Some entropic extensions of the uncertainty principle

Abstract : In connection with the uncertainty principle in quantum mechanics (Heisenberg) or in time-frequency analysis (Heisenberg-Gabor), we study its formulation in terms of entropic inequalities, extending results recently derived by Bialynicki-Birula and Zozor et al. These results can be considered as generalizations of the Heisenberg inequalities in the sense that they measure the mutual uncertainty of a random variable (or wave function) and its conjugated random variable (or Fourier transformed wave function) through their associated Rényi entropies with conjugated indexes. We consider here the more general case where the entropic indexes are not conjugated, in both cases where the state space is discrete and continuous: we discuss the existence of an uncertainty inequality depending on the location of the entropic indexes alpha and beta in the plane (alpha,beta). Our results explain and extend a recent study by Luis, where states with quantum fluctuations below the Gaussian case are discussed at the single point (2,2).
Type de document :
Communication dans un congrès
ISIT 2008, Jul 2008, Toronto, Canada. IEEE, pp.1676-1680, 2008, <10.1109/ISIT.2008.4595273>
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-00282363
Contributeur : Steeve Zozor <>
Soumis le : mardi 27 mai 2008 - 14:02:52
Dernière modification le : samedi 18 mars 2017 - 01:02:09

Identifiants

Citation

Steeve Zozor, Mariela Portesi, Christophe Vignat. Some entropic extensions of the uncertainty principle. ISIT 2008, Jul 2008, Toronto, Canada. IEEE, pp.1676-1680, 2008, <10.1109/ISIT.2008.4595273>. <hal-00282363>

Partager

Métriques

Consultations de la notice

189