 6⊆ I and I 6⊆ [1, l − 1], then µ̃I = 0.



18 C. Bonnafé

Proof of 3.5. We shall again argue by descending induction on |I|. Let I ′ = I ∪

[l, n− 1]. Then, by 3.1, we have

µ̃I = 1−
∑

J∈E
I J and I′⊆J

µ̃J −
∑

J∈E
I J and I′ 6⊆J

µ̃J .

But, if J ∈ E is such that I  J and I ′ 6⊆ J , (or, equivalently, [l, n − 1] 6( J), then

µ̃J = 0 by the induction hypothesis. On the other hand, if J ∈ E is such that I  J

and I ′ 6⊆ J , then µ̃J = (−1)n−|J | by 3.4. Therefore,

µ̃I = 1−
∑

J∈E
I J and I′⊆J

(−1)n−|J | = 1−
∑

I′⊆J [1,n−1]

(−1)n−|J | = −
∑

I′⊆J⊆[1,n−1]

(−1)n−|J | = 0

by Lemma 3.3. �

(3.6) If I ⊆ [1, l − 1], then µ̃I = (−1)l−1−|I|.

Proof of 3.6. Note that I ∈ E . We shall argue by descending induction on |I|. First,

for all J such that I  J ⊆ [1, n− 1], we have tα(I) > α(I). Therefore, µ̃[1,l−1] = 1,

as desired.

Now, let I  [1, l − 1] and assume that, for all I  J ⊆ [1, l − 1], we have

µ̃J = (−1)l−1−|J |. Then

µ̃I = 1−
∑

J∈E
I J

µ̃I .

Now, if J ∈ E is such that I  J , then three cases may occur:

• If J ⊆ [1, l− 1], then µ̃J = (−1)l−1−|J | by the induction hypothesis.

• If J 6⊆ [1, l− 1] and [l, n− 1] 6⊆ I, then µ̃J = 0 by 3.5.

• If [l, n− 1] ⊆ J , then µ̃J = (−1)n−|J |.

Therefore, if we set I ′ = I ∩ [l, n− 1], then we get

µ̃I = 1−
∑

I′⊆J [l,n−1]

(−1)n−|J | −
∑

I J([1,l−1]

(−1)l−1−|J |.

But

1−
∑

I′⊆J [l,n−1]

(−1)n−|J | = −
∑

I′⊆J⊆[l,n−1]

(−1)n−|J | = 0

and −
∑

I J([1,l−1]

(−1)l−1−|J | = (−1)l−1−|I| −
∑

I⊆J([1,l−1]

(−1)l−1−|J | = (−1)l−1−|I|

by Lemma 3.3. The proof is now complete. �
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As a special case of 3.6, we get that

µ̃∅ = (−1)l−1.

This shows (?). The proof of the Proposition 2.14 is complete.

4. Consequence of Proposition 2.14

The aim of this section is to prove the following

Proposition 4.1. Let l ∈ {0, 1, . . . , n}, let α, β ∈ Yl,n−l and let σ and σ′ ∈ Sl,n−l

be such that σ ∼L σ′. Assume that b >(n− 1)a. Then

αalσβ−1 ∼L alσ
′β−1.

Remarks - (1) The condition σ ∼L σ′ does not depend on the choice of a and b in

Γ. Indeed, by [5, Theorem 1], σ ∼L σ′ in Wn if and only if σ ∼L σ′ in Sl,n−l. But

this last condition depends neither on the choice of b (since t 6∈ Sl,n−l) nor on the

choice of a (provided that it is in Γ>0).

(2) If b > (n− 1)a, then the above proposition is proved in [4, Theorem 7.7] (see

also [1, Corollary 5.2] for the exact bound) by a counting argument. The proof below

will not use this counting argument but uses instead the proposition 2.14: it allows

to extend the scope of validity to the case where b = (n − 1)a (this is compatible

with [2, Conjecture A (b)]). �

Proof. First, recall that alσβ−1 ∼L alσ
′β−1 by Poposition 2.10. This shows that we

may (and we will) assume that σ = σ′. We want to show that αalσβ−1 ∼L alσβ−1.

We shall use induction on n. So let (Pn) denote the following statement:

(Pn) For all l ∈ [0, n], for all sequences 1 6 i1 < · · · < il 6 n, for all

σ ∈ Sl,n−l and for all β ∈ Yl,n−l, we have ri1ri2 · · · rilσβ−1 ∼L

r1r2 · · · rlσβ−1.

The property (P1) is vacuously true and the property (P2) can be easily checked

by a straightforward computation. So we assume that n > 3 and (Pm) holds for all

m < n. Now, let l ∈ [0, n], let 1 6 i1 < · · · < il 6 n be a sequence of elements

of [1, n], let σ ∈ Sl,n−l and let β ∈ Yl,n−l. As a consequence of this induction

hypothesis, we get:

Lemma 4.2. If k ∈ [1, l] is such that ik < n, then ri1ri2 · · · rilσβ−1 ∼L

r1 · · · rkrik+1
· · · rilσβ−1.
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Proof. Let w = ri1ri2 · · · rilσβ−1 and w′ = r1 · · · rkrik+1
· · · rilσβ−1. Let us

write w = vx−1 and w′ = v′x′−1 with v, v′ ∈ Wik and x, x′ ∈ X
(ik)
n . First,

note that
ww′−1 = (ri1 · · · rik) · (r1 · · · rk)

−1 ∈Wik .

Therefore, x = x′ and

vv′−1 = (ri1 · · · rik) · (r1 · · · rk)
−1 ∈Wik .

Moreover, by Lemma 1.19, we have 0 < x(1) < · · · < x(ik). So, if i ∈ [1, ik],
then v−1(i) < 0 (resp. v′−1(i) < 0) if and only if i ∈ {i1, . . . , ik} (resp.
{1, . . . , k}). So, by Lemma 1.15, we have

v = ri1 · · · rikτγ−1 and v′ = r1 · · · rkτγ−1,

where τ ∈ Sk,ik−k and γ ∈ Yk,ik−k. But, since ik < n, it follows from the
induction hypothesis that v ∼L v′. Here, note that v ∼L v′ in Wik if and
only if v ∼L v′ in Wn (see [5, Theorem 1]). So, by [10, Proposition 9.11],
we get that w ∼L w′. �

Corollary 4.3.

(a) If il < n, then ri1ri2 · · · rilσβ−1 ∼L r1r2 · · · rlσβ−1.
(b) If il = n, then ri1ri2 · · · rilσβ−1 ∼L r1r2 · · · rl−1rnσβ−1.

By Corollary 4.3, we only need to show that

(?) r1r2 · · · rl−1rnσβ−1 ∼L r1r2 · · · rlσβ−1.

Now, let us write σ = (λ, µ), where λ ∈ S[1,l] and µ ∈ S[l+1,n]. Three cases may

occur:

• Case 1: If λ = 1 and µ = σ[l+1,n], then σ = σ[l+1,n]. Since r1r2 · · · rl−1rkσβ−1 =

sksk−1 · · · sl+1σβ−1 for all k > l, we have

r1 · · · rl−1rnσβ−1 6L r1 · · · rl−1rn−1σβ−1 6L · · ·

6L r1 · · · rl−1rl+1σβ−1 6L r1 · · · rl−1rlσβ−1.

On the other hand, by Proposition 2.14 and Lemma 2.9, we get r1 · · · rl−1rlσβ−1 6L

r1 · · · rl−1rnσβ−1. This shows (?) in this particular case.

• Case 2: If µ 6= σ[l+1,n], then n > l+2 and there exists k ∈ [l+1, n−1] such that

skσ > σ. Let i be maximal such that siσ > σ. We shall prove (?) by descending

induction on i. For simplification, let x = r1 · · · rl−1rnσβ−1.

First, if i = n− 1, then, by 1.4, we have (since n− 2 > l − 1)

sn−2x = r1 · · · rl−1sn−2rnσβ−1 = r1 · · · rl−1rnsn−1σβ−1 > sn−2x,

sn−1x = r1 · · · rl−1sn−1rnσβ−1r1 · · · rl−1rn−1σβ−1 < x

and sn−2sn−1x = r1 · · · rl−1sn−2rn−1σβ−1 = r1 · · · rl−1rn−2σβ−1 < sn−1x.

So x ∼L sn−1x by Corollary 2.4. On the other hand, by Corollary 4.3, we have

sn−1x ∼L r1 · · · rlσβ−1, so we get (?) in this case.



On Kazhdan-Lusztig cells in type B 21

Now, assume that l + 1 6 i < n − 1. Then si+1σ < σ (by the maximality of i).

Two cases may occur:

• Subcase 1: If sisi+1σ < si+1σ, then we set τ = si+1σ < σ and

y = r1 · · · rl−1rnτβ−1. Then y = six < x by 1.4. Moreover, still by

1.4, we have

si−1x = r1 · · · rl−1rnsiσβ−1 > x

and si−1six = r1 · · · rl−1rnsisi+1σβ−1 < six.

So x ∼L y by Corollary 2.4. But, by the induction hypothesis (and

since si+1τ > τ), we have y ∼L alτβ−1. But σ ∼L τ (again by

Corollary 2.4 and since siτ < τ < σ = si+1τ < siσ), so alσβ−1 ∼L

alτβ−1 by (∗). This shows (?).

• Subcase 2: If sisi+1σ > si+1σ, then si+1siσ > siσ (by an easy appli-

cation of Lemma 1.1) so, if we set τ = siσ and y = r1 · · · rl−1rnτβ−1,

we have, by the induction hypothesis, y ∼L alτβ−1. Moreover, si+1τ >

τ = siσ > σ > si+1σ and, by the same argument as in the subcase 1,

we have siy > y = si−1x > x > six. So x ∼L y, σ ∼L τ . So it follows

from (∗) and x ∼L alσβ−1, as required.

• Case 3: If λ 6= 1, then we set x = r1 · · · rl−1rnσβ−1 and y = r1 · · · rlσβ−1. We

want to show that x ∼L y. For this, let x′ = wnx, y′ = wny, σ′ = σnσσ−1
n σn−l,l and

β ′ = βσnσn−l,l. Then, by Proposition 1.18,

x′ = rlrl+1 · · · rn−1σ
′β ′−1 and y′ = rlrl+1 · · · rn−2rnσ′β ′−1.

But, by Corollary 4.3, we have

x′ ∼L r1 · · · rn−lσ
′β ′−1 and y′ ∼L r1 · · · rn−l−1rnσ

′β ′−1.

Now, if we write σ′ = (λ′, µ′), with λ′ ∈ S[1,n−l] and µ′ ∈ S[n−l+1,n], we have

µ′ 6= σ[n−l+1,n] (because λ 6= 1). So, by Case 2, we have

r1 · · · rn−l−1rnσ′β ′−1 ∼L r1 · · · rn−lσ
′β ′−1.

Therefore, x′ = wnx ∼L y′ = wny, and so x ∼L y by [10, Corollary 11.7]. �

Corollary 4.4. Let l ∈ {1, . . . , n}, let 1 6 i1 < · · · < il 6 n, let σ ∈ Sn, let

β ∈ Yl,n−l and let k ∈ [1, l] be such that b >(ik − 1)a. Then

ri1 · · · rilσ ∼L r1 · · · rkrik+1
· · · rilσ.
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Proof. The proof proceeds essentially as in Lemma 4.2. Let w = ri1 · · · rilσ, let

w′ = r1 · · · rkrik+1
· · · rilσ and let us write w = vx−1 and w′ = v′x′−1 with v, v′ ∈Wik

and x, x′ ∈ X
(ik)
n .

Since w′w−1 = (r1 · · · rk)
−1(ri1 · · · rik) ∈ Wik , we get that x = x′. The same

argument as in Lemma 4.2 shows that v = ri1 · · · rikτ and v′ = r1 · · · rkτ
′ for some

τ , τ ′ ∈ Sik . But v′v−1 = w′w−1 = (r1 · · · rk)
−1(ri1 · · · rik), so τ = τ ′. Now, by

Proposition 4.1, v ∼L v′. So w ∼L w′ by [10, Proposition 9.11]. �

5. Proof of Proposition 2.15

Notation. In this section, and only in this section, we assume that

1 6 l 6 n− 1 and that (n− 2)a < b 6(n− 1)a.

We define a sequence (Cj)l−1 6 j 6 n−1 by induction as follows:










Cl−1 = 1,

Cl = Csl
,

Cj+1 = Csj+1
Cj − Cj−1, if l 6 j 6 n− 2.

Let µ denote the coefficient of Cal−1σ[l,n]
in the expansion of Cn−1Calσ[l,n]

in the

Kazhdan-Lusztig basis. To prove Proposition 2.15, it is sufficient to show the fol-

lowing statement:

(5.1) µ =

{

1 if b = (n− 1)a,

Q−1qn−1 + Qq1−n if (n− 2)a < b < (n− 1)a.

Proof of 5.1. If r ∈ Z, we set

Hn[r] = ⊕
ℓt(w) 6 r

ATw = ⊕
ℓt(w) 6 r

ACw.

We shall show that

(5.2)
Cn−1Calσ[l,n]

≡ Tsn−1···sl+1slalσ[l,n]

+Q−1qn−1Tal−1σ[l,n]
mod

(

Hn[l − 2] +H<0
n

)

.

The statement 5.2 will be proved at the end of this section. Let us conclude the

proof of 5.1, assuming that 5.2 holds.

Let

µ̃ =

{

1 if b = (n− 1)a,

Q−1qn−1 + Qq1−n if (n− 2)a < b < (n− 1)a.

We want to show that µ = µ̃. But, by 5.2, we have

Cn−1Calσ[l,n]
− Csn−1···sl+1slalσ[l,n]

− µ̃Cal−1σ[l,n]
∈ Hn[l − 2] +H<0

n + ⊕
w<al−1σ[l+1,n]

ATw.
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Since

⊕
w<al−1σ[l+1,n]

ATw = ⊕
w<al−1σ[l+1,n]

ACw,

there exists a family (νw)ℓt(w) 6 l−2 or w<al−1σ[l+1,n]
of elements of A> 0 such that

Cn−1Calσ[l,n]
− Csn−1···sl+1slalσ[l,n]

− µ̃Cal−1σ[l,n]
−

∑

ℓt(w) 6 l−2
or al−1σ[l+1,n]

νwCw ∈ H
<0
n .

Let ν ′
w = νw + νw − τA(νw). Then

Cn−1Calσ[l,n]
− Csn−1···sl+1slalσ[l,n]

− µ̃Cal−1σ[l,n]
−

∑

ℓt(w) 6 l−2
or al−1σ[l+1,n]

ν ′
wCw ∈ H

<0
n

and ν ′
w = νw. So, if we set

C = Cn−1Calσ[l,n]
− Csn−1···sl+1slalσ[l,n]

− µ̃Cal−1σ[l,n]
−

∑

ℓt(w) 6 l−2
or al−1σ[l+1,n]

ν ′
wCw,

then

C = C and C ∈ H<0
n .

So C = 0 by [10, Theorem 5.2], and so µ = µ̃, as expected. �

So it remains to prove the statement 5.2:

Proof of 5.2. First of all, we have Calσ[l,n]
= Cal

Cσ[l,n]
, since the supports of al and

σ[l,n] (in Sn) are disjoint. Moreover, since l 6 n−1 (i.e. al ∈Wn−1) and b > (n−2)a,

it follows from [1, Propositions 2.5 and 5.1] that

(5.3) Cal
= (Tt1 + Q−1)(Tt2 + Q−1) · · · (Ttl + Q−1)T−1

σl
.

Let H(Sn) denote the sub-A-algebra of Hn generated by Ts1,. . . , Tsn−1 . It is the

Hecke algebra of Sn (with parameter a). Then Hn[l − 2] is a sub-A-module of Hn.

Therefore, it follows from 5.3 that

Cal
≡

(

Twl
+ Q−1

∑

1 6 i 6 l

Tt1···ti−1ti+1···tl

)

T−1
σl

mod Hn[l − 2].

But, if 1 6 i 6 l, then

t1 · · · ti−1ti+1 · · · tl = sisi+1 · · · sl−1al−1σl−1sl−1 · · · si+1si,

and σl = sl+1−i · · · sl−2sl−1σl−1sl−1 · · · si+1si. Moreover,

ℓ(σl) = ℓ(sl+1−i · · · sl−2sl−1) + ℓ(σl−1sl−1 · · · si+1si).

Therefore,

Cal
≡ Tal

+ Q−1
∑

1 6 i 6 l

Tsisi+1···sl−1
Tal−1

(Tsl+1−i···sl−2sl−1
)−1 mod Hn[l − 2].
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Finally, we get

Calσ[l,n]
≡ Tal

Cσ[l,n]
+ Q−1

∑

1 6 i 6 l

Tc[i,l−1]
Tal−1

(Tc[l+1−i,l−1]
)−1Cσ[l,n]

mod Hn[l − 2].

Now, if l − 1 6 j 6 n− 1, then

(5.4)
CjCalσ[l,n]

≡

j
∑

i=l−1

qi−jTd[l,i]
Tal

Cσ[l,n]

+Q−1Cj

∑

1 6 i 6 l

Tc[i,l−1]
Tal−1

(Tc[l+1−i,l−1]
)−1Cσ[l,n]

mod Hn[l − 2].

Proof of 5.4. We shall argue by induction on j. The cases where j =

l − 1 or j = l are obvious. So assume that j ∈ [l, n− 2] and that 5.4

holds for j. By the induction hypothesis, we get

Cj+1Calσ[l,n]
≡ Csj+1

j
∑

i=l−1

qi−jTd[l,i]
Tal

Cσ[l,n]
−

j−1
∑

i=l−1

qi−j+1Td[l,i]
Tal

Cσ[l,n]

+Q−1Cj+1

∑

1 6 i 6 l

Tc[i,l−1]
Tal−1

(Tc[l+1−i,l−1]
)−1Cσ[l,n]

mod Hn[l − 2].

Now,

Csj+1
Td[l,j]

Tal
Cσ[l,n]

= Td[l,j+1]
Tal

Cσ[l,n]
+ q−1Td[l,j]

Tal
Cσ[l,n]

and, if l − 1 6 i < j, then

Csj+1
Td[l,i]

Tal
Cσ[l,n]

= Td[l,i]
Tal

Csj+1
Cσ[l,n]

= (q + q−1)Td[l,i]
Tal

Cσ[l,n]
.

Now 5.4 follows from a straightforward computation. �

Since d[l,i] ∈ Yl,n−l, we have

Td[l,i]
Tal

Cσ[l,n]
= Td[l,i]al

Cσ[l,n]
≡ Td[l,i]alσ[l,n]

mod H<0
n ,

so, by 5.4, we get

Cn−1Calσ[l,n]
≡ Td[l,n−1]alσ[l,n]

+ Q−1Cn−1

∑

1 6 i 6 l

Tc[i,l−1]
Tal−1

(Tc[l+1−i,l−1]
)−1Cσ[l,n]

mod
(

Hn[l − 2] +H<0
n

)

.

For 1 6 i 6 l, let Xi = Q−1Cn−1Tc[i,l−1]
Tal−1

(Tc[l+1−i,l−1]
)−1Cσ[l,n]

. There exists a fam-

ily (fI)I⊆[l,n−1] of elements of Z such that Cn−1 =
∑

I⊆[l,n−1] fICdI
. Moreover,

f[l,n−1] = 1. Also,

(Tc[l+1−i,l−1]
)−1 =

∑

J⊆[l+1−i,l−1]

(q − q−1)i−1−|J |TcJ
.
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Therefore,

Xi =
∑

I⊆[l,n−1]
J⊆[l+1−i,l−1]

fIQ
−1(q − q−1)i−1−|J |CdI

Tc[i,l−1]
Tal−1

TcJ
Cσ[l,n]

.

Let ∆i,I,J = fIQ
−1(q − q−1)i−1−|J |CdI

Tc[i,l−1]
Tal−1

TcJ
Cσ[l,n]

. If we express ∆i,I,J in

the standard basis (Tw)w∈Wn
, then the degree of the coefficients are bounded by

−b + (i − 1 − |J | + |I|)a. Since b > (n− 2)a, this degree is in Γ<0, except if i = l,

J = ∅ and I = [l, n− 1]. Therefore,

Cn−1Calσ[l,n]
≡ Td[l,n−1]alσ[l,n]

+ ∆l,[l,n−1],∅ mod
(

Hn[l − 2] +H<0
n

)

.

But

∆l,[l,n−1],∅ = Q−1(q − q−1)l−1Csn−1···sl
Tal−1

Cσ[l,n]

= Q−1(q − q−1)l−1Tal−1
Csn−1···sl

Cσ[l,n]

= Q−1(q − q−1)l−1(q + q−1)n−lTal−1
Cσ[l,n]

,

the last equality following from Theorem 2.3 (a). So ∆l,[l,n−1],∅ ≡ Q−1qn−1Tal−1
Cσ[l,n]

mod H<0
n . The proof of 5.2 is complete. �

6. Consequences of Proposition 2.15

The aim of this section is to prove the following proposition:

Proposition 6.1. Let l ∈ {1, . . . , n} and assume that b 6(n− 1)a. Then

s1s2 · · · sn−1al−1σ[l,n−1] ∼L ts1s2 · · · sn−1al−1σ[l,n−1].

Proof. Let ul,n = ts1s2 · · · sn−1al−1σ[l,n−1] = ts1 · · · sl−1al−1sl · · · sn−1σ[l,n−1] = alσ[l,n].

We need to show that tul,n ∼L ul,n (note that tul,n 6 ul,n). We shall argue by in-

duction on n, the cases where n = 1 or 2 being obvious. So assume that n > 3 and

that tul,n−1 ∼L ul,n−1 if b 6(n− 2)a.

First, assume that b 6(n− 2)a. Then
{

ul,n = ul,n−1sn−1 · · · sl+1sl if l 6 n− 1,

ul,n = an = ul−1,n−1sn−1 · · · s2s1t if l = n.

By the induction hypothesis, we have tuk,n−1 ∼L uk,n−1 so, since sn−1 · · · sl+1sl and

sn−1 · · · s2s1t belong to X−1
n , it follows from [10, Proposition 9.11] that tul,n ∼L ul,n.

This means that we may, and we will, assume that (n− 2)a < b 6(n− 1)a. But,

by Proposition 2.15, we have al−1σ[l,n] 6L alσ[l,n] = ul,n. On the other hand,

tul,n = c[1,l−1]al−1σ[l,n] 6L c[2,l−1]al−1σ[l,n] 6L · · · 6L sl−1al−1σ[l,n] 6L al−1σ[l,n].

So tul,n ∼L ul,n, as desired. �
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Remark 6.2 - Note that the converse of Proposition 6.1 also holds. Indeed, if

b > (n − 1)a and if x ∼L y for some x and y in Wn, then ℓt(x) = ℓt(y) (see [4,

Theorem 7.7] and [1, Corollary 5.2]). �

Corollary 6.3. Let l ∈ {1, 2, . . . , n} and let β ∈ Yl−1,n−l. Then

s1s2 · · · sn−1al−1σ[l,n−1]β
−1 ∼L ts1s2 · · · sn−1al−1σ[l,n−1]β

−1.

Proof. Let w = s1s2 · · · sn−1alσ[l+1,n−1]β
−1. We want to show that w ∼L tw. We

shall argue by induction on ℓ(β). If ℓ(β) = 0 (i.e. β = 1), this is just the proposition

6.1. Sp we assume now that ℓ(β) > 1. We shall use the ∗-operation (see §2.C). For

this, we need to study the action of the γi’s on w, when possible.

We have σ[l,n−1]al−1 = al−1σ[l,n−1], so

w = s1s2 · · · sn−1σ[l,n−1](al−1β)−1 = s1s2 · · · sl−1σ[l,n](al−1β)−1.

Let 1 6 j1 < · · · < jl−1 6 n−1 be the unique sequence such that alβ = rj1rj2 · · · rjl−1
.

Since ℓ(β) > 0, we have (j1, j2, . . . , jl−1) 6= (1, 2, . . . , l−1), so there exists k ∈ [1, l−1]

such that jk − jk−1 > 2 (where j0 = 0 by convention). Note that jk < n so jk + 1 ∈

[2, n]. We have, by 1.16

w(jk)s1 · · · sl−1σ[l,n](rj1 · · · rjl−1
)−1(jk) = s1 · · · sl−1σ[l,n](k − l)

= −s1 · · · sl−1(l − k)

= −(l + 1− k) < 0

and

w(jk − 1)s1 · · · sl−1σ[l,n](rj1 · · · rjl−1
)−1(jk − 1) = s1 · · · sl−1σ[l,n](l + q)

= s1 · · · sl−1(n + 1− q)

= n + 1− q > 0

for some q ∈ [1, n + 1 − l]. Moreover, a similar computation shows that (with the

convention that jl = n + 1)

w(jk) =

{

−(l − k) if jk+1 = jk + 1,

n− q if jk+1 > jk + 2.

In any case, we have

w(jk) < w(jk + 1) < w(jk − 1).

This shows that

wsjk−1sjk
< wsjk−1 < w < wsjk

,

So w ∈ Djk−1(Wn) and γjk−1(w) = wsjk−1 < w. Now, let β ′ = sjk
β. An easy

computation as above shows that β ′ < β, so that β ′ ∈ Yl,n−1−l by Deodhar’s Lemma
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(see [6, Lemma 2.1.2]). So γjk
(w) = s1 · · · sn−1al−1σ[l,n−1]β

′−1 where β ′ ∈ Yl,n−1−l is

such that ℓ(β ′) = ℓ(β) − 1. But, by Corollary 2.13, we have tγi(w) = γi(tw). So ,

by 2.11 and by the induction hypothesis, we get that w ∼L tw, as desired. �

7. Proof of Theorem 1.24

7.A. Knuth relations. By recent results of Taskin [13, Theorems 1.2 and 1.3], the

equivalence relations ∼r
R and ≃r

R can be described using generalisations of Knuth

relations (for the relation ≃r
R, a similar result has been obtained independently by

Pietraho [12, Theorems 3.8 and 3.9] using other kinds of Knuth relations). We shall

recall here Taskin’s construction. For this, we shall need the following notation: if

0 6 r 6 n−2, we denote by E
(r)
n the set of elements w ∈Wn such that |w(1)| > |w(i)|

for i ∈ {2, 3, . . . , r + 2} and such that the sequence (w(2), w(3), . . . , w(r + 2)) is a

shuffle of a positive decreasing sequence and a negative increasing sequence. If

r > n − 1, we set E
(r)
n = ∅. Following [13, Definition 1.1], we introduce three

relations which will be used to generate the relations ∼r
R and ≃r

R.

Let w, w′ ∈Wn and let r > 0:

• We write w ⌣1 w′ if there exists i > 2 (respectively i 6 n − 2) such that

w(i) < w(i − 1) < w(i + 1) (respectively w(i) < w(i + 2) < w(i + 1)) and

w′ = wsi.

• We write w ⌣r
2 w′ if there exists i 6 min(r, n−1) such that w(i)w(i+1) < 0

and w′ = wsi. The relation ⌣0
2 never occurs.

• We write w ⌣r
3 w′ if w ∈ E

(r)
n and w′ = wt. If r > n − 1, the relation ⌣r

3

never occurs.

Remark - If w ⌣r
2 w′, then w ⌣r+1

2 w′. If w ⌣r
3 w′, then w ⌣r−1

3 w′ (indeed,

E
(r)
n ⊆ E

(r−1)
n ). �

Taskin’s Theorem. With the above notation, we have:

(a) The relation ∼r
R is the equivalence relation generated by the relations ⌣1,

⌣r
2 and ⌣r

3.

(b) The relation ≃r
R is the equivalence relation generated by the relations ⌣1,

⌣r
2 and ⌣r−1

3 .

7.B. Proof of Theorem 1.24. Recall that the relation ∼r
LR (respectively ≃r

LR) is

the equivalence relation generated by ∼r
L and ∼r

R (respectively ≃r
L and ≃r

R). Recall

also that x ∼r
L y (respectively x ≃r

L y, respectively x ∼L y) if and only if x−1 ∼r
R y−1

(respectively x−1 ≃r
R y−1, respectively x−1 ∼R y−1). So it is sufficient to show that

Theorem 1.24 holds whenever ? = R. It is then easy to see that Theorem 1.24 will
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follow from Taskin’s Theorem and from the following three lemmas (which will be

proved in subsections 7.C, 7.D and 7.E).

Lemma 7.1. Let w, w′ ∈Wn be such that w ⌣1 w′. Then w ∼R w′.

Lemma 7.2. Let w, w′ ∈Wn and let r > 0 be such that b > ra and w ⌣r
2 w′. Then

w ∼R w′.

Lemma 7.3. Let w ∈ Wn and let r > 0 be such that b 6(r + 1)a and w ⌣r
3 w′.

Then w ∼R w′.

7.C. Proof of Lemma 7.1. Let w, w′ ∈ Wn be such that w ⌣1 w′. Let i ∈ I+
n−1

be such that w′ = wsi. Then i > 2 and w(i) < w(i− 1) < w(i+1), or i 6 n− 2 and

w(i) < w(i + 2) < w(i + 1). In the first case, we have wsisi−1 > wsi > w > wsi−1

while, in the second case, we have wsisi+1 > wsi > w > wsi+1. So w′ = wsi ∼R w

by 1.23 and Corollary 2.4. The proof of Lemma 7.1 is complete.

7.D. Proof of Lemma 7.2. Let w, w′ ∈ Wn and let r > 0 be such that b > ra

and w ⌣r
2 w′. Let i ∈ I+

n−1 be the element such that w′ = wsi. Then i 6 r and

w(i)w(i+1) < 0. By exchanging w and w′ if necessary, we may assume that w(i) < 0

and w(i + 1) > 0.

Let us write w = xv, with x ∈ X
(i+1)
n and v ∈ Wi+1. Then vsi ∈ Wi+1 and

wsi = xvsi. Therefore, by [10, Proposition 9.11], we only need to show that vsi ∼L v.

But 0 < x(1) < · · · < x(r +1) (see Lemma 1.19), and v(j) ∈ Ii+1 for all j ∈ Ii+1. So

v(i) > 0 and v′(i + 1) < 0. In particular, v ⌣r
2 vsi (and even v ⌣i

2 v′). This means

that we may (and we will) assume that i = n− 1. So we have

b >(n− 1)a, w(n− 1) < 0 and w(n) > 0,

and we want to show that w ∼R wsn−1 or, in other words, that

(?) w−1 ∼L sn−1w
−1.

Let α = αw−1, σ = σw−1 and β = βw−1 . Then

w−1 = αalσalβ
−1.

By Lemma 1.15, there exists a unique sequence 1 6 i1 < · · · < il 6 n such that

αal = ri1 · · · ril so

w−1 = ri1 · · · rilσβ−1.

But, again by Lemma 1.15, we have w−1(i) < 0 if and only if i ∈ {i1, . . . , il}. So

il = n− 1.
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So

w−1 = ri1 · · · ril−1
rn−1σβ−1.

and

sn−1w
−1 = ri1 · · · ril−1

rnσβ−1.

So the result follows from Proposition 4.1.

7.E. Proof of Lemma 7.3. Let w ∈ Wn and let r > 0 be such that b 6(r + 1)a

and w−1 ⌣r
3 w′−1. We want to show that w ∼L w′ = tw. The proof goes through

several steps.

First step: easy reductions. First, note that r 6 n− 2. Let us write w = vx−1, with

v ∈ Wr+2 and x ∈ X
(r+2)
n . Then 0 < x(1) < · · · < x(r + 2) by Lemma 1.19, so

v−1 ∈ E
(r)
r+2. Then tw = (tv)x−1 with tv ∈ Wr+2 so, by [10, Proposition 9.11], it is

sufficient to show that tv ∼L v. This shows that we may (and we will) assume that

r = n− 2.

By [10, Corollary 11.7], this is equivalent to show that twnw ∼L wnw. Since

wnw ∈ E
(n−2)
n we may, by replacing w by tw, wnw or twnw, assume that w−1(1) > 0

and w−1(n) > 0. Since moreover |w−1(1)| > |w−1(i)| for all i ∈ {2, 3, . . . , n = r+2},

we have w−1(1) = n.

As a conclusion, we are now working under the following hypothesis:

Hypothesis. From now on, and until the end of this subsection, we

assume that

(1) w−1(1) = n and w−1(n) > 0, and

(2) w−1 ∈ E
(n−2)
n .

And recall that we want to show that

(?) tw ∼L w.

Second step: decomposition of w. Let v = sn−1 · · · s2s1w. Then v−1(n) = w−1(1) = n

by (3), so v ∈ Wn−1. Therefore,

(7.4) w = s1s2 · · · sn−1v, s1s2 · · · sn−1 ∈ Xn and v ∈ Wn−1.

Note that

(7.5) v−1(k) = w−1(k + 1)

for all k ∈ [1, n− 1], so that

(7.6) v ∈ E
(n−3)
n−1

and, by (2),

(7.7) v−1(n− 1) > 0.



30 C. Bonnafé

Let us write v = ri1 · · · rilσβ−1, with l = ℓt(v) = ℓt(w), 1 6 i1 < · · · < il 6 n − 1,

σ ∈ Sl,n−1−l and β ∈ Yl,n−1−l. By 7.7 and Lemma 1.15, we have

(7.8) il 6 n− 2.

Finally, note that

(7.9) σ = σ[l+1,n−1].

Proof of 7.9. By 7.6, we have |v−1(i1)| > |v−1(i2)| > · · · > |v−1(il)|. Therefore,

it follows from 1.16 that β(σ−1(l)) > β(σ−1(l − 1)) > · · · > β(σ−1(1)). Since

σ stabilizes the interval [1, l] and since β is increasing on [1, l] (because it lies in

Yl,n−l), this forces σ(k) = k for all k ∈ [1, l].

Similarly, if 1 6 j1 < · · · < jn−l 6 n denotes the unique sequence such that [1, n] =

{i1, . . . , il} ∪ {j1, . . . , jn−l}, then |v−1(j1)| > |v
−1(j2)| > · · · > |v

−1(jn−l)| by 7.6. So

it follows from 1.16 that β(σ−1(l +1)) > β(σ−1(l +2)) > · · · > β(σ−1(n)) and, since

σ stabilizes the interval [l+1, n] and β is increasing on the same interval, this forces

σ(l + k) = n + 1− k for k ∈ [1, n− l]. �

Third step: conclusion. We first need the following elementary result:

(7.10) s1s2 · · · sn−1ri1 · · · ril = ri1+1 · · · ril+1sl+1sl+2 · · · sn−1.

Proof of 7.10. This follows easily from 1.3 or from 1.4. �

Now, let τ = sl+1sl+2 · · · sn−1σ[l+1,n]β
−1 = σ[l+1,n]β

−1 ∈ Sn. Then, by 7.10, we

have

w = ri1+1ri2+1 · · · ril+1τ and tw = r1ri1+1ri2+1 · · · ril+1τ.

By 7.8, we have b >(il + 1− 1)a, so, by Corollary 4.4, we have

w ∼L r2r3 · · · rl+1τ and tw ∼L r1r2 · · · rl+1τ.

So we only need to show that r2r3 · · · rl+1τ ∼L r1r2 · · · rl+1τ = tr2r3 · · · rl+1τ . But

r2 · · · rl+1σ[l+1,n]β
−1s1 · · · sn−1alσ[l+1,n−1]β

−1, with β ∈ Yl,n−1−l. So the result follows

from Corollary 6.3.

The proof of Lemma 7.3 is complete, as well as the proof of Theorem 1.24.
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