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Introduction

Let k be an algebraic number field, let D be a central division algebra over k, and let
Λ be an order of D. Let us denote by N : D → Q the absolute value of the reduced norm
map nrd : D → Q, where Q is the field of rational numbers. We say that Λ is Euclidean
if for all x ∈ D there exists y ∈ Λ such that N(x − y) < 1. It is easy to see that this is
equivalent to each of the two natural Euclidean division proprieties : for all a, b ∈ Λ, b 6= 0,
there exist c, c′, d, d′ ∈ Λ such that a = bc+d, a = c′b+d′, and N(d) < N(b), N(d′) < N(b).

Let us also define the Euclidean minimum M(Λ) of Λ by

M(Λ) = supx∈Dinfy∈ΛN(x− y).

* Partially supported by the Swiss National Science Fundation, grant 200020-111814/1
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These notions are straightforward generalizations of the well–known Euclidean prop-
erty and Euclidean minimum of algebraic number fields. Both are classical and have been
studied very extensively in the case of algebraic number fields (see for instance [7] for
a survey). In the non–commutative case, very little is known about them. The aim of
this paper is to give some basic results concerning Euclidean and inhomogeneous minima
of central division algebras (cf. §1), and to generalize some recent results concerning the
commutative case (cf. [1], [4]). In particular, we apply Berend’s results to show that M(Λ)
is a rational number if the unit rank of the number field is greater than 1 (§1). We also
obtain a general upper bound for the Euclidean minimum of an order (see §2 – 4). Let
d(Λ/Z) denote the discriminant of the order Λ. Then we have

M(Λ) ≤ (
m

2
)nmd(Λ/Z)1/m.

Section 5 contains some examples, and sharper bounds in some special cases. For
instance, we show that if k is a real quadratic field, D a totally definite quaternion algebra
such that no finite place of k ramifies in D, and if the fundamental unit of k has norm −1,
then

dk

7552 + 3072
√

6
≤ M(Λ) ≤ dk

16
,

where dk is the absolute value of the discriminant of k.

§1. Euclidean minima

1.1. Definitions, notation and basic facts

We keep the notation of the introduction. For any unexplained terminology concerning
division algebras and orders, we refer the reader to [8].

Let k be an algebraic number field of degree n = r1 + 2r2, where r1 is the number of
real embeddings and r2 the number of pairs of complex embeddings of k. Set kR = k⊗QR,
where R is the field of real numbers. We denote by Nk/Q : k → Q and NkR/R : kR → R
the norm maps. Let Ok be the ring of integers of k.

Let D be a central division algebra of degree m over k, let Λ be an Ok–order of D, and
let I be a right Λ–ideal. Set DR = D⊗QR. Let nrdD/k : D → k and nrdDR/kR

: DR → kR

be the reduced norm maps. Let nrdDR/R : DR → R be the reduced norm of the separable
R–algebra DR; note that nrdDR/R(x) = NkR/R(nrdDR/kR

(x)), for all x ∈ DR. Let
N : DR → R be the absolute value of nrdDR/R. We define the Euclidean minimum of I
by

M(I) = supx∈Dinfy∈IN(x− y),

2



and the inhomogeneous minimum of I by

MR(I) = supx∈DR
infy∈IN(x− y).

In the special case where D = k and I = Λ = Ok, we set M(Ok) = M(k), and
MR(Ok) = M(kR); these are the Euclidean and inhomogeneous minima of the number
field k.

Notation 1.1. Let x ∈ DR. Set mI(x) = inf{ N(x− y) | y ∈ I }.

Note that M(I) = sup {m(x) | x ∈ D}, and MR(I) = sup {m(x) | x ∈ DR}.

The following proposition is a straightforward generalization of a corresponding result
in the commutative case, see [4], [5].

Proposition 1.2. We have the following properties :
(1) For all u ∈ Λ∗, x ∈ DR and y ∈ I, we have mI(xu− y) = mI(x).
(2) For all x ∈ D, there exists y ∈ I such that mI(x) = N(x− y).
(3) For all x ∈ D, we have mI(x) ∈ Q.
(4) If x ∈ D, mI(x) = 0 if and only if x ∈ I.

Proof. See [4], Proposition 1, and [5], Proposition 2.2.2.

Definition 1.3. We say that I is Euclidean if for all x ∈ D there exists y ∈ I such that
N(x− y) < 1.

Proposition 1.4. We have
(1) If M(I) < 1, then I is Euclidean.
(2) If M(I) > 1, then I is not Euclidean.
(3) If M(I) = 1, then I is Euclidean if and only if there does not exist any x ∈ D

with M(I) = mI(x).

Proof. These are easy consequences of the definition, cf. [5], Proposition 2.2.5.

1.2. Comparison of the minima and rationality questions

In [4], it is proved that if the unit rank of k is at least 2, then M(k) = M(kR) ∈ Q.
The proof uses some results of Berend [2], [3]. The aim of the rest of this section is to show
that one can apply the same methods to get analogous results in the non–commutative
case. We start by briefly recalling Berend’s results, see [2], [3] and [4] for more details.

Let T be a finite dimensional torus i.e. T = Rd/Zd for some d ≥ 1, and let E be a set
of continous endomorphisms of T . A subset A of T is said to be E–invariant if we have
f(A) ⊂ A for every f ∈ E . A non–empty closed E–invariant set A is said to be E–minimal
if it contains no proper non–empty closed E–invariant subset.
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Let Σ be a commutative semigroup of endomorphisms of T . We say that Σ is hyperbolic
if the eigenvalues of the common eigenvectors of Σ are not contained in the unit circle.
We say that Σ is multiparameter if the set of eigenvalues of any common eigenvector of Σ
contains two rationally independent elements.

We need the following result of Berend :

Theorem 1.5. (Berend, [3], Theorem 2.1) Let Σ be a commutative semigroup of epimor-
phisms of T . Then the following conditions are equivalent :

(1) Any Σ–minimal subset of T is composed of torsion elements;
(2) Σ is hyperbolic and multiparameter.

In order to apply this result, let us introduce some more notation.

Set TD = DR/I. Then TD is a finite dimensional torus. The map m : DR → R
induces

m̃ : TD → R.

Proposition 1.6. The map m̃ is well-defined and upper semi–continuous. Moreover m̃
and m are bounded from above and attain their maximum.

Proof. See [4], Proposition 3 and Corollary 2; [5], Proposition 2.2.11.

Let us consider the subset Σu of the automorphisms of T induced by right multipli-
cation by the units O∗

k of k. Then we have

Proposition 1.7. Suppose that r1+r2−1 ≥ 2. Then Σu is hyperbolic and multiparameter.

Proof. See [4], proof of Theorem 3, and [5], proof of Theorem 2.2.3.

From the previous properties, we can deduce the main result of this section :

Theorem 1.8. Suppose that r1 + r2 − 1 ≥ 2. Then there exists x ∈ D such that mI(x) =
M(I) = MR(I).

Proof. This results from the previous results, as shown in [4], Theorem 3, and [5], Theorem
2.2.3.

Corollary 1.9. Suppose that r1 + r2 − 1 ≥ 2. Then MR(I) ∈ Q.

Proof. This is an immediate consequence of 1.8 and 1.2 (3).

In some special cases, we can weaken the hypothesis r1 + r2− 1 ≥ 2. This is based on
the following observation :
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Proposition 1.10. Let G be a subgroup of U = {u ∈ Λ∗ |σ(u) is a diagonal matrix for
any embedding σ of D in a real, complex or quaternionian matrix algebra}. If G is abelian
and if the set of automorphisms ΣG induced by G is hyperbolic and multiparameter, then
there exists x ∈ D such that mI(x) = M(I) = MR(I).

Proof. This is deduced from Berend’s results in the same way as 1.8.

Quaternion fields are special cases of central division algebras. Let us recall that such an
algebra D is a 4-dimensional algebra over k with basis (1, i, j, l) such that i2 = a, j2 = b
and l = ij = −ji, where a, b are non zero elements of k. This algebra is denoted by
(a, b)k. It is a division algebra if and only if the quadratic form nrdD/k(x + yi + zj + tl) =
x2 − ay2 − bz2 + abt2 represents zero on k only trivially.

Corollary 1.11. Let k be a real quadratic field, and let D be a totally indefinite quaternion
field over k, i.e. such that no infinite place of k ramifies in D. Then there exists x ∈ D
such that mI(x) = M(I) = MR(I).

Proof. It suffices to find an abelian subgroup G of U satisfying the hypothesis of 1.10.
Let us write D = (a, b)k, with a, b ∈ k∗ and a totally positive. Let L = k(

√
a). Then

L is totally real and [L : Q] ≥ 4. Hence by Dirichlet’s theorem there exists a unit
w = u + v

√
a ∈ O∗

L − O∗
k that has infinite order in O∗

L. Set G be the subgroup of Λ∗

generated by O∗
k and u + vi, where i ∈ D is such that i2 = a. The group G is clearly

abelian, and ΣG is hyperbolic, as the group Σu induced by O∗
k is hyperbolic by 1.7, and

O∗
k is a subgroup of G. It remains to check that G is a subgroup of U , and that ΣG is

multiparameter. The quadratic field k has two real embeddings, each of which extends to
an embedding of D in M2(R). A straigthforward computation shows that the images of
the elements of G are diagonal matrices in both cases (cf. [5], 2.3.6) hence G is indeed
a subgroup of U . To show that ΣG is multiparameter, let ε1 be a unit of O∗

k, ε1 6= ±1,
and let ε2 = u + vi. Then ε1 and ε2 are rationally independent. This implies that ΣG is
multiparameter (cf. [5], 2.3.6).

§2. Ideal lattices

The aim of this section is to define the notion of ideal lattice, and to prove a few basic
facts. As we will see later, packing and covering invariants of ideal lattices can be used
to obtain upper bounds for Euclidean and inhomogeneous minima. We start by recalling
some definitions and basic facts concerning lattices.

2.1. Lattices

A lattice is a pair (L, q), where L is a free Z–module of finite rank, and q : LR×LR → R
is a positive definite symmetric bilinear form, where LR = L ⊗Z R. Two lattices (L, q)
and (L′, q′) are isomorphic if and only if there exists an isomorphism f : L → L′ such that
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q′(f(x), f(y)) = q(x, y). We then use the notation (L, q) ' (L′, q′). If (L, q) is a lattice,
then the dual lattice is by definition the lattice (L], q), where

L] = {x ∈ LR |q(x, y) ∈ Z for all y ∈ L}.

A lattice (L, q) is said to be integral if L ⊂ L], i.e. if q(x, y) ∈ Z for all x, y ∈ L. An
integral lattice (L, q) is even if q(x, x) ≡ 0 (mod 2) for all x ∈ L.

Let (L, q) be a lattice of rank n. Set q(x) = q(x, x). The minimum of (L, q) is defined
by

min(L, q) = inf{q(x) | x ∈ L, x 6= 0}.

The maximum of (L, q) is by definition

max(L, q) = inf{λ ∈ R | for all x ∈ LR, there exists y ∈ L with q(x− y) ≤ λ}.

Note that max(L, q) is often called the inhomogeneous minimum of the lattice, and
that it is the square of the covering radius of the associated sphere covering.

The determinant of (L, q) is denoted by det(L, q). It is by definition the determinant
of the matrix of q in a Z–basis of L. The Hermite invariants of (L, q) are

γ(L, q) =
min(L, q)

det(L, q)1/n
,

and

τ(L, q) =
max(L, q)

det(L, q)1/n
.

These invariants only depend on the isomorphism class of the lattice (L, q).

Set γn = sup{γ(L, q) | rank(L) = n}, τn = inf{τ(L, q) | rank(L) = n}.

2.2. Ideal lattices

We keep the notation of the previous section. In particular, k is an algebraic number
field of degree n, having r1 real and 2r2 complex places. We denote by Ok the ring of
integers of k.

Let D be a central division algebra over k of degree m. Let us denote by H the usual
Hamilton quaternion field over R. Set DR = D ⊗Q R. Then we have

DR ' Mm
2
(H)w ×Mm(R)r1−w ×Mm(C)r2

where w is the number of real places at which D ramifies.

The canonical involution of DR is by definition the R–linear involution which is in-
duced by the canonical involution of the quaternion field on the first factor, by the identity
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on the second, and complex conjugation on the third. We denote this involution by x 7→ x.
An element α = (α1, . . . , αr1+r2) of DR is said to be positive, denoted by α > 0, if α = α
and if each αi is a positive definite matrix. Set P = {α ∈ DR | α > 0}.

Let us denote by trDR/R : DR → R the reduced trace of the separable R–algebra
DR. The following lemma is easy to prove :

Lemma 2.1. Let q : DR × DR → R be a symmetric bilinear form. The following are
equivalent :

(i) There exists α ∈ DR with α = α such that q(x, y) = trDR/R(xαy) for all x, y ∈ DR.

(ii) We have q(λx, y) = q(x, λy) for all x, y, λ ∈ DR.

Moreover, a symmetric bilinear form q satisfying these conditions is positive definite
if and only if α ∈ P.

Notation 2.2. We denote by qα the symmetric bilinear form of condition (i) of the above
lemma.

Definition 2.3. A generalized ideal of Λ is a set of the form I = xJ where x ∈ D∗
R

and J is a right Λ–ideal J . If I is a generalized ideal of Λ, we define the norm of I
by NDR/R(I) = nrdDR/R(x)mND/Q(J). An ideal lattice is a pair (I, qα), where I is a
generalized ideal and α ∈ P.

Let D(Λ/Ok) be the different of Λ over Ok. We have

Proposition 2.4. Let (I, qα) be an ideal lattice. The dual of the lattice (I, qα) is (I], qα),
where

I] = I
−1D(Λ/Ok)α−1.

Moreover, (I], qα) is an ideal lattice for D, Λ.

Proof. Straightforward computation.

Let d(Λ/Z) be the discriminant of Λ over Z.

Proposition 2.5. Let (I, qα) be an ideal lattice. Then we have

det(I, qα) = nrdDR/R(α)mNDR/R(I)2d(Λ/Z).

Proof. This follows from 2.4, as det(I, qα) is the cardinal of I]/I.
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Proposition 2.6. Suppose that D is a quaternion field with center k, and suppose that
the restriction of the canonical involution to k is the identity. Then every integral ideal
lattice over D is even.

Proof. As D is tamely ramified, there exists τ ∈ Λ such that τ + τ = 1. Let (I, qα) be an
integral ideal lattice. For every x ∈ I we have

qα(x, x) = trDR/R(xαx) = trDR/R(τxαx) + trDR/R(τxαx) = 2trDR/R(τxαx).

As τxαx ∈ D(Λ/Z)−1, this implies that the lattice (I, qα) is even.

§3. Bounds for ideal lattices over division algebras

The results of this section will be applied to obtain upper bounds for Euclidean and
inhomogeneous minima of orders of division algebras (cf. §4). The following proposition
is a consequence of the inequality between arithmetic and geometric means.

Proposition 3.1. Let α ∈ P. Then we have

nrdDR/R(xαx) ≤ (
qα(x, x)

nm
)nm.

Proof. Recall that qα is definite positive and that DR ' Mm
2
(H)w × Mm(R)r1−w ×

Mm(C)r2 , so

(
qα(x, x)

nm
)nm = ((

v1 + v2 + v3

n
)n)m,

where

v1 = 1
m

∑w
i=1 Tr(xiαix

t
i)

v2 = 1
m

∑r1
i=w+1 Tr(xiαix

t
i)

v3 = 1
m

∑r1+r2
i=r1+1 Tr(xiαix

t
i) + Tr(xiαix

t
i).

By the inequality between the arithmetic and geometric means, this is greater or equal
to

(
w∏

i=1

Tr(xiαix
t
i)

m

r1∏
i=w+1

Tr(xiαix
t
i)

m

r1+r2∏
i=r1+1

Tr(xiαix
t
i)

m

Tr(xiαix
t
i)

m
)m.

Applying again the inequality between arithmetic and geometric means, we see that
the last expression is greater or equal to
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w∏
i=1

det(xiαix
t
i)

r1∏
i=w+1

det(xiαix
t
i)

r1+r2∏
i=r1+1

det(xiαix
t
i)det(xiαix

t
i),

which is equal to nrdDR/R(xαx).

Notation 3.2. For any ideal lattice (I, qα) and for all x ∈ DR, set

β(I,qα)(x) =
qα(x, x)

det(I, qα)
1

nm2

For every order Λ of D, set

γ(Λ) =
nm

d(Λ/Z)
1

nm2
.

Proposition 3.3. Let (I, qα) be an ideal lattice. We have

nrdDR/R(x) ≤ (
β(I,qα)(x)

γ(Λ)
)nm/2nrdDR/R(I).

Proof. Using proposition 2.5, we see that

(
β(I,qα)(x)

γ(Λ)
)nm/2nrdDR/R(I) = nrdDR/R(α)−1/2(

qα(x, x)
nm

)nm/2.

On the other hand, by proposition 3.1 we have

nrdDR/R(x)2 = nrdDR/R(α)−1nrdDR/R(xαx) ≤ nrdDR/R(α)−1(
qα(x, x)

nm
)nm.

This concludes the proof of the proposition.

Definition 3.4. Let I be a generalized ideal. We define its Hermite invariants by

γmin(I) = infα∈P {γ(I, qα)},

and
τmin(I) = infα∈P {τ(I, qα)}.

Definition 3.5. Let I and J be two generalized ideals. We say that I and J are equivalent
if there exists x ∈ D∗

R such that xI = J .

Definition 3.6. Let I be a generalized ideal. The minimum of I, denoted by min(I), is
by definition

min(I) = min(ND/Q(J) | J is an integral ideal and J is equivalent to I−1}.
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Proposition 3.7. Let Λ be an order of D, and let I be a generalized Λ–ideal. We have

(i) γmin(I) ≥ nm
d(Λ/Z)1/nm2 min(I)2/nm2

(ii) γmin(Λ) = nm
d(Λ/Z)1/nm2 .

Proof. By 3.3, we have

qα(x, x)

det(I, qα)
1

nm2
≥ nm

d(Λ/Z)1/nm2 (
nrdDR/R(x)
nrdDR/R(I)

)2/nm

for all x ∈ DR. Using the equalities

nrdDR/R(x) = NDR/R(x)1/m,nrdDR/R(I) = NDR/R(I)1/m,

we obtain

qα(x, x)

det(I, qα)
1

nm2
≥ nm

d(Λ/Z)1/nm2 NDR/R(xI−1)2/nm2
,

hence

γ(I, qα) ≥ nm

d(Λ/Z)1/nm2 min(I)2/nm2
.

As this holds for all α ∈ P, this proves (i). For (ii), it suffices to show that

γmin(Λ) ≤ nm

d(Λ/Z)1/nm2 .

This is done by considering the ideal lattice (Λ, q1). Indeed, we have det(Λ, q1) = d(Λ/Z),
and q1(1, 1) = nm, hence we have

γmin(Λ) ≤ γ(Λ, q1) ≤
nm

d(Λ/Z)1/nm2 .

Lemma 3.8. For any lattice (L, q) of rank r, we have

τ(L, q)γ(L], q) ≤ r2/4.

Proof. See [1], Lemma 4.4.

Corollary 3.9. Let I be a generalized ideal. Then we have

τmin(I) ≤ nm3

4
d(Λ/Z)1/nm2

.
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Proof. By 3.7 and 3.8, we have

n2m4

4
≥ τ(I, qα)γ(I], qα) ≥ τ(I, qα)

nm

d(Λ/Z)1/nm2

for all α ∈ P. This implies the desired statement.

§4. Upper bounds for Euclidean minima

The aim of this section is to apply the results of §3 to obtain bounds for Euclidean
and inhomogeneous minima in terms of Hermite invariants of ideal lattices.

Theorem 4.1. For any generalized ideal I, we have

MR(I) ≤ (
τmin(I)
γmin(Λ)

)nm/2nrdDR/R(I).

Proof. Let (I, q) be an ideal lattice. For all x ∈ DR, there exists c ∈ I such that
q(x− c) ≤ max(I, q). Hence βI,q(x− c) ≤ τ(I, q). By 3.3 an 3.7.(ii), we have

nrdDR/R(x− c) ≤ (
τ(I, q)
γmin(Λ)

)nm/2nrdDR/R(I).

By definition, this implies that

MR(I) ≤ (
τ(I, q)
γmin(Λ)

)nm/2nrdDR/R(I),

which leads to

MR(I) ≤ (
τmin(I)
γmin(Λ)

)nm/2nrdDR/R(I).

This concludes the proof of the theorem.

Corollary 4.2. We have

MR(I) ≤ (τmin(I))nm/2(4/nm2)nm/2(
√

m

2
)nmd(Λ/Z)1/2mnrdDR/R(I).

Proof. This follows from the equality γmin(Λ) = nm
d(Λ/Z)1/nm2 (cf. Proposition 3.7.(ii)).

Corollary 4.3. We have
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MR(I) ≤ (
m

2
)nmd(Λ/Z)1/mnrdDR/R(I).

Proof. This follows immediately from 4.2 and 3.9.

Note that in the commutative case – that is, m = 1 – this gives us the bound of [1],
6.1, namely M(I) ≤ 2−ndKN(I). If moreover k is totally real, then conjecturally we have a
much better upper bound, namely M(I) ≤ 2−n

√
dKN(I). The following corollary gives a

necessary condition for an analog of this conjecture to hold in the non–commutative case.

Corollary 4.4. Suppose that τmin(I) ≤ nm2

4 . Then

MR(I) ≤ (
√

m

2
)nmd(Λ/Z)1/2mnrdDR/R(I).

Proof. This is an immediate consequence of 4.2.

§5. Examples

The main purpose of this section is to illustrate the results of §4 with some examples.
Throughout this section, k will be a totally real number field of degree n, and D will be
a totally definite quaternion field over k, i.e. such that every infinite place of k ramifies
in D. Let Λ be a maximal order of D. As usual, we denote by dk the discriminant of the
field k.

Proposition 5.1. We have

1
22n

M(k)2 ≤ M(Λ).

Proof. Let x ∈ k. There exists α ∈ Λ such that mΛ(x) = N(x − α). Let α = α0 + α1,
where α0 ∈ k and α1 is a pure quaternion. Then

nrdD/k(x− α) = (x− α0)2 − α2
1.

Note that −α2
1 is totally positive, as D is totally definite. Therefore we have

mΛ(x) = Nk/Q((x− α0)2 − α2
1)) ≥ Nk/Q(x− α0)2.
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As α ∈ Λ, we have TrD/k(α) ∈ Ok. Note that TrD/k(α) = 2α0. Hence we have
2α0 ∈ Ok and

Nk/Q(x− α0)2 =
1

22n
Nk/Q(2x− 2α0)2 ≥

1
22n

mk(2x)2

so that
M(Λ) ≥ mΛ(x) ≥ 1

22n
mk(2x)2,

and the claim is proved.

Using classical results concerning the Euclidean minimum of real quadratic fields, the
previous result yields immediately the following lower bound for the Euclidean minimum
of orders of totally definite quaternion algebras :

Theorem 5.2. We have
M(Λ) ≥ dk

7552 + 3072
√

6
.

Proof. Indeed, we have M(k) ≥
√

dk

16+6
√

6
(see for instance [7], th. 4.2.). This, combined

with the previous proposition, gives the desired result.

Applying 4.3, we get the following bounds :

Corollary 5.3. We have

dk

7552 + 3072
√

6
≤ M(Λ) ≤

√
d(Λ).

Proof. This follows immediately from 4.3 and 5.2.

In order to apply the results of §4, we need to investigate the ideal lattices that can
be realized over a given maximal order. In the following proposition we do this for the
root lattice E8 :

Proposition 5.4. Let (I, qα) be an ideal lattice over Λ. Suppose that no finite place of k
ramifies in D, and nrdD/k(I)Dk = α−1Ok. Then (I, qα) ' E8.

Proof. As D is unramified at the finite places of k, we have D(Λ/Ok) = Λ, hence
D(Λ/Z) = DkΛ. Set J = nrdD/k(I). We have

IαI = ID−1
k J−1I = D−1

k J−1nrdD/k(I)Λ = D−1
k Λ.
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This implies that IαI = D(Λ/Z)−1, and hence by prop. 2.4. (I, qα) is unimodular.
Moreover, by prop. 2.6. the lattice (I, qα) is even. As the rank of this lattice is equal to
8, this implies that (I, qα) ' E8 (see for instance [6], 4.8.1).

Note that the conditions of prop. 5.4 are actually necessary and sufficient for an ideal
lattice to be isomorphic to E8, cf. [5], 3.8.6.

Proposition 5.5. Suppose that no finite place of k ramifies in D, and that the fundamental
unit of Ok has norm −1. Then there exists an ideal lattice (Λ, qα) that is isomorphic to
E8.

Proof. The existence of a unit of Ok with norm −1 implies that D−1
k has a totally positive

generator α. By the previous proposition, we have (Λ, qα) ' E8.

We can now apply 5.5 and the results of §4 to obtain an upper bound for the Euclidean
minimum of some quaternionian orders :

Proposition 5.6. Suppose that no finite place of k ramifies in D, and that the fundamental
unit of Ok has norm −1. Then

M(Λ) ≤ dk

16
.

Proof. By 5.5, the lattice E8 is an ideal lattice over Λ. As E8 is unimodular and max(E8)
(see for instance [6], 4.8.1), we have by 4.1 and 3.7 that

M(Λ) ≤ (
1

γmin(Λ)
)2 = (

d(Λ/Z)1/8

4
)2.

As the finite places of k are unramified in D, we have d(Λ/Z) = d(Λ/Ok)d4
k = d4

k. This
implies M(Λ) ≤ dk

16 .

We obtain the following bounds :

Corollary 5.7. Suppose that no finite place of k ramifies in D, and that the fundamental
unit of Ok has norm −1. Then

dk

7552 + 3072
√

6
≤ M(Λ) ≤ dk

16
.

Note that a direct application of 5.3 would only have given the upper bound d2
k.
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