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Abstract

We study the limit behaviour of solutions of dyu — Au+ h(|z|) [ul’ 'u=0 in RY x (0,T)
with initial data kdp when k — oo, where h is a positive nondecreasing function and p > 1. If
h(r) =r®, 3 > N(p—1)—2, we prove that the limit function u. is an explicit very singular
solution, while such a solution does not exist if 3 < N(p—1)—2. If liminf, o r* In(1/h(r)) >
0, uoo has a persistent singularity at (0,¢) (¢t > 0). If [[°rIn(1/h(r))dr < oo, uc has a
pointwise singularity localized at (0, 0).
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1 Introduction

Consider
Ou—Au+h(z)|uftu=0 inQp:=RN x(0,T), (1.1)

with p > 1 and h is a nonnegative measurable function defined in R¥. It is well known that if

//Q h(z)EP (, t)dz dt < oo, (1.2)

where E(x,t) = (47rt)’N/26"1‘2/4t is the heat kernel, then, for any k& > 0 there exists a unique
solution u = uy to (1.1 ) satisfying initial condition

ul.,0) = kdo (1.3)

*To appear in Cal. Var. & Part. Diff. Eq.



in the sense of measures in R"Y. Furthermore the mapping k — wuy, is increasing. If it assumed that
h is positive essentially locally bounded from above and from below in RY \ {0}, then the set {uy}
is also bounded in the C} (Qr \ {0 x (0,00)})-topology. Thus there exist s = limy_o0 uy and
Uno is & solution of (1.1 ) in Q7 \ {0 x (0,00)}. Furthermore wu,, is continuous in Q7 \ {0 x [0, 00)}

and vanishes on RY \ {0} x {0}. Only two situations can occur:

(1) Either us(0,t) is finite for every ¢t > 0 and us is a solution of (1.1 ) in Q. Such a solution
which has a pointwise singularity at (0,0) is called a very singular solution (abr. V.S.S.)

(ii) Or uso(0,t) = oo for every ¢ > 0 and uq is a solution of (1.1 ) in Q7 \ {0 x (0, 00)} only. Such
a solution with a persistent singularity is called a razor blade (abr. R. B.).

In the well-known article [4], Brezis, Peletier and Terman proved in 1985 that us is a V.S.S.; if
h(z) = 1. Furthermore they showed that s (z,t) = t=Y/ P~V f(x/\/1) for (x,t) € Qr where f is
the unique positive (and radial) solution of the problem

1 1 _
—Af—in.fo—fnLlflp Yf=0 inRY
p—1

(1.4)
im0 In|?/®=Y f(n) = 0.

Their proof of existence and uniqueness relied on shooting method in ordinary differential equations
(abr. O.D.E.). The already mentioned self-similar very singular solutions of the problem (1.4 )
was discovered independently in [6] too. Later on, a new proof of existence, has been given by
Escobedo and Kavian [8] by a variational method in a weighted Sobolev space. More precisely
they proved that the following functional

1 1 2
v J() = —/ (|VU|2 — %+ —|’U|p+1) K(n)dn (1.5)
2 RN p— 1

p+1

achieves a nontrivial minimum in H% (RY), where K (n) = elnl*/4,
In this article we first study equation (1.1 ) when h(z) = |z|? (3 € R). Looking for self-similar
solutions under the form u(z,t) = t~+0)/2(=1) f (2 /\/t), we are led to

1 2+ -1 .
—Af—=n. - BfP = RN
fognVE= s Al I =0
f € HL (RY) N LEH (R, [nfPdn) 0 C2(RN \ {0}) (1.6)
lim ) oo 7] EFA/ =1 f () =0,
and the associated functional
1 2 248 o 2 5 et
= — — K(n)dn. 1.
v =g [ (908 = B ) Kaar (1.7)

We prove the following

Theorem A I- Assume < N(p — 1) — 2; then there exists no nonzero solution to (1.6 ).
II- Assume 3 > N(p — 1) — 2; then there exists a unique positive solution f* to (1.6 ).

One of the key arguments in the study of isolated singularities of (1.1 ) is the following a priori
estimate

c
(t 1 [z]2)+B26-D)

|u($at)| < V(.T,ﬁ) € QT (1-8)

valid for any p > 1 and 8 > —2. The remarkable aspect of this proof is that it is based upon the
auxiliary construction of the maximal solution of (1.1 ) under a selfsimilar form. Next we give two



proofs of II, one based upon scaling transformations and asymptotic analysis of O.D.E., combining
ideas from [4], [5] and [10], and the second based on variational methods, extending some ideas
from [8] and valid in a more general context. As a consequence we prove

Theorem B Assume 3> N(p — 1) — 2, then ueo(x,t) = t~CH8/20=1) £ (3 /\ /1),

It must be noticed that, if 3 < N(p—1) — 2, uj does not exist, and more precisely, the isolated
singularities of solutions of (1.1 ) are removable.
Next we consider the case of more degenerate potentials h(z):

h(z)

||

—0 as |z|—0 Ya>0. (1.9)

In the set of such potentials we find the borderline which separates the above mentioned two
possibilities (i) — (V.S.S.) and (ii) — (R.B). Remark that in the case of flat potentials like (1.9 ),
the corresponding solution ue(x,t) does not have self-similar structure and we have to find some
alternative techniques for the study of the structure of us,. The main results of the paper are the
following two statements.

Theorem C (sufficient condition for V.S.S. solution) Assume that the function h is contin-
uous and positive in RN \ {0} and verifies the following flatness condition

‘ 2

|22 In (L> < w(|z]) & h(z) > e «U2D/I2F vy ¢ RN, (1.10)

h(x)

where the function w > 0 is nondecreasing, satisfies the following Dini-like condition

1
/ w(s)ds <o (1.11)
0 S
and the additional technical condition
sw'(s) < (2 —ag)w(s) mnear 0, (1.12)

for some ap € (0,2). Then uso(z,t) < 0o for any (z,t) € Qp. Furthermore there exists positive
constants C; (i =1,2,3), depending only on N, ag and p, such that

/ w2, (z,t) dw < Cytexp {Cg (& (Cgt))_Q] vt > 0, (1.13)
RN

where ®~1 is the inverse function of

B(r) = /O ©(s) 4.

S

Notice that (1.11 )-(1.12 ) is satisfied if h(x) > Ce~121? for some 6 > 0.
Theorem D (sufficient condition for R.B. solution) Assume h is continuous and positive in

RN\ {0} and satisfies

1
h;n_%lf |z| In (m> >0 < Jwp = const > 0: h(z) < exp (_CE}—FQ) . (1.14)

Then uxo(0,t) = oo for any t > 0, and t — wus(x,t) is increasing. If we denote U(zx) =
limy o0 oo (x, ), then U is the minimal large solution of

—Au+ h(z)u? =0 in RV \ {0}, (1.15)



i.e. the smallest solution of (1.15 ) which satisfies

/ u(z)dr =00 Ve > 0. (1.16)

Theorem C is proved by some new version of local energy method. A similar variant of this
method was used in [1] for the study of extinction properties of solutions of nonstationary diffusion-
absorption equations.

Theorem D is obtained by constructing local appropriate sub-solutions. The monotonicity and
the limit property of u., are characteristic of razor blades solutions [16].

A natural question which remains unsolved is to characterize un, if the potential h(x) satisfies

where w(s) — 0 as s — 0 and

This article is the natural continuation of [12], [14] where (1.1 ) is replaced by
Ou—Au+ht)|[ufTu=0 inQr. (1.17)

In equation (1.17 ), the function h € C([0,T]) is positive in (0,7 and vanishes only at t = 0. In
the particular case h(t) = t° (3 > 0), uy exists if and only if 1 < p < 1+2(1+ 8)/N, and us is an
explicit very singular solution. If h(t) > e~“(1)/t where w is positive, nondecreasing and satisfies

/1 Vw(s)ds _
0 s

)

then us has a pointwise singularity at (0,0). If the degeneracy of h is stronger, namely
1i£n iglftln h(t) > —o0,

it is proved that the singularity of u; propagates along the axis ¢ = 0; at end, us is nothing else
than the (explicit) maximal solution ¥(t) of the O.D.E.

U+ h(t)¥P =0 in (0,00). (1.18)

A very general and probably difficult open problem generalizing (1.1 ) and (1.17 ) is to study
the propagation phenomenon of singularities starting from (0,0) when (1.1 ) is replaced by

Au— Au+ h(z, ) |[uff Pu=0 inQr, (1.19)
where h € C(Q7) is nonnegative and vanishes only on a curve I' C Q starting from (0,0). It is
expected that two types of phenomena should occur:

(i) either us has a pointwise singularity at (0,0),
(ii) or ueo is singular along I' or a connected part of I' containing (0, 0).

It is natural to conjecture that the order of degeneracy should be measured in terms of the
parabolic distance to I' and of the slope of I in the space RY x R. This could serve as a starting
model for nonlinear heat propagation in inhomogeneous fissured media.

Our paper is organized as follows: 1 Introduction - 2 The power case - 3 Pointwise singularities -
4 Existence of razor blades.

Acknowledgements The authors have been supported by INTAS grant Ref. No : 05-1000008-
7921.



2 The power case

In this section we assume that h(z) = |$|B with 6 € R, and the equation under consideration is
the following

u—Au+ |z [uf tu=0 inQr:=RN x(0,7), (2.1)
with p > 1. By a solution we mean a function u € C21(Qr). Let E(x,t) = (4nt)~N/2e~17I/4t pe
the heat kernel in Q7 and E[¢] the heat potential of a function (or measure) ¢ defined by

El¢](x,t) = e~ 1=/ () dy. (2.2)

1
(47Tt)N/2 /RN
If there holds

// EP(z,t)|z|Pdxdt < oo, (2.3)
Qr

it is easy to prove (see [12, Prop 1.2], and [18, Th 6.12]), that for any k € R, there exists a unique
function v = uy, € LY(Bg x (0,T)) N LP(Bg x (0,T);|z|’dxr) such that

// (fu(?tC — uAC + [z]? [ufP! ug) dz dt = kC(0,0), (2.4)
Qr

for any ¢ € Cg’l(RN x [0,7)). By the maximum principle k +— wuy is increasing. Next, it is
straightforward that (2.3 ) is fulfilled as soon as

B>max{N(p—1)—2;—N}. (2.5)

2.1 The a priori estimate and the maximal solution

In order to prove an a priori estimate, we introduce the auxiliary N dimensional equation in the
variable n = x/v/t

SAf - Gn =l L =0, 26
where v = (24 5)/2(p — 1).

Proposition 2.1 Let a > 0 and 0 € R; then there exists a unique nonnegative function F, €

H} (B,)N Lf;l(Ba; |n|Pdn) solution of (2.6 ) and satisfying
ll}m F.(n) = cc. (2.7)
nl—a

Furthermore a — F, is decreasing.
Proof. Set K(n) = /4. Then (2.6 ) becomes
—K ' div(KV [) =~ f + 1’ 1/~ f=0. (2.8)

Step 1- Boundary behaviour. First we claim that

im (a — )2/~ _ (24D 1/(p=1)
T (a— [1) Ew(ﬂ%—nQ | 9

Actually, if 0 < b < |n] < a, u satisfies

~ K 'div(KVF,) —vF, + CFP <0



with C' = min{a®,b%}. We perform a standard variant of the two-sides estimate method used
in [17] : weset I := B, \ By with b < p < a, a = (p — b)/2 and denote by z the solution of

z(—a) = z(a) = 0. (2.10)

{ 2/ =Czl =0 in(—a,a)
Then z is an even function and is computed by the formula

/:\/ﬁwz,/;fl(a—t) vt € [0,a). (2.11)

Notice also that lim, g 2(t) = oo, uniformly on (—c«, a) and

1/(p-1)
lim (¢ — )/ (1) = <%> . (2.12)

We set Z(n) = z(|n| — (p+b)/2) and we look for a super-solution in I' under the form w = M Z(n)
(M > 1). Then

— K 'div(KVw) — yw + Cw? = M <(Mp1 —1)CzP — (u + m) z - 'yz> .

In| 2
Since
2C °C

() = ——=VzPT(t) - 1 s (p+1)/2 (4 O —

2 (1) p—i—l\/z (t) — z(0)pHl < C*z (t), with C PR
we derive

N -1
— K 'div(KVw) — yw 4+ Cw? > M ((Mp—l —1)02P — <T 4 g) C* 5P t1)/2 _ ’YZ> (2.13)

on {n: (p—"0)/2n] < p}; and the same inequality holds true on {n : p < |n| < (p —b)/2}, up
to interverting a and b. For any M > 1, we can choose b > 0 such that for any b < p < a, the
right-hand side of (2.13 ) is positive and maximum principle applies in B, \ By. Thus MZ > F, in
I'. Furthermore, the previous comparison still holds if we take p = a, which implies o = (a —b)/2.
Therefore, using the explicit value of C

) _ 2(p 1) 1/(17_1)
_ 2/(p—1)
11‘mm51a1p(a (7)) F.(n) <M ( : {apﬁ,bpﬁ}(p 1)2) . (2.14)

Because M > 1 and 0 < b < a are arbitrary, we derive

2(p+ 1) 1/(p—1)
#Go1F)

limsup(a — [n])*/ =V Fy (n) < <apﬁ(p —1

[n|—a

(2.15)

For the estimate from below we notice that u satisfies
— K 'div(KVFE,) —yF, + CFP >0

in {n:b< |y <a}, with C = max{a®,b°}. Taking now o = a — b, we denote by Z the positive
solution of _
24+ 42—-C2P =0 1in (0,«)
20) =0 (2.16)
Z(a) = 0.



Then Z is computed by the formula
/ ds
0\/22(0) — 957 + 205771/ (p + 1)

—a—t Vtel0,a), (2.17)

and formula (2.12 ) is valid provided C' be replaced by C. We fix A € B, with coordinates

(a,0,...,0), and look for a subsolution under the form w(n) = MZ(n —b) with 0 < M < 1. Then
K div(KV@) — v + Cd® = M ((M?H 1) ”—;w’) <o,

since @’ > 0. Applying again the maximum principle, we derive w(n) < F, in BoN{n:b < n < a}.
But clearly the direction n; is arbitrary and can be replaced by any radial direction. Thus

L - - 2(p+1) o
liminf(a — )2V E, (n) > M ' 2
im inf(a — {n]) ) = M\ e, vy (p — 1)2 =

In turn, (2.18 ) implies

lim inf (a — |n|)> P~V F,(n)

[n|—a

Y

( 2(p+1)) )1/<p—1>’ 2.19)

arB(p —1)2

and (2.9 ) follows from (2.15 ) and (2.19 ).

Step 2- Uniqueness. If F' is another nonnegative solution of (2.6 ) satisfying the same boundary
blow-up conditions, then for any € > 0, F = (1 + €¢)F” is a super solution. Thus, for § > 0,

] (e ST e (g - ) K ) (00— (407

Fo+0 F/ 46 Fo+0 F/+6

<] (G- ) (07 = 2+ 07y

By monotonicity

( FP F'»

/ 2 >
s e ) (67 = (F 7). 0,

and

0= (FaFjLé F’F+ 5) (Fa+06)* = (F/+0)%)4 < ((Fa+06)* = (F/+06)%)4.

By Lebesgue’s theorem, since (2.9 ) implies that ((F, + ) — (F! + §)?), has compact support in

B.,
. F, F! / 2 -
éf%//Ba <Fa+6 F’+6) ((Fa +6)% = (F.+ 6)?)+ Kdn = 0.

Using Green formula, we obtain

[, (8 B 5

F,+46
= VF, - VF’
//Fang (‘ Fe+d

Fl+6
Futo

VFE,

+lor -

2
)KanO.



Letting § — 0, we derive, by Fatou’s theorem,
[] wrremry @ - mpra <o
F,>F!

Thus F, < F!. Since € is arbitrary, F, < F’. The reverse inequality is the same. The monotonicity
of a — F, is proved in a similar way, by the previous form of maximum principle.

Step 3- FExistence with finite boundary value. ~ We shall first prove the existence of a positive
solution wy of (2.6 ) with boundary value equal to k > 0 for small value of a, and we shall let
k — oo in order to obtain one solution satisfying (2.7 ). We denote by J, the functional defined
over H}(B,) N LPT(B,; [n|Pdn) by

1 1
aaw) =5 (190l =+ il ) Ko

Let k> 0 and k € C*(B,) with 0 < k(n) < k, supp(k) C Ba \ Baj2, (1) = k on By \ Bagjs. If
v € HE(B,) N LPYY(By; |n|?dn) and w := v + &, then

Jo(w) = Jo(v+ k) > Ju(v) + Jo(k) + /B (Vu.Vk —yvk — |n|°|v|Pk) K (n)dn.

Since v < Ay, it follows from Cauchy-Schwarz and Holder-Young inequalities that

»
€2p

Ja(w) > (1 =€) J,(v) — 5= Ju (k)

for 0 < e < 1. Because lim,_,g A, = 00, there exists ag € (0, 00] such that, for any 0 < a < ayg,
Jo(v) is bounded from below on H} (B,)NLPT(B,;|n|?dn). Thus there exists a minimizer wy, such
that wy, = v+ k with v in the above space; wy, is a solution of (2.6 ) and wg|op, = k. Furthermore
wg, is positive. Notice that if v < 0, ag = oo, in which case there exists a solution wy, for any k > 0
and any a > 0. The uniqueness of wy > 0, is a consequence of the monotonicity of the mapping
k — w;, that we prove by a similar argument as in Step 2: if k < k’, there holds

[] (b =tk - )l K <o,
Wg>Wyr

which implies wy < Wg. Uniqueness and radiality follows immediately, thus wy solves the differen-
tial equation

r 2
w(a) =k and w e HY,,(B.) N LT (Bg; n|Pdn).

T rad

N -1
_w' — ( + z) w' — yw + rPwP =0 on (0,a) (2.20)

Next we shall assume v > 0, equivalently 5 > —2. If wy is a positive solution of (2.20 ) and A > 1
(resp. A < 1) Awy, is a super-solution (resp. a sub-solution) larger (resp. smaller) than wy. Note
that 3 > —2 implies w;(0) > 0 while § > —1 implies also w} (0) = 0. Thus, by [13], there exists
a solution wy; with boundary data Ak, and this solution is positive because wi < wyp < Awg
(resp. Awyp < wyr < wyg). Consequently, the set A of the positive a such that there exists a
positive solution of (2.20 ) on (0, a) for any a < a is not empty and independent of k. Furthermore,
if for some @ > 0 and some ko > 0, there exists some positive wg, solution of (2.20 ) on 0, a),
then for any 0 < a < @ and any k > 0, there exists a positive solution wy of (2.20 ). Since
r > max{k, (yra=?)V/P=D} is a super-solution, there holds

wy (r) < max{k, (7+a_ﬁ)1/(p_1)} Vr € [0, al. (2.21)



Let us assume that a* = sup A < oo. Because of (2.21 ) and local regularity of solutions of elliptic
equations, for any €, ¢ > 0, wj (a) is bounded uniformly with respect if € < a < a* — €¢’. But since
(2.20 ) implies

a
aN716a2/4w;€(a) = 6N71662/4w§€(6) + / (rﬁw’g — 'ywk)erleTQ/‘ldr,
€

w},(a) is actually uniformly bounded on [¢,a*). It follows from the local existence and uniqueness
theorem that there exists § > 0, independent of a < a* such that there exists a unique solution z

defined on [a,a + 4] to
( >z’yz+rﬁzp0 on (0,a)

=k, 2'(a) = w,(a),

(2.22)

and § and k > 0 can be chosen such that z > 0 in [a, a+§]. This leads to the existence of a positive
solution to (2.20 ) on [0,a + §]. If a* — a < §, which contradicts the maximality of a*. Therefore
a* = oo.

Step 4- End of the proof. We have already seen that k — wy is increasing. By Step 1, we know
that, for any ¢ > 0, and some b < a, there holds

wi(n]) < Cla —[n)~"/#"Yon B, \ By. (2.23)

In particular
wi(b) < C* = C*(a,b,p,N)

Next
wi(r) < max{C*, (v, b~V P=DY vr e [0,0]. (2.24)

Combining (2.23 ) and (2.24 ) implies that wy, is locally uniformly bounded on [0, a). Since k — wy,
is increasing, the existence of F, := wy, = limg_ o wy follows. The fact that a — F, decreases is
a consequence of the fact that F,/ is finite on 0B, for any a < d’. O

Remark. In the sequel we set Foo = lim,_, o F;. Then F, is a nondecreasing, nonnegative solution
of (2.6 ). Using asymptotic analysis, is is easy to prove that there holds:
(i) if 8 #0

1

1/(p-1)
Feo(n) = (ﬁ) n| =@~V (1 +o(1))  as |n| — oo; (2.25)

Fuoo(n) = <L> e (2.26)

p—1
Furthermore, if § > —2, it follows by the strict maximum principle that F,(0) = min{F,(n) :
In| < a} > 0. This observation plays a fundamental role for obtaining estimate from above.

(i) if B =0,

Proposition 2.2 Assume p > 1 and 8 > —2. Then any solution u of (2.1 ) in Qr which verifies
tl% u(z,t) =0 Va #0, (2.27)

satisfies
[u(, )] < min {* 2] EDm @D E @/ V] V@) € Qr\{0),  (228)

where ¢* = c*(N, p, ).
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Proof. Let € > 0 and a > 0 and P, = {(z,t) : t > ¢,|z|/v/t — € < a}. By the previous remark
min F, > 0, thus the function W (x,t) = (t — €)= +8/2=DF (|2|/\/t —¢), which is a solution of
(2.1) in P,  tends to infinity on the boundary on P, ; since w is finite in Q7 NP, , W dominates
u in this domain. Letting successively ¢ — 0 and a — oo yields to u < F,. The estimate from
below is similar. Next we consider x € RY \ {0}, then v = |u] satisfies (by Kato’s inequality)

0w — Av+ C(z)v? <0 in By a(z) x (0,T),

where C(z) = max{(|z|/2)?; (3|x|/2)P}. Tt is easy to construct a function under the form w(y) =
A (|z]? — 4|z — y[?) ~2 @71 Ghich satisfies

{ —Aw + C(x)w? =0 in By /s(x)

gy~ 2w = o0,

with A = A(z) = ¢* 2| @/P=D x = (N, p, 3) > 0. Using (2.27 ), it follows from Lebesgue’s
theorem that u(y,t) < w(y) in By, /a(z) x [0, T), thus u(z,t) < w(z) = ¢*|z|~ @A)/ P=D Estimate
from below is similar. g

The construction of the first part of the proof of Proposition 2.2 (estimate in P, ) shows that,
without condition (2.27 ), equation (2.1 ) admits a maximal solution wpy.

Proposition 2.3 Assume p > 1 and 8 > —2. Then any solution u to (2.1 ) satisfies
lu(x,t)| < upp(x,t) =t~ D2V _(2/\/t) VY(z,t) e Qr\ {0} (2.29)

As a variant of (2.28 ), we have the following Keller-Osserman type parabolic estimate which
extends the classical one due to Brezis and Friedman in the case 5 = 0 (see [3]).

Proposition 2.4 Under the assumptions of Proposition 2.2 there holds

C
(|z]? + £)@+8)/2(=1)

u(z, )| < Y(z,t) € Qr \ {0}, (2.30)

with & = &N, p, ).
Proof. Assume |z|* < ¢, then

1

> 9= (245)/2(p=1)4—(246)/2(p—1)
(|2 + t)@+8)/2-1) ~

9—(2+5)/2(p-1) (2.31)
> =82V F (2 //1).
Z () < 1) (/VD)

Assume |z|* > ¢, then

1
S 948/ (-1 || ~C+8)/ (1)
(2P + @821 = = (2:32)

Combining (2.31 ) and (2.32 ) gives (2.30 ). O
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2.2 Isolated singularities and the very singular solution

Theorem 2.5 Assumep > 1 and —2 < < N(p— 1) — 2. Then any solution u to (2.1 ) which
satisfies (2.27 ) is identically 0.

Proof. If —(2+ 8)/(p — 1) + N — 1 > —1, equivalently 5 < N(p — 1) — 2, the function z —
||~ @A/ 71 g Jocally integrable in RY, thus u(., ) — 0 in L _(RY) as t — 0. For ¢ > 0 there
exists R = R(e) such that u(xz,t) < e for any |x| > R and ¢ > 0. Thus

u(@,t+7) < e+ Efux,, u(,7)](z,t) Vt>0,7>0andx € RY, (2.33)

where E[¢] denotes the heat potential of the measure ¢ (see (2.2 )). Letting successively 7 — 0
and € — 0, yields to u < 0. In the same way « > 0. In the case § = N(p — 1) — 2 estimate (2.30 )
reads

¢
(Jaf* +1)N/2
From this estimate, the proof of [3, Th 2, Steps 5, 6] applies and we recall briefly the steps

uz, t)] <

(i) By choosing positive test functions ¢, which vanish in V,, = {(z,) : |#|* +¢ < n~'} and are
constant on V!, = {(z,t) : |«|* + ¢ > 2n~1}, we first prove that, for any p > 0,

// (Ju(z, t)] + |2|°|ul?) dzdt < oo. (2.34)
B, x(0,T)
Thus, using the same test function, we derive that the identity
// (—uatg —ulAC + |z |ulP ! uC) dx dt =0, (2.35)
Qr
holds for any ¢ € Cg’l(RN x [0,T)). The uniqueness yields to u = 0. O

Proof of Theorem A- case I. In the case —2 < f < N(p — 1) — 2, the result is a consequence of
Theorem 2.5. Next we assume 8 < —2. If f is a solution of (1.6 ), it satisfies

F(n) = o(ln| =/ E=1) as || — co.

If 8 = —2, the equation becomes

1
SAf = 50Vl A =0,

and f(n) — 0 at infinity. Since any positive constant is a supersolution, f < 0. Similarly f > 0.
If 8 < —2, for € > 0 the function 7 — e|n| =28/ (P=1 = 4(n) belongs to W,>! (RN) since g < —2
and satisfies

1 2+ 0 _
577-V1/1 - md’ + [Pyt

_ o)/ -n-2 ((2E8Y (246 5 N 1)
p—1 p—1

— A —

Therefore, either if N > 2or N =1 and 8 < —(p+ 1), ¢ is a super-solution of (1.6 ) for any € > 0.
The conclusion follows as above.

Finally we treat the case N =1 and —(p+ 1) < 8 < —2 where there exists a particular solution of

245

_ B ep-le — n
2(p71)f r |f| 1f_0 0 R-i—a

f/l+gfl+
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under the form fi(r) = Ag ,r~?+#/®=1 Furthermore, if f > 0 (which can be always assumed
by the maximum principle), it is a subsolution of the linear equation

// 7’/ 2+6
AL Ty

Noticing that this equation has a solution ¢; which has the same behaviour at infinity than the
explicit solution of (1.4 ), namely

=0

¢1(r) = cr—(2+ﬂ)/(z)—1)(1 +0o(1)),
by standard methods (see e.g. [10, Prop Al]), the second solution ¢2 behaves in the following way
¢a(r) = cr(2+ﬂ)/(p*1)*1e*’”2/4(1 +0o(1)) asr — .

Consequently, by the maximum principle, any solution f of (1.4 ) on R such that f(r) = o(¢1(r))
at infinity, verifies
1f(r)| < C|r|(2+ﬂ)/(pfl)flefr /% for Ir| > 1. (2.36)

Using the equation, we obtain that

> 2
ro) = [T (Snerre) - 25 0 ) s
T pP—
thus ,
| (r)] < CrHA/(p=1=2c=1"/4 for |p| > 1. (2.37)
Since f € H} (R), we derive that for any n € N,,
" 2
/ (f’2 - Lff) e dr < e (f(n)f'(n) = F(=n) f'(~n)).
—-n pP—
Because of (2.36 ) and (2.36 ), this last term tends to 0 as n — oo. Therefore
° 2
/ <f’2 - ﬂfQ) e /dr =0 — f =0,
—0o0 p— 1
which end the proof. 0

Remark. The method of proof used in the case N =1 and —p — 1 < 8 < —2 is actually valid in
any dimension, for any 8 < —2. But it relies strongly on the fact that f € H} (RY), while the
other methods use only f € VVlloc1 (RM).

Proposition 2.6 Assume > max{N(p—1)—2;—N} . Then for any k > 0 there exists a unique
solution uy of (2.1 ) with initial data kég. Furthermore k — wuy, is increasing and oo := limg_, o ug
satisfies uso (x,t) = t~CTA/20=Vf (2/\/t), where fo is positive, radially symmetric and satisfies

1 .
{ ~Afoo = 51V foo = Voo + 1l 2, =0 inRY (2.38)
hm\v;\—»oo |77|(2+»3)/(P*1)foo(77) =0.

Proof. The existence of uy and the monotonicity of k — wy, has already been seen. By the uniform
continuity of the ux in any compact subset of Q7 \ {(0,0)}, the function us, satisfies

}in(l) Uoo(x,t) =0 Va #£0. (2.39)
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For ¢ > 0 and u is defined in @, we set
To[u)(z, t) = (A 2=1y (Vi 0t). (2.40)
If u satisfies equation (2.1 ) in Qu, T¢[u] satisfies it too. Because of uniqueness
Teluk] = Uprs)/2-1)—nN/2- (2.41)

Using the continuity of u +— Ty[u] and the definition of v, we can let k¥ — oo in (2.41 ) and derive
(by taking ¢t = 1 and replacing ¢ by ¢),

To[too] = Uoo == Uoo(x, 1) = t~CFA/2E=Dy (4//1,1). (2.42)
Setting foo(n) = uso(x/Vt,1) with n = z/4/1, it is straightforward that f.. satisfies (2.38 ) (using
in particular 2.39 ). Furthermore f is radial and positive as the wuy are. O

Lemma 2.7 The function f., satisfies

Joom) = eln =N e (14 o(|n| 7)) as [n] — oc, (2.43)
for some ¢ = cnp g > 0. Furthermore
Jian) = =GelnPT N (Lol 7)) as [nf — co. (2.44)
Proof. Set r = |n| and denote fs () = foo(r). Then fo satisfies,
ot (M D) st = Ul =0 on (0.50), (2.45)
and lim, oo 727 foo (1) = 0. We consider the auxiliary equation
I+ (#4‘%) f +vf=0 on (0,00). (2.46)

By [10, Prop Al], (2.46 ) admits two linearly independent solutions defined on (0, 00), y1 and y»
such that

yi(r) =r (1 +0(1)) and ys(r) = T277N67T2/4(1 +0o(1)), (2.47)
as r — 00. Next we choose R > 0 large enough so that the maximaum principle applies for equation
(2.46 ) on [R, c0) and the y; are positive on the same interval. For 6 > 0, Y5 = 0y1+ foo (R)y2/y2(R)
is a supersolution for (2.45 ). Furthermore foo(r) = o(Ys) at infinity. Letting § — 0 yields to

feo(R)
y2(R)

foo(r) < ya(r) Vr > R. (2.48)

Using (2.47 ) we derive
0. < fooln) < Clpf = Ne /A ] > 1.
Plugging this estimate into (2.45 ), we derive (2.43 ) from standard perturbation theory for second

order linear differential equation [2, p. 132-133]. Finally, (2.44 ) follows directly from (2.43 ) and
(2.45). 0

An alternative proof of the existence of f is linked to calculus of variations. In the case 8 =0,
this was performed by Escobedo and Kavian [8]. This construction is based upon the study of the
following functional

1 2
5 =5 [ (190 =202+ 2ol 1o ) Ko (2.49)

defined over the functions in Hi (RY) N L‘p;‘r; (RY).
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Proposition 2.8 Assume p > 1 and § > N(p — 1) — 2. Then there exists a positive function

foo € HE(RY) N LTT;T;K(RN) satisfying

- 1 - - -
~Afoo = 51V foo = Vfoo + 0’ fiy =0 in RY. (2.50)
We recall that the eigenvalues of —K ~1div(KV.) are the A\, = (N + k)/2, with k € N and
the eigenspaces Hj, are generated by D¢ where ¢(n) = K~1(n) = e~In”/4 and la] = k. Tt is
straightforward to check that J is C'. In order to apply Ekeland Lemma, we have just to prove

that J is bounded from below in HL(RY). As we shall see it later on, the proof is easy when
B < N(p—1)/2, and more difficult when > N(p —1)/2.

Lemma 2.9 For any v € Hx(RY), there holds
1
NPy PR < [ VoK @
RN RN
Proof. We borrow the proof to Escobedo and Kavian. Put w = vv/K. Then
VEKVv = Vuw — %n.

Hence 1
/ |V K (n)dn = / (|Vw|2 —wVw.n + ~w? |77|2) dn.
RN RN 4

Because

N
—/ wVw.ndn = —/ w?dn,
RN 2 Jp~

N 1
el rg = [ (190R+ Fu ot i) o

This implies the formula. O

there holds

Lemma 2.10 Let p > 1 and 8 < N(p — 1)/2. For any € > 0 there exists C = C(e,p) > 0 and
R = R(e,p) > 0 such that

2/p+1
[ R < |Vv|2K<n>dn+c< / |v|p+1|n|ﬁf<<n>> .
RN RN RN

Proof. For R > 0 there holds

2/(p+1)
/ VK (n)dn < (/ Ivl”’“llnlﬁK(n)dn) (/ Inl‘w/(”‘”K(n)dn>
<R [n<R [n<R

Since 8 < N(p—1)/2 <= N > 23/(p — 1), we obtain

(p—1)/(p+1)

(p—1)/(p+1)
</| |<RI??I2"/(’“)K(77)d77> =C(R,N,p).
n|<

By Lemma 2.9
4
[ K< g [ [woPE@n
[n|>R RN
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The estimate follows by taking e = 4R™2. O

It follows from the previous Lemmas that J is bounded from below in the space H%(RN) N
LT’UT;K(RN) whenever N(p—1)/2—2 < 3 < N(p—1)/2. Next we consider the case 8 > 0 and we
shall restrict the study to radial functions.

Lemma 2.11 Assume 3> 0. The functional J is bounded from below on the set

X = {v € H . (RM)n LTJQK(RN) ;v > 0,v radial and decreasing } .

Proof. For 0 <4 < R, we write J(v) = J5 r(v) + J5 p(v) + J§ g(v) where
D) =5 [ (10l =0+ 2ol o) Ko,
2 Jini<s p+1

1 2

! 2 2 B p+l

R = = V - + — n K d”
J& (U) 2/6<|n|<R (| 'U| v P 1 | | |’U| ) (77) )

and

1 2
Fin) =5 [ (190 =0+ 2ol ) Ko
o 2) >k p+1
Using Lemma 2.10, we fix R large enough so that J§ 5 is bounded from below in Hi(RM) N

1
LP+
In|® K

assume that v is positive, radial, nonincreasing and v(§) = ¢ = min{v(z) : |z| < §}. Then

(RY). By Hélder’s inequality J§ g is bounded from below, thus we are left with Js5 r. We

WPt =Pt = (v —c+ )P > (v — )P 4+ P and v? < 2(v —¢)? + 262,

1 2
sz g [ (9= 0F ~ 2=+ Sl lo— o) Klndn + 200)
2 Jini<s p+1

where
cPtl

L(e) = / nl® K(mydn -~ [ K(n)dy.
P+ 1) <5 In|<s

Clearly L(c) > M for some M independent of c¢. Therefore we are reduced to study the functional
Js5,r defined by

1 2
Tty =3 [ (190l =2t 2l ) Ko
n|<

over Hj i (Bs) N LT’UT;K(B(;). Here we can fix 6 > 0 small enough so that the first eigenvalue

of —K~1div(KV.) is larger than 2+, thus Js5 g(v) is bounded from below in the class of radially
symmetric nonincreasing, nonnegative functions v, and so is J. (|
Lemma 2.12 Let v be a radially symmetric function in H (RY) OLTJ;K(RN). Then there exists

a radially symmetric decreasing function © € Hi (RY) N LTJ;K (RYN) such that J(?) < J(v).

Proof. We define the two curves

Cr={(s,7) ERy x Ry : =271y + (p+ 1) 1722 =0} = {:I: =2+ 1)737[3)1/(17_1)},
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and

Cy={(s,z) e Ry xRy : —vyx 4 s%2P = 0} = {z = (’ys*ﬂ)l/(pil)}.

For fixed s > 0 the function x + —271yz? 4 (p+1)"1s’2P*! vanishes at 2 = 0. It has the following
properties:

(i) it is decreasing for 0 < z < (ys#) 1/(p_1),
)1/(10*1)

1/(p—1)

(ii) it achieves a minimum at z, = (ys~° ,

(iii) and it is increasing for x > (ys9) with infinite limit. Furthermore it vanishes at
- 1/(p—1
Fo= (271 + ) 07V,

Let v be a radially symmetric positive function. By approximation of radial elements in

Hj (RY) N Lm} ([RY), we can assume that v is C* with nondegenerate isolated extrema.

We can also assume that the graph of v has at most a countable of intersections with Cs,
ap < az < as... < ag < ..., that the set of points {aj} is discrete, that all the intersections
are transverse and that, for every j > 0,

_n\ 1 -1
o(s) < (vs~) "7V on (azs, azn),

where ag = 0, and

—g\1/(p-1)
v(s) > (vs77) (p on (azj+1,azj+2+1)-
The modifications of the function v is performed by local modification on each interval (ay, ax+1):

Step 1- The construction of ¥ on (agj, agj+1) is as follows. Let a1 < as < ... be the sequence of
local extrema of v, with v(ca;+1) local minimum and v(asg;4+2) local maximum. By extension, since

v'(azj+1) > —B/(p — 1)71/(7”71)(12_]%;1)_1)/(17_1), v(azj+1) is a local maximum of v on (as;, agjt1).
If max{(ag;41) : @ > 1} < w(agjy1), then 0 = max{v, v(azj+1)}-

If max{v(ag;41) : ¢ > 1} > v(ag;t1), we define the increasing sequence {a2;,+1} by
v(agio+1) = max{v(agiy1) 11 > 1},

v(a2i1+1) max{v(oagiJrl) 11> io},
and by induction,
U(QZidJrl) max{v(oagiJrl) 11> ’L'dfl}.
Thus we can assume that the local maxima of v are less than v(agj4+1) on the last interval
(a2iy41,a2j+1). Next we define the function ¢ by v = max{v,v(agi,+1} on (az;, a2i,+1), ¥ =
max{v, v(az;,+1} on (2541, @2i,+1). By induction, ¢ = max{v, v(ag;, ;+1} on (@2, ,+1,¥2i,+1)-
Finally v = max{v,v(ag;+1)} on the last interval (aai,+1,a2;+1). The function o is Lipschitz

continuous, nonincreasing and, because v(s) < 9(s) < ('ys*ﬁ)l/(pfl), there holds

2 2 ~pt1
/ Vil =9+ =2 ol o) K
azj<[n|<azjtr ptl

, (2.51)
</ (|W|2 O S N |v|p“) K (n)dn.
az;<|n|<azjt1 p+1

Step 2- The construction of ¥ on (ag;t1, azjt+2) follows the same principle. Let 81 < B2 < ... < fq

be the sequence of local minima of v on this interval. Furthermore v(agj41) is the minimum of v

on (azji1,a2j42) and v'(azj42) < =B/ (p — 1)y @~ Vay 5P~ H/E=Y,
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On (agjt+1,01) we set ¥ = min{v,v(azj+1)}. On (B1,32), ¥ = min{v,¥(f1)}. By induction ¢ =
min{v, 9(5;)} on (Bi, Bix1). On the last interval (B4, b2j42), ¥ = min{v, 9(8q)}. Because & < v
on this interval and x — —271y2? 4 (p + 1)~ 's%2P*! is increasing above the curve Cs, we obtain
similarly

2 2 < p+1
/ 1V =37+ 2l o7 ) Ky
azj+1<|n|<azjt2 p+

1
</ (190 =07 2 1l o) K
azj+1<|n|<azjy2

By construction ¥ is nonincreasing. Combining (2.51 ) and (2.52 ), we obtain J(7) < J(9).

(2.52)

O

Proof of Proposition 2.8. It follows from the previous lemmas that J is bounded from below on
X and the function ¢ = K~! belongs to X. Furthermore

_ 2 p+1
7o) = 22 [ pan + 2 [ apan

Since 8 > N(p— 1) —2 <= N — 2y < 0, the infimum m of J over radially symmetric functions
is negative but finite and achieved by a decreasing function. Let {v,} C X a sequence such that

J(vn) | m. Then {v,} remains bounded in Hx (RY) N LTJIF;K (RM). Up to a subsequence we can

assume that v, converges weakly in H%(RY) and in Lf T; «(RY) and strongly in Lz (RY) to some
function v. Moreover this convergence holds a.e., and, since v, € X the same holds with v. Going
to the limit in the functional yields to

J(v) < liminf J(v,) = m;

n—oo
thus v is a critical point. O

The following uniqueness result holds.

Proposition 2.13 Assumep > 1 and > N(p—1) —2. Then fo = foo. Furthermore fs is the
unique positive solution of (2.38 ).

Proof. We first prove that fs is the unique positive radial solution of (2.50 ) belonging to

Hi(RM) N LfT;K(RN). We denote r = || and foo(n) = foo(r). Let f be another solution in

the same class. Thus there exists {r,} converging to co such that f(r,) — 0. For e > 0, set
fe = fs + €. For n > ng, large enough, w4 (ry,) = 0, thus, as in the proof of Proposition 2.1,

/..

2
Vf- vafe +

E

fe

Vi — 2V
f ff

K+ [ / — ), Kdn

off, P PN - Pk <o

We let successively 7, — oo with Fatou’s lemma, and € — 0 with Lebesgue’s theorem, since
€/fe<land (f?2— f2)4 < f2+ f2 € LI, (RY). We get

/1.

- 2
Ve = P2 ol (= (- 2. | Kdn <o,

A .
Vf—-—=Vfs
foivf
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which implies f < foo. In the same way foo < f. By Lemma 2.7, foo € HE-(RM) N Lm';K(RN).

Thus foo = foo- O
We end this section with a classification result

Theorem 2.14 Assumep > 1 and > N(p — 1) — 2 and let u be a positive solution of (2.1 )
which satisfies (2.27 ). Then,

(i) either there exists k > 0 such that u = uy,

(i) or u = Uo.

Proof. Because of (2.27 ), the initial trace tr(u) of u is is a outer regular Borel measure concentrated
at 0 (see [12]). Then either the initial trace is a Radon measure, say kdg, and we get (i), or

lim [ wu(zx,t)dz = oo, (2.53)
t—0 B.

for every € > 0. This implies u > u as in [11]. Notice that, in this article, this estimate is
performed in the case § = 0, but the proof in the general case is the same. In order to prove that
u < Uy, we consider, for € > 0, the minimal solution v := v, of

(B dvallobie =0 i Qr (2.54)

tr(v) = vp,,

where vg_ is the outer regular Borel measure such that vg_(E) = 0 for any Borel set £ C R such
that £ N B, = 0, and vg,(E) = oo otherwhile. This solution is constructed as the limit, when
m — oo of the solution v, of (2.1 ) verifying vem(.,0) = my, . Clearly u < v.. Furthermore,
for any £ > 0,

Tolve,m] = Ve /V/B,me2+8)/2(0-1) = Tifve] = Vvt = Tefvo] = vo, (2.55)

where vy = lim._v.. This, and the fact that lim;_qvo(x,t) = 0 for every x € RY \ {0}, imply
that vo(z,t) =t~ G020V £ (2//t) = use(x,t). At the end, since u < v, = u < vy, it follows
U < Uso- O

3 Existence of very singular solutions

In this section, we study the singular set of the solution u.,, in the case of strongly degenerate
potential (1.9 ), using some variant of the local energy estimate (abr. L.E.E.) method in the spirit
of Saint-Venant’s principle. The L.E.E. technique was first used for singular solutions of quasilinear
parabolic equations in [15]. An adaption of this method to the study of conditions of removability
of the point singularities of solutions of the quasilinear parabolic equations of diffusion-strong
absorption type was presented in [9]. In [14] there was elaborated a variant of the L.E.E. method,
which allowed to find sharp conditions on the time dependent absorption potential, guaranteing
existence of very singular solutions of the Cauchy problem to diffusion-strong absorption type
equation with point singularity set. Here we provide a new application of the L.E.E. method in
describing the transformation of V.S.S solution into the R.B. solution in terms of the flatness of
the absorption potential in the space variables.
We consider the sequence of the Cauchy problems

ug — Au+h(jz)|ufffu =0 in RY x(0,T), p>1, (3.1)
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u(z,0) = ug g (v) = My, exp(—2" o Nk)x (), (3.2)

where J, is a regularized Dirac measure: §;, € C(RY), 6, — § weakly in the sense of measures as
k — oo,
supp o C {z : |z| < exp(—puok)} Vk €N, (3.3)

where the constant pg > 0 will be defined later on, and
My =exp expk VkeN. (3.4)
Without loss of generality we suppose that
18%11Z ey < exp(uoNk). (3.5)
We write the potential A in the equation (3.1 ) under the form,
h(s) = exp(—w(s)s™2) Vs>0, (3.6)
where w(s) > 0 is arbitrary nondecreasing function on [0, c0).

Theorem 3.1 Let the function w(s) defined in (3.6 ) satisfy additionally the following Dini-like
condition

dy
/ w(s)s™tds < dy < o0, dy = const >0, (3.7)
0

and the following technical condition

sw'(s)
w(s)

Then the following a priori estimate of solutions uy of the problem (3.1), (3.2), (3.5), holds

uniformly with respect to k € N,
. —2
Cyl@7! | = 3.9
: ( ( C)) ] , (3.9)
where the constants C; > 0, Cy > 0, C3 > 0 do not depend on k. Here ®~1(s) is the inverse

function to
s P(s) := / ﬂdr
0 T‘

<2—ap Vse€(0,s0), so>0, 0<agy=const < 2. (3.8)

/ lug (,t)|*dr < Oyt exp
RN

Let us define the following families of domains
B(s) :={x: |z] < s}, Qs):=RN\ B(s),

QP (s) :==Q(s) X (t1,t2), Vs>0, VO<t; <ty <T.

Let u(x,t) = ug(z,t) be a solution of the problem (3.1 ), (3.2 ) under consideration. We introduce
the energy functions

I(s,7):= /0 /Q( ) (IVoul® + h(|@|)u[PT) dz dt, (3.10)

and
J(s,t):/ lu(z, £)|2dz, E(s,t):/ lu(z, £)[2da. (3.11)
Q(s) B(s)
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Lemma 3.2 The energy functions J(s,t), I(s,t) defined by (3.10 ), (3.11 ) corresponding to an
arbitrary solution u = uy, of problem (3.1), (3.2) satisfy the following a priori estimate

p+3
(N=1)(p—1) 2 -

J(s,t) + I(s,t) < ctg(s) :=ct (/ T Pl h(r)MdT) ’ , Vs >exp(—uok), (3.12)
0

uniformly with respect to k € N.

By ¢, ¢; we denote different positive constants, which depend on known parameters N, p, ag, do
only, and their value may change from lines to lines.

Proof. Multiplying equation (3.1 ) by u and integrating in Qif (s), we obtain the following starting
relation after standard computations,

2*1/ |u<:c,t2)|2dx+//t (IVaul® + h(|z|)[uP*?) da dt =
Q(s) Q12 (s)

to
:2—1/ lu(z,t1)] dx—i—/ / u—dodt = Ro+ Ry (3.13)
Q(s) |z|=s

Let us estimate Ry from above. Using Holder’s and Young’s inequalities we have

1/2 T
Do 9 pt1
(z,t) —do < s 2D |V, ul“do |ulPT do <
|z|=s |z|=s |z|=T

N-1)(p=1) 1 2 1 o
< es T o) 7 / (IV2uf? + h(s)u?*1) do .
lz|=s

Integrating in t, we get

N=-1)(p=1) o p—1
U— dodt| <cs 20+D h(S) P—1 72T D)

z|=s on

p+3

T 2(p+1)
X (/ / (IVoul® + h(s)|ulP™) do dt) . (3.14)
0 |z|=s
It is easy to see that

d
——I (s,7) / / (|Vaul® + h(s)|u[PT) ds, s J(s,t) > 0.
|z|=s S

Because of the property (3.3 ) satisfied by wugx, and estimate (3.14 ), we derive the following
inequality from relation (3.13 ) with to = ¢, t; =0, s > exp(—puok),

1 (N-1)(p—1)

p— d 2(p+1)
J(s,8) + I(5,8) < ctTorD p(s) " it1s 2wt (—d—(I(s, £) + J(s, t))) . (3.15)
S

Solving this ordinary differential inequality (abr. O.D.I.) with respect to the function I(s,t) +
J(s,t), we deduce that estimate (3.12 ) holds for arbitrary s > exp(—pok). O

Next, we define s; > 0 by the relation

g(sk) = M;° = exp(eo exp k), (3.16)
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where 0 < ¢p < 1 will be defined later on. Now we have to guarantee that
sk > exp(—pok) =35, Vk > ko(g0, o, V0, p)- (3.17)

Using [1, Lemma A1], it follows from the definitions (3.6 )of function A(.) and (3.12 ) of function
g(.), that the next estimate holds,

9 e 4\
ao p— rP—
< <|— 3.18
(Z2) mo <o = (515) a6, (3.18)
where g1(s) = sN_l_S(ppjf)w(s)i_ﬁ exp ((;;31) wS(f)), ap is constant from condition (3.8 ). The
following simpler estimate follows from (3.18 ):
w(s) 2 w(s) 2
1-— < < 1 1
exp( 52 (pfl)( VO)) —9(3)—6Xp( 52 (pfl)( +wo) |, (3.19)

for any s € (0, sg), where sg = so(r) — 0 as vp — 0. As a consequence of definition (3.16 ) of s,
and using (3.19 ), we get,
w(sk) 2(1 —vp)

—5———- <¢pexpk. 3.20
g 01 (520

Integrating (3.8 ), we deduce that w satisfies
w(s) > 8% Vs> 0. (3.21)

Combining (3.21 ) and (3.20 ) we derive:

sk > (%) g exp (_o%) : (3.22)

Next we define o from (3.2 ) and set o = 2a;*. It follows from (3.22 ) that (3.17 ) is satisfied
for all k > ko = ko(e0, 2o, Vo, p). As result we derive that estimate (3.12 ) obtained in Lemma 3.2
is valid for s = sy, i.e.

J(skst) + I(sk,t) < ctg(sk) VEk > ko = ko(eo, 20, 0,D). (3.23)

In order to find estimates characterizing the behaviour of the energy function F(sk,t) with
respect to the variable t > 0, we introduce the nonnegative cut-off function ¢ € C*(R) defined by

or(s) =1 if s<sg, @r(s) =0 if s> 2s;, @)(s) <esp ' (3.24)

Multiplying (3.1 ) by ur¢i(|z|) and integrating with respect to z, we get

1L

W (a2, 1) (]} d + / IV o (o) 2 + / h(lz]) g2 Jul?
dt ]RN ]RN ]RN

< / u?(z,t)|Vapr(|z])|?de :=Ry.  (3.25)
RN
By (3.24 ) and (3.23 ), we obtain

R; < c15;2/ lu(z,t))*dx < clsIZQJ(sk,t) < c25;2tg(sk). (3.26)
sk <|z|<2sk
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Using (3.25 ), (3.26 ) and Poincaré’s inequality we derive the following differential inequality,

d
— (/ u%x,t)goidm) + dos,f/ u?(x, t)prde < es; *tg(sk), do > 0.
dt \ Jrn B(2s1)

If we set

wlt) = [ lunle, 0P ekl
RN
it is straightforward that (3.27 ) implies that the following O.D.I. holds,
Vi (t) + dosi Y (t) < Tsj *tg(sn);
furthermore, we can rewrite (3.28 ) under the form

do _o

o (t) + 5 5k Pie(t) + 271 (dosy *vn(t) — 2885, *tg(sk)) < 0.

Using the relations (3.2 ), (3.5 ) satisfied by ug o, we see that )y, verifies,
Yr(0) < / lug.o(x)*de < M.
RN

At last, we define the t; by
ty = yw(sk)

(3.27)

(3.28)

(3.29)

(3.30)

(3.31)

where w is the function in (3.6 ) and v > 0 is a parameter which will be made precise in the next

lemma.

Lemma 3.3 There exists a constant v > 0, which does not depend on k, such that any solution

Yy of problem (3.29 ), (3.30 ) satisfies the following a priori estimate
Ui (tr) < 2dy 'Tlrg(sk) Vi > k(eo,v0),

for some Ty, < tx, where ty, is defined by (3.31).

(3.32)

Proof. Let us assume that (3.32 ) is not true, and for any v > 0 there exist k > ko such that

Y (t) > 2d615tg(sk) VE:0 <t <yw(sk) = tg.
This relation combined with (3.29 ) implies the following inequality,

P (t) + %sg%k(t) <0 Vt:0<t<yw(sg).

Solving this O.D.I. and using (3.30 ), we get

r(t) < Pr(0) exp (—;’%) < Myexp (_;’_0%) Vt < qu(sk).

We derive easily the next estimate from (3.34 ) and (3.33 )

—dyyw(sg)

My, exp (
257

) > 2dalég(sk)7w(sk).

(3.33)

(3.34)

(3.35)
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Using (3.16 ) and (3.4 ), we deduce from this last inequality,

doyw(sk)

1-— k>
( 50) €Xpr = 25%

+ In(2dy 'ey) — In(w(sk) ™). (3.36)

Similarly to (3.20 ), it follows, from (3.19 ) and the definition (3.16 ) of s, that there holds

w(sk) 2(1+ o)

> epexpk. 3.37
g G-p o 337
Using this estimate and (3.36 ), we derive
doy(p = Deo 1o _
(1—¢o)expk > ETETYE expk + In(dy '26y) — In(w(sg)) " (3.38)
Noticing that (3.21 ) implies
In(w(sk)) ™" < (2 —ao) In(s; 1), (3.39)
and (3.22 ) can be writen under the form
_ 1 go(p—1) k
1 h< —In(2F—< — 3.40
n(sk )_Oéo n(2(1l/0) +OZO’ ( )

we deduce the following inequality from (3.39 ), (3.40 ) and (3.38 ),

doy(p — 1)eo 1 k

_ > 2 )Y — (2 — -

(1 —ep)expk > 101+ v0) expk + In(2d; "¢y) — (2 ao)ao
_2za0)y (=D g )

(67} 2(1 — 1/0)
If we define g by the equality
doy(p — eo (1 —eo)(1 +10)8

1 —gp) = 2= 250 ‘= 0, 3.42
( 50) 8(1 + VO) Y dO(p — 1)50 Yo ( )

then inequality (3.41 ) yields to

(2 — ag) 1 (2—a0), (colp—1)
TOkZ(l—Eo)expk—i—ln(QdO ) — o ln(2(11/0))-

It is clear that we can find k = k(e0,1) < oo such that the last inequality becomes impossible for
k > k, contradiction. Consequently, (3.33 ) does not hold for v = 7o and estimate (3.32 ) is true
with v = vp. O

Proof of Theorem 8.1. Comparing definition (3.11 ) of E(s,t) and definition of 1, we easily see
that
E(Sk,t> < 1/)k(t) = E(Sk,zk) < wk(fk) (343)

Therefore, using estimates (3.12 ), (3.32 ) and (3.43 ), we obtain

/ lug (2, tr)|>dx = E(sp, i) + J(sp, tr) < (do_lE + o)trg(sk). (3.44)
RN
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Next we estimate the right-hand side of (3.44 ). Using (3.16 ), (3.31 ) and inequality (3.32 ), we
get
trg(sk) < Yow(sk)M® < yow(so) exp(eg exp k), (3.45)

where 7 is defined by (3.42 ) and s¢o > 0 by (3.8 ). We obtain easily from (3.45 )

_ 1 cdy !
(@dy + ¢)trg(sk) < exp {(50 + n(ow(so)(c + edy ))) exp k} . (3.46)
expk
Let k1 be the smallest integer such that
In (yow(so)(c+2dy ') < egexpka, (3.47)

equivalently
k1= [In (5" In (ow(so)(c +2dg 1)))] + 1,

where [a] denote integer part of a. Then it follows from (3.46 )
(@dy " + e)trg(sk) < exp(2epexpk) Vk > ki. (3.48)

If we fix ¢ such that
2e0 < e, (3.49)

then the next estimate follows from (3.44 ) and (3.45 )—(3.49 )
/ |uk(x,fk)|2dz S Mkfl, (350)
RN

for all k > max{ko, k, k1 }, where kg is from (3.17 ), k — from (3.32 ), and k; from (3.47 ). Estimate
(3.50 ) is the final step of the first round of computations. For the second round, we begin by
definiting s;_1 analogously to s:

g(sp—1) = M;° | = exp(egexp(k — 1)). (3.51)
From estimate (3.12 ), we obtain
J(sg—1,t) + I(sp-1,t) < ctg(sp—1), (3.52)

since sx_1 > Si. Analogously to ¢, we define the function ¢g_1 and set

v ®i= [ e )P lon (o),
RN
In the same way as (3.28 ), the following O.D.I. follows
Vo1 (t) + dosy 2 Vp—1(t) < Ts; 2 tg(sp—1) Yt > T (3.53)

Using (3.50 ), we derive
Vr—1(tk) < My—1, T < tg. (3.54)

If we analyze the Cauchy problem (3.53 )—(3.54 ) similarly as problem (3.28 )—(3.30 ) was ana-
lyzed in Lemma 3.3, we obtain the following a priori estimate for vy_1 (t),

o1 (B + Tre1) < 2dg 'E(Tk + Tr1)g(s5K-1), (3.55)
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where tg_1 < tr—1 = Yow(sk—1) and 7o is defined in (3.42 ). It is clear that
E(sp—1,t) < tp_1(t) VYt > 1y,

consequently
E(sk—1, Tk + te—1) < thp—1 (e + Tom1) < 2dg ek + Th—1)g(se—1). (3.56)
From (3.52 ), we deduce
J(sk—1, bk + 1) + I(sk—1, bk + th—1) < c(tr +tp—1)9(sk—1)- (3.57)

Summing estimates (3.56 ) and (3.57 ) we obtain
/N lug (2, T, + Tr—1) |Pde < (@dy* + ¢) (T + Tr—1)g(s6-1), (3.58)
R

and we use this last estimate for performing a similar third round of computations. Iterating this

process j times, we deduce
k—j
i=k

U
RN

In particular, we can take j = k — [, where [ € N satisfies

2

dr < (edy* <z€ ) Sk—j) (3.59)

=k

1> 1y := max{ko, k, k1 }. (3.60)

(2]

Next, we have to estimate from above the sum of the #; for which there holds

1 1
Zfl S Z’YOUJ(Si), (362)
i=k i=k
where s; is defined by g(s;) = M;°. By the same way as in (3.37 ), we obtain

2(1 + vo)w(s;) ~ _ 2(1 4 v)w(so)
p-De TP TG

where [y is the integer appearing in (3.60 ), and from this inequality follows

2(1 + vo)w(so) 1/2 i i
L < (AT H)R%0) “).=c ). 3.63
s < ( =1 exp | —3 rexp | — (3.63)
Therefore, using the monotonicity of the function w, we derive
l l i -1 s
Zw(si) S;w(cl exp (—5)) §—/k w(Clexp (—5))ds

Cyexp(—152)
<2 / y~lw(y)dy
Cy exp(——)

C1 exp(——
<2 / y w(y)dy
0

28 (ot 151).

Then we obtain:

dx < (edy* + ¢) (Zt) 51). (3.61)

i=k

sf < xp(—i) Vi > lo,

(3.64)
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As a consequence of (3.62 ) and (3.64 ), we get

Zl:fi < zlj t < 2900 (cl eXp(—l_Tl)) — . (3.65)
The Dini condition (3.7 ) implies that 7; — 0 as [ — co. Next, we deduce from (3.61 ) that
[, e oPds < Coig(s), G =edg' e V212, (3.66)
Using the fact that s; : g(s;) = M[° and (3.66 ), we derive

/ lug (z, Ty)|2de < CoTjexp(egexpl). (3.67)
RN

T \\°
B |
expl = eCy <<I) <2%)) ) (3.68)

we get the following inequality by plugging this last relation into (3.67 ):

T -2
e eoC? (q>—1 (—l)) 1 Vi > .
2%

At last, combining last estimate with (3.68 ), we obtain

-2
/ lug (2, t)|>dz < Cyt exp |f32 - e0C} <<I)_1 <L>) ] vt > 0,
RN 2%

which ends the proof. O

Because (3.65 ) implies

/ |ug (z, Ty)|2dx < CoTyexp
RN

Example 3.4 Assume w(s) = 272, 0 < ag < 2. Then

s 2—ap 1 1
D(s) = / slm0ds = 287 =0 (s)=(2—a)T0sT .
0 %)

Consequently, estimate (3.9 ) reads as follows,

2

02( Cs )aotzzao] vVt > 0.

270&0

/ lug(z,t)|*dr < Citexp
RN

4  Razor blades

In this section we consider potential h(|z|) of the form e=¢(®) (= e=«(=D/I*]* a5 in (3.6 )) and
equation (1.1 ) is written under the form

Ou—Au+ e D Py =0 inRY x (0,00), (4.1)

where ¢ € C(RY) is positive, nonincreasing and lim,_q £(r) = co. Our main result is the following
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Theorem 4.1 Assume p > 1 and { satisfies

lim inf |z2¢(x) > 0. (4.2)

Then the solution uy of the problem (1.1 ), (1.3 ), exists for any k > 0 and us := limg_,o0 is @
solution of (4.1 ) in Qs \ {0} x RT with the following properties,

}in% Uoo(x,8) =0 VYV #0 and 1in%uoou(x,t) =00 Vt>0. (4.3)
Furthermore t +— uco(x,t) is increasing and limy_, oo Uoo(x,t) = U(x) for every x # 0 where

U = limy_,o Uy and Uy solves
—AU, + e *@UP = kdy  in D'(RY). (4.4)

Proof. By assumption (4.2 ), property (1.2 ) is fulfilled. Thus for k£ > 0 there exists u := uy
solution of (4.1 ), (1.3 ). Moreover, for any k > 0 there exists a solution Uy, of (4.4 ) (see [18]); the
mapping k — Uy is increasing and U = limy_, o, Uy exists, because of Keller-Osserman estimate.
U is the minimal solution of

—AV + e @yP =0 in RV \ {0}, (4.5)

verifying
/ V(z)de =00 Ve > 0. (4.6)
B.

If we denote by U the maximal solution of (4.5 ), it is classical that U = lim._,o U. where

’ (4.7)

lim| ¢ Ue(x) = o0.

{ ~AU. 4+ e *@0P =0 in RN\ B,

Since any uy, is bounded from above by U, the local equicontinuity of the u in Q7 \ {(0,0)} implies
that us satisfies lims—o uso(z,t) = 0 for all 2 # 0.

Step 1: Formation of the razor blade. The Case 1: 1 <p <1+ 2/N. For ¢ > 0, etz < =4
for |x| < e. Therefore

Ou—Au+e O u>0, in B x (0,00). (4.8)
and u > v, in Be x (0,T) where v, solves

Opve — Ave + e 4 |’U€|p_1 ve=0 in B, x (0,00)
ve=0 in OB, x (0,00) (4.9)
ve(2,0) = 00dp  in B,

where the initial condition is to be understood in the sense limy_. o, kdg. We put
we(x, t) = 2/ PV M)/ =Dy (ex, €2t).
Then w. = w is independent of € and solves

dw—Aw+ |wP Tw=0 in B; x (0,00)
w=0 in dB; x (0,00) (4.10)
w(x,0) =o00dy in Bj.



28

Therefore
w(0,1) > v(0,1) = e 2/ =D/ (P=Dy(0, ¢72), (4.11)

The longtime behaviour is given in [7] where it is proved

lim eMTw(0,7) = k1 (0).

T—00

In this formula ¢; is the first eigenfunction of —A in WO1 2(By), A1 the corresponding eigenvalue
and k > 0. Thus .,
u(0,1) > de2/(P=D /(=D he™" 4 (), (4.12)

for some & > 0, if € is small enough. If we assume

2 14
lim (— Ine ! + EIONS )\162> = 00, (4.13)
e—=0\p—1 p—1
it implies
u(0,1) = co = u(0,t) =0 V¢t > 0. (4.14)

Moreover, the unit ball By can be replaced by any ball Br and A\; by Ag = R~2\;. Therefore the
sufficient condition for a Razor blade is that it exists some ¢ > 0 such that

. o —92 _
lgr(l) (€(e) — ce™?) = o0. (4.15)

An equivalent condition is
lim inf €2£(¢) > 0. (4.16)

The general case. If p > 1 is arbitrary, we consider 3 > 0 such that 8 > N(p—1) — 2, and we write

e @) = |g|Pe~t(®)—Fnlzl

For R > 0 small enough z — £(z) := {(x) + $1n|z| is positive, increasing and satisfies the same
blow-up condition (4.2 ) as ¢. Clearly uy is bounded from below on Bg X (0,00) by the solution
U= ’ﬁk of ~
Byt — A+ |zPe@ @’ "' 4 =0 in By x (0,00)
4=0 in dBR x (0,00) (4.17)
(z,0) = kdy in Bg.

Therefore, for 0 < € < R, i is bounded from below on B, x (0,00) by the solution v, of
Orve — Av, + |z|ﬁe’l7(5) lvel" " ve =0 in Be x (0,00)

ve=0 in 0B, x (0,00) (4.18)
ve(,0) = 00dp  in Be.

If we set
we(x,t) = 6(2“5)/(1’*1)@*@(6)/(1071)06(ex7 €2t),

then we = w is independent of ¢ and

dyw — Aw + |z]P [w” ' w =0 in By x (0,00)
w=0 indBy x (0,00) (4.19)
w(x,0) = o00dy in Bj.
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By a straightforward adaptation of the result of [7], there still holds

lim e*7w(0,7) = kep1(0)

for some xk > 0. The remaining of the proof is the same as in case 1 <p <1+ 2/N.
Step 2: Asymptotic behaviour. A key observation is that, for any 7 > 0 and any ¢y > 0
/ Uoo (2, T)dx = 00. (4.20)
€0
We give the proof in the case 1 < p < 1+ 2/N, the general case being similar. By step 1
/ u(z, 7)dx > / ve(x, T)dx = 6_2/(”_1)+Ne€(€)/(”_1)/ w(y,e_QT)dy. (4.21)
B. B.

By

If we fix 7 and use [7], there exists €y such that w(y, e 27) > 27 ke =21 7¢y(y) for € < ¢y and
y1 € Bi1. Therefore

/ (e, 7)da > ce 2/ VN O/ (=1 =Ne T (4.22)
Be

for some constant ¢ > 0. If 7 is small enough, the right-hand side of (4.22 ) tends to infinity as
e — 0, so does the left-hand side. This implies (4.20 ). For any k > 0 and any € > 0, there exists
m = m(e) > 0 such that

/ minf{u(x,7),m}dr = k,
Be

thus, if we set ¢, = min{u(z,7),m}x,, , then u is bounded from below on RY x (7,00) by the
solution v = v ), of

{ O — Av + e @ yP~ly =0 in RN x (1,00) (4.23)

v(2,7) = ¢ (z) in RN,

When € — 0, ¢ (.) — ko weakly in M(RY). By standard approximation property, v(e, k) — vg k
which is a solution of

O — Av + e @ P~y =0 in RN x (1,00) (4.24)
v(.,,7) =k in RV, '
By uniqueness, vo i (z,t) = ug(x,t — 7). Letting k — oo yields to
Uoo (T, T+ T) > uoo(z,t) V(z,t) € Q. (4.25)

This implies that t +— o (z,t) is increasing for every x € RY. Because u(x,t) < U(x), it is

straightforward that lim, . u(z,t) = U(x) exists in RV \ {0}.
Step 3: Identification of the limit. If ¢ € C§°(RYN \ {0}), there holds

/TTH/RN (_u(x,t)AC(:E) 4 e @y (g, t)g(ac)) dedt = / (w(x,T) — u(z, T + 1)) ((x)dz.

RN

By Lebesgue’s theorem

/RN (—U(m)AC(m) + e_e(m)ljp(x)((x)) dx =0, (4.26)
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and, from (4.20 ),
/ Ulz)dz = oo, (4.27)
€o

for any o > 0. Therefore U is a solution of the stationary equation (4.4 ) in RN \ {0} with a strong
singularity at 0. For k > 0 and € > 0 there exists k(e) > 0 such that

/ Uk(ﬁ)dl' = k.
Be

O —Av+ e '@ Py =0 in Qr,
v(.,0) = Ug(e)Xp, in RY.

Let v := vy, be the solution of
(4.28)

Since vy ¢(.,0) < Uge)(.), the maximum principle implies vg . < Upe). If we let € — 0, vy,
converges to the solution wuy with initial data kdy. Furthermore k(e) — oo as € — 0. Therefore

ug(z,t) <U(x) Y(z,t) € Qr. (4.29)

Letting successively k& — oo and t — oo implies

U(zr) <U(x) VxeRY. (4.30)

Since U is the minimal solution of (4.5 ) verifying (4.6 ), it follows that U = U. U
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