Reduced measures associated to parabolic problems

Abstract : We study the existence and the properties of the reduced measures for the parabolic equations $\partial_tu-\Delta u+g(u)=0$ in $\Omega\times (0,\infty)$ subject to the conditions ($P$): $u=0$ on $\partial\Omega\times (0,\infty)$, $u(x,0)=\mu$ and ($P'$): $u=\mu'$ on $\partial\Omega\times (0,\infty)$, $u(x,0)=0$ where $\mu$ and $\mu'$ are positive Radon measures and $g$ a continuous nondecreasing function
Document type :
Journal articles
Complete list of metadatas

Cited literature [11 references]  Display  Hide  Download

https://hal.archives-ouvertes.fr/hal-00282470
Contributor : Laurent Veron <>
Submitted on : Tuesday, May 27, 2008 - 3:55:15 PM
Last modification on : Thursday, November 14, 2019 - 1:25:23 AM
Long-term archiving on: Friday, May 28, 2010 - 8:21:43 PM

Files

MesRedPar6.pdf
Files produced by the author(s)

Identifiers

  • HAL Id : hal-00282470, version 1
  • ARXIV : 0805.4125

Collections

Citation

Waad Al Sayed, Mustapha Jazar, Laurent Veron. Reduced measures associated to parabolic problems. Proceedings of the Steklov Institute of Mathematics, MAIK Nauka/Interperiodica, 2008, 260, pp.3-25. ⟨hal-00282470⟩

Share

Metrics

Record views

366

Files downloads

242