Boundary singularities of positive solutions of some nonlinear elliptic equations
Marie-Françoise Bidaut-Véron, Augusto Ponce, Laurent Veron

To cite this version:
Boundary singularities of positive solutions of some nonlinear elliptic equations

Singularités au bord de solutions positives d’équations elliptiques non-linéaires

Marie-Francoise Bidaut-Véron, Augusto C. Ponce, Laurent Véron
Laboratoire de Mathématiques et Physique Théorique, CNRS UMR 6083, Faculté des Sciences, 37200 Tours, France

Abstract
We study the behavior near x_0 of any positive solution of (E) $-\Delta u = u^q$ in Ω which vanishes on $\partial\Omega \setminus \{x_0\}$, where $\Omega \subset \mathbb{R}^N$ is a smooth domain, $q \geq (N+1)/(N-1)$ and $x_0 \in \partial\Omega$. Our results are based upon a priori estimates of solutions of (E) and existence, non-existence and uniqueness results for solutions of some nonlinear elliptic equations on the upper-half unit sphere. To cite this article: M.-F. Bidaut-Véron, A.C. Ponce, L. Véron, C. R. Acad. Sci. Paris, Ser. I XXX (2006).

Résumé
Nous étudions le comportement quand x tend vers x_0 de toute solution positive de (E) $-\Delta u = u^q$ dans Ω qui s’annule sur $\partial\Omega \setminus \{x_0\}$, où $\Omega \subset \mathbb{R}^N$ est un domaine régulier, $q \geq (N+1)/(N-1)$ et $x_0 \in \partial\Omega$. Nos résultats sont fondés sur des estimations a priori des solutions de (E), et des résultats d’existence, de non existence et d’unicité de solutions de certaines équations elliptiques non linéaires sur la demi-sphère unité. Pour citer cet article : M.-F. Bidaut-Véron, A.C. Ponce, L. Véron, C. R. Acad. Sci. Paris, Ser. I XXX (2006).

Email addresses: veronmf@univ-tours.fr (Marie-Francoise Bidaut-Véron), ponce@lmpt.univ-tours.fr (Augusto C. Ponce), veronl@univ-tours.fr (Laurent Véron).

Preprint submitted to Elsevier Science 25 mai 2008
Nous distinguerons les trois valeurs critiques de q données par (4). Si $1 < q < q_1$, le comportement en 0 des solutions est décrit dans [4] ; aussi supposons-nous le plus souvent $q \geq q_1$. Si u est une solution de (3) dans \mathbb{R}_+^N de la forme $u(x) = u(r, \sigma) = r^{-2/(q-1)} \omega(\sigma)$, alors ω vérifie l’équation (6). Dans ce cas, nous avons le résultat suivant :

Théorème 0.1

(i) Si $1 < q \leq q_1$, le problème (3) n’admet aucune solution.

(ii) Si $q_1 < q < q_3$, (3) admet une unique solution, notée ω_0.

(iii) Si $q \geq q_3$, (3) n’admet aucune solution.

Le résultat d’unicité décrit en (ii) est en fait un cas particulier d’un résultat plus général :

Théorème 0.2 Pour tous $q > 1$ et $\lambda \in \mathbb{R}$, il existe au plus une solution positive de (7).

Ce résultat demeure si, dans (7), S_{N-1}^+ est remplacé par une boule dans \mathbb{R}^N, et Δ' par le laplacien ordinaire.

Par simplicité, nous pouvons supposer que $\partial \mathbb{R}^N_+$ est l’hyperplan tangent à Ω en 0. Le théorème ci-dessous donne une classification des singularités isolées du problème (3) :

Théorème 0.3 Soit $q \geq q_1$, avec $q \neq q_2$. Supposons que la solution u du problème (3) vérifie

\[0 \leq u(x) \leq C |x|^{-2/(q-1)} \quad \forall x \in \Omega \cap B_a(0), \quad (1) \]

pour $C, a > 0$. Si $q_1 \leq q < q_3$, ou bien u est continue en 0, ou bien

\[u(r, \sigma) = \begin{cases} r^{-(N-1)} (\log (1/r))^{1-N} (kN \sigma_1 + o(1)) & \text{si } q = q_1, \\ r^{-2/(q-1)} (\omega_0(\sigma) + o(1)) & \text{si } q_1 < q < q_3, \end{cases} \quad (2) \]

lorsque $r \to 0$, uniformément par rapport à $\sigma \in S_{N-1}^+$; k_N est une constante qui dépend seulement de N. Si $q \geq q_3$, u est continue en 0.

L’estimation a priori (1) est obtenue pour $q_1 \leq q < q_2$:

Théorème 0.4 Si $q_1 \leq q < q_2$, toute solution u de (3) vérifie (1) pour $C = C(N, q, \Omega) > 0$.

Les démonstrations détaillées sont présentées dans [2].

1. Introduction and main result

Let Ω be a smooth open subset of \mathbb{R}^N, $N \geq 2$, such that $0 \in \partial \Omega$ and let $q > 1$. Assume that $u \in C^2(\Omega) \cap C(\overline{\Omega} \setminus \{0\})$ is a solution of

\[\begin{cases} -\Delta u = u^q & \text{in } \Omega, \\ u \geq 0 & \text{in } \Omega, \\ u = 0 & \text{on } \partial \Omega \setminus \{0\}. \end{cases} \quad (3) \]

Our goal in this paper is to describe the behavior of u in a neighborhood of 0.

This problem has similar features with the case where $x_0 \in \Omega$, which has been studied by Gidas-Spruck [7]. In our case, we encounter three critical values of q in describing the local behavior of u:

\[q_1 := \frac{N+1}{N-1}, \quad q_2 := \frac{N+2}{N-2} \quad \text{if } N \geq 3 \quad \text{and} \quad q_3 := \frac{N+1}{N-3} \quad \text{if } N \geq 4. \quad (4) \]
When $1 < q < q_1$, it is proved in [4] that for every solution u of (3) there exists $\alpha \geq 0$ (depending on N and u) such that
\begin{equation}
 u(x) = \alpha |x|^{-N} \rho(x) \left(1 + o(1)\right) \quad \text{as } x \to 0,
\end{equation}
where $\rho(x) = \text{dist}(x, \partial \Omega)$, $\forall x \in \Omega$. For this reason, we shall mainly restrict ourselves to $q \geq q_1$.

Let us first consider the case where $\Omega = \mathbb{R}^N$ and we look for solutions of (3) of the form $u(x) = u(r, \sigma) = r^{-2/(q-1)} \omega(\sigma)$, where $r = |x|$ and $\sigma \in S^{N-1}_+$. An easy computation shows that ω must satisfy
\begin{equation}
 \begin{aligned}
 -\Delta' \omega &= \ell_{N,q} \omega + \omega^3 & \text{in } S^{N-1}_+,
 \\
 \omega &\geq 0 & \text{in } S^{N-1}_+,
 \\
 \omega &= 0 & \text{on } \partial S^{N-1}_+,
 \end{aligned}
\end{equation}
where Δ' denotes the Laplacian in S^{N-1} and $\ell_{N,q} = \frac{2(N - q(N-2))}{(q-1)^2}$. Concerning equation (6), we prove

Theorem 1.1 (i) If $1 < q \leq q_1$, then (6) admits no positive solution.

(ii) If $q_1 < q < q_3$, then (6) admits a unique positive solution.

(iii) If $q \geq q_3$, then (6) admits no positive solution.

One of the main ingredients in the proof of Theorem 1.1 (ii) is the following

Theorem 1.2 If $q > 1$ and $\lambda \in \mathbb{R}$, then there exists at most one positive solution of
\begin{equation}
 \begin{aligned}
 -\Delta' v &= \lambda v + v^3 & \text{in } S^{N-1}_+,
 \\
 v &= 0 & \text{on } \partial S^{N-1}_+.
 \end{aligned}
\end{equation}

Remark 1 We emphasize that in Theorem 1.2 we do not assume that q is subcritical. The conclusion above remains valid if, in (7), S^{N-1}_+ is replaced by $B_1 \subset \mathbb{R}^N$ and Δ' by the usual Laplacian in \mathbb{R}^N. Theorem 1.2 extends a previous result of Kwong-Li [8].

We now return to the case where $\Omega \subset \mathbb{R}^N$ is an arbitrary smooth set such that $0 \in \partial \Omega$. For simplicity, we may assume that $\partial \mathbb{R}^N_+$ is the tangent hyperplane of Ω at 0. Using Theorem 1.2, we provide a classification of isolated singularities of solutions of (3):

Theorem 1.3 Let $q \geq q_1$, $q \neq q_2$, and let u be a solution of (3). Assume that u satisfies
\begin{equation}
 0 \leq u(x) \leq C |x|^{-2/(q-1)} \quad \forall x \in \Omega \cap B_a(0),
\end{equation}
for some $C, a > 0$. If $q_1 \leq q < q_3$, then either u is continuous at 0 or
\begin{equation}
 u(r, \sigma) = \begin{cases}
 r^{-(N-1)} \left(\log (1/r)\right)^{\frac{1}{q-1}} \left(k_N \sigma_1 + o(1)\right) & \text{if } q = q_1, \\
 r^{-2/(q-1)} \left(\omega_0(\sigma) + o(1)\right) & \text{if } q_1 < q < q_3,
 \end{cases}
\end{equation}
as $r \to 0$, uniformly with respect to $\sigma \in S^{N-1}_+$. k_N denotes a constant depending only on N and ω_0 is the unique positive solution of (6).

If $q \geq q_3$, then u is continuous at 0.

Remark 2 We do not know whether Theorem 1.3 is true when $q = q_2$. In this case, the equation is conformally invariant and thus other techniques are required. If $\Omega = \mathbb{R}^N_+$, then it can be proved that any solution of (3) depends only on the variables $r = |x|$ and $\theta = \cos^{-1}(x_1/|x|)$.

The next result establishes the existence of an *a priori* estimate for the solutions of (3). According to Theorem 1.4 below, assumption (8) is always fulfilled when $q_1 \leq q < q_2$.

Theorem 1.4 Let $q_1 \leq q < q_2$ and let u be a solution of (3). Then,
\begin{equation}
 0 \leq u(x) \leq C \rho(x) |x|^{-2/(q-1)-1} \quad \forall x \in \Omega \cap B_1(0),
\end{equation}
where C depends on N, q and Ω.

Remark 3 According to the Doob Theorem [6], any positive superharmonic function \(v \) in \(\Omega \) satisfies \(\int_\Omega |\nabla v| \rho < \infty \) and admits a boundary trace, which is a Radon measure on \(\partial \Omega \). If \(u \) is a solution of (3), then its trace must be of the form \(k\delta_{x_0} \), for some \(k \geq 0 \). We may have \(k > 0 \) if \(1 < q < q_1 \) (see [1]), but \(k \) is necessarily equal to 0 if \(q \geq q_1 \). Indeed, by the maximum principle, \(u \) satisfies \(u \geq kP_{q_1}(x,0) \), where \(P_{q_1} \) denotes the Poisson potential of \(\Omega \). Since \(u \in L^3_q(\Omega) \) (by the Doob Theorem), we must have \(k = 0 \) if \(q \geq q_1 \).

Detailed proofs will appear in [2].

2. Sketch of the proofs

Proof of Theorem 1.1. Assertion (i) is proved by multiplying (6) by \(\phi(\sigma) = \sigma_1 \). Note that \(\phi \) is the first eigenfunction of \(-\Delta \) on \(S^{N-1}_+ \), with eigenvalue \(\lambda_1 = N - 1 \). Integrating the resulting expression over \(S^{N-1}_+ \), and using the fact that \(1 < q \leq q_1 \implies \ell_{N,q} \geq \lambda_1 \), we obtain (i).

The existence part in (ii) is obtained by using the Mountain Pass Theorem; the uniqueness is a consequence of Theorem 1.2.

Assertion (iii) can be deduced from the following Pohožaev-type identity:

Proposition 2.1 Assume \(N \geq 4 \) and \(q > 1 \). Then, any solution of (7) satisfies

\[
\frac{N-3}{q+1}(q-q_3) \int_{S^{N-1}_+} |\nabla' v|^2 \phi \, d\sigma - \frac{(N-1)(q-1)}{q+1} \int_{S^{N-1}_+} \phi \, d\sigma = \frac{N-1}{q-1} \int_{S^{N-1}_+} |\nabla' v|^2 \, d\sigma.
\]

This identity is obtained by computing the divergence of the vector field \(P = (\nabla' \phi, \nabla' v)\nabla' v \), where \(\nabla' \) is the gradient on \(S^{N-1}_+ \), and then using the fact that the first eigenfunction satisfies \(D^2 \phi + \phi g_0 = 0 \), where \(g_0 \) is the tensor of the standard metric on \(S^{N-1}_+ \). In order to establish (iii), it suffices to observe that \(\ell_{N,q} \leq \frac{N-1}{q-1} \iff q \geq q_3 \).

Proof of Theorem 1.2. We first notice that any positive solution of (7) depends only on the variable \(\theta = \cos^{-1}(x_1/|x|) \in [0, \pi/2] \); this follows from a straightforward adaptation of the Gidas-Ni-Nirenberg moving plane method to \(S^{N-1}_+ \) (see [9]). Thus, \(v \) satisfies

\[
\begin{align*}
v'' + (N - 2) \cot \theta v' + \lambda v + v^q &= 0 \quad \text{in } (0, \pi/2), \\
v'(0) &= 0, \quad v(\pi/2) = 0.
\end{align*}
\]

Let \(w(\theta) := \sin^\alpha \theta v(\theta) \), where \(\alpha > 0 \). By choosing \(\alpha = 2(N - 2)/(q + 3) \), then \(w \) satisfies

\[
(w'(\pi/2))^2 = \int_0^{\pi/2} G'(\theta) w^2(\theta) \, d\theta,
\]

where \(G \) is a function of the form \(G(\theta) = \sin^\beta \theta (\alpha_1 \sin^2 \theta + \alpha_2) \); the parameters \(\alpha_1, \alpha_2, \beta' \in \mathbb{R} \) can be explicitly computed in terms of \(\lambda, N \) and \(q \).

Assume, by contradiction, that \(v_1 \) and \(v_2 \) are two distinct solutions of (11). Then,

\[
\int_0^{\pi/2} v_1 v_2 (v_2^{q-1} - v_1^{q-1}) \, d\theta = 0.
\]

Therefore, their graphs must intersect at some \(\theta_0 \in (0, \pi/2) \). We claim that \(v_1 \) and \(v_2 \) intersect at least twice in \((0, \pi/2)\). If there is only one intersection point, then it can be shown that there exists \(\gamma \geq 0 \) such
that the function \(\theta \mapsto G'(\theta)(w_2^2(\theta) - \gamma w_1^2(\theta)) \) never vanishes in \((0, \pi/2)\). We then let \(L(t) := (t^2 - \gamma)^{-1} \), \(\forall t \in \mathbb{R} \setminus \{ \gamma \} \). By (12) and the Mean Value Theorem, there exists \(\theta_1 \in (0, \pi/2) \) such that

\[
L \left(\frac{w_2^2(\pi/2)}{w_1^2(\pi/2)} \right) = \frac{\int_0^{\pi/2} G'(\theta) w_2^2(\theta) \, d\theta}{\int_0^{\pi/2} G'(\theta) [w_2^2(\theta) - \gamma w_1^2(\theta)] \, d\theta} = L \left(\frac{w_2(\theta_1)}{w_1(\theta_1)} \right).
\]

Since \(L \) is injective in \(\mathbb{R}_+ \), this implies

\[
\frac{w_2^2(\pi/2)}{w_1^2(\pi/2)} = \frac{w_2(\theta_1)}{w_1(\theta_1)} \tag{14}
\]

On the other hand, by the Sturm-Liouville Theory, the function \(\theta \mapsto w_2(\theta)/w_1(\theta) \) is (strictly) monotone. L’Hôpital’s Rule yields a contradiction as we let \(\theta \to \pi/2 \). Therefore, \(v_1 \) and \(v_2 \) must intersect at least twice. This fact leads to another contradiction by using the Shooting Method (see [8]). Thus, \(v_1 = v_2 \) in \((0, \pi/2)\).

Remark 4 The method above follows the lines of the proof of Kwong-Li [8]. The main difference is that we use an alternative argument based on the Mean Value Theorem in order to deduce (14). In [8], they have to assume that the exponent \(q \) is subcritical.

Proof of Theorem 1.3. It follows from methods developed in [7] and [3]. For simplicity, we shall assume that \(a = 1 \) and \(\partial \Omega \cap B_1 = \partial\mathbb{R}_+ \cap B_1 \). We set

\[
w(t, \sigma) = \rho^{2/(q-1)} w(r, \sigma), \quad t = \log (1/r) \in (0, \infty) \times S_{\mathbb{R}_+}^N := Q.
\]

Then, \(w \) satisfies

\[
w_{tt} - \left(N - 2 \frac{q+1}{q-1} \right) w_t + \Delta w + \ell N, q, w + w^q = 0 \quad \text{in } Q \tag{15}
\]

and \(w \) vanishes on \((0, \infty) \times \partial S_{\mathbb{R}_+}^N \). Since \(w \) is uniformly bounded on \(Q \), standard \textit{a priori} estimates for elliptic problems yield

\[
|\partial^k \nabla^j w| \leq M_{k,j} \quad \text{in } (1, \infty) \times S_{\mathbb{R}_+}^N
\]

for any integers \(k, j \geq 0 \), where \(\nabla^j \) stands for the covariant derivative on \(S_{\mathbb{R}_+}^N \). Thus, the trajectory \(T_w = \{ w(t, \cdot) : t \geq 1 \} \) is relatively compact in \(C^2(S_{\mathbb{R}_+}^{N-1}) \). Multiplying (15) by \(w_t \) and integrating over \(S_{\mathbb{R}_+}^{N-1} \), we obtain

\[
\frac{d}{dt} H(t) = \left(N - 2 \frac{q+1}{q-1} \right) \int_{S_{\mathbb{R}_+}^{N-1}} w_t^2 \, d\sigma,
\]

where

\[
H(t) := \frac{1}{2} \int_{S_{\mathbb{R}_+}^{N-1}} \left(w_t^2 - |\nabla w|^2 - \ell N, q, w^2 + \frac{2}{q+1} w^{q+1} \right) \, d\sigma.
\]

Since \(q \neq q_2 \), we know that \(N - 2(q+1)/(q-1) \neq 0 \). Thus, iterated energy estimates imply that \(w_t(t, \cdot), w_{tt}(t, \cdot) \to 0 \) in \(L^2(S_{\mathbb{R}_+}^{N-1}) \) as \(t \to \infty \). Therefore, the limit set \(\Gamma_w \) of \(T \) is a connected subset of the set of solutions of (6). By Theorem 1.1, we deduce that

\[
\Gamma_w = \begin{cases}
\{0\} & \text{if } q = q_1 \text{ or } q = q_3, \\
\{0\} \text{ or } \{\omega_0\} & \text{if } q_1 < q < q_3.
\end{cases}
\]

Then, a linearization argument as in [3] leads to the conclusion if \(q > q_1 \).

We now consider the case \(q = q_1 \); we borrow some ideas from [1] and [11]. We first prove, by ODE techniques, that

\[
X(t) := \int_{S_{\mathbb{R}_+}^{N-1}} w(t, \cdot) \phi \, d\sigma \leq C t^{-(N-1)/2}.
\]

\[\tag{17}\]
Using (8) and the boundary Harnack inequality (see [5]), we derive

\[0 \leq w(t, \sigma) \leq C t^{-(N-1)/2} \quad \text{in} \quad (1, \infty) \times S^N_+ \tag{18} \]

Set \(\eta(t, \sigma) := t^{(N-1)/2} w(t, \sigma) \). We verify as above that the limit set \(\Gamma_\eta \) in \(C^2(S^N_+) \) of the trajectory \(T_\eta \) of \(\eta \) is an interval of the form \(\{ \kappa \phi : 0 \leq \kappa_0 \leq \kappa \leq \kappa_1 \} \). In order to show that \(T_\eta \) is reduced to a single point, we prove that \(\| r(t, \cdot) \|_{L^2} \leq C t^{-1} \), where \(r(t, \cdot) := \eta(t, \cdot) - z(t) \phi \) and \(z(t) = \int_{S^N_+ \eta(t, \cdot)} \phi \, d\sigma \).

Writing the equation satisfied by \(z \) as a non-homogeneous second order linear ODE, we prove that either \(z(t) \to 0 \), which implies that \(u \) is continuous at 0, or \(z(t) \to \tilde{k}_N \) as \(t \to \infty \), for some constant depending only on \(N \).

Proof of Theorem 1.4. It is an application of the Doubling Lemma Method introduced in [10], from which we derive the following local estimate:

Lemma 2.1. Let \(1 < q < q_2 \) and let \(u \) be a solution of (3). Then, for every \(x_0 \in \partial \Omega \setminus \{0\} \) and \(0 < R < |x_0| \), we have

\[0 \leq u(x) \leq C \left(R - |x - x_0| \right)^{-2/(q-1)} \quad \forall x \in B_R(x_0) \cap \Omega, \tag{19} \]

for some constant \(C > 0 \) depending only on \(\Omega \).

Apply this lemma with \(x_0 \in \partial \Omega \setminus \{0\} \) and \(R = |x_0|/2 \). Using elliptic regularity theory, we obtain

\[0 \leq u(x) \leq C \rho(x) |x|^{-2/(q-1)} \quad \forall x \in \Omega \text{ such that } 0 < \rho(x) < |x|/2. \]

If \(\rho(x) \geq |x|/2 \), then we use Gidas-Spruck’s internal estimates (see [7]). We thus obtain (10).

References

