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Abstract

Multi-armed bandit problems are considered as a paradigimeafade-off between exploring the environ-
ment to find profitable actions and exploiting what is alreldgwn. In the stationary case, the distributions
of the rewards do not change in timépper-Confidence Bour@CB) policies, proposed in Agrawal (1995)
and later analyzed in Auer et al. (2002), have been shown tatbeptimal.

A challenging variant of the MABP is the non-stationary biapdoblem where the gambler must de-
cide which arm to play while facing the possibility of a chamgenvironment. In this paper, we consider
the situation where the distributions of rewards remainstamt over epochs and change at unknown time
instants. We analyze two algorithms: tiscounted UCBEand thesliding-window UCB We establish for
these two algorithms an upper-bound for the expected rbgrapper-bounding the expectation of the num-
ber of times a suboptimal arm is played. For that purpose, evivela Hoeffding type inequality for self
normalized deviations with a random number of summands. $éhésh a lower-bound for the regret in
presence of abrupt changes in the arms reward distributidves show that the discounted UCB and the
sliding-window UCB both match the lower-bound up to a lotfariic factor.

Keywords: Multi-armed bandit, reinforcement learning, deviatioaedualities, non-stationary environment

1. Introduction

Multi-armed bandit (MAB) problems, modelling allocatiossues under uncertainty, are fundamental to
stochastic decision theory. The archetypal MAB problem t@ystated as follows: there is a bandit with
K independent arms. At each time step, the player can play @mmyarm and receive a reward. In the
stationary case, the distribution of the rewards are ihjitianknown, but are assumed to remain constant
during all games. The player iteratively plays one actianll§pan arm) per round, observes the associated
reward, and decides on the action for the next iteration. Jded of a MAB algorithm is to minimize
the expected regret ové@r rounds, which is defined as the expectation of the differdreteeen the total
reward obtained by playing the best arm and the total rewbtdireed by using the algorithm (q@olicy).
The minimization of the regret is achieved by balana@xgloitation the use of acquired information, with
exploration acquiring new information. If the player always plays thmavhich he currently believes to
be the best, he might miss to identify another arm having &maflg higher expected reward. On the other
hand, if the gambler explores too often the environment @ firofitable actions, he will fail to accumulate
as many rewards as he could. For several algorithms in #ratitre (e.g. Lai and Robbins (1985); Agrawal
(1995)), as the number of playsgoes to infinity, the expected total reward asymptoticgtigraaches that



of playing a policy with the highest expected reward, andrdgret grows as the logarithm @f. More
recently, finite-time bounds for the regret have been ddrfgee Auer et al. (2002); Audibert et al. (2007)).

Though the stationary formulation of the MABP allows to agkir exploration versus exploitation chal-
lenges in a intuitive and elegant way, it may fail to be adégua model an evolving environment where
the reward distributions undergo changes in time. As an glignn the cognitive medium radio access
problem Lai et al. (2007), a user wishes to opportunisicakploit the availability of an empty channel in a
multiple channels system; the reward is the availabilityhefchannel, whose distribution is unknown to the
user. Another application is real-time optimization of witbs by targetting relevant content at individuals,
and maximize the general interest by learning and serviagrtbst popular content (such situations have
been considered in the recent Exploration versus ExpiloitgEVE) PASCAL challenge by Hartland et al.
(2006), see also Koulouriotis and Xanthopoulos (2008) aed¢ferences therein). These examples illus-
trate the limitations of the stationary MAB models. The bttty that a given channel is available is likely
to change in time. The news stories a visitor of a website istiilely to be interested in vary in time.

To model such situations, we need to consider non-statioM@B problems, where distributions of
rewards may change in time. We show in the following thatx@&eted, policies tailored for the stationary
case fail to track changes of the best arm. In this paper, wsider a particular non-stationary case where
the distributions of the rewards undergo abrupt changes.d&¥ee a lower-bound for the regret of any
policy, and we analyze two algorithms: the Discounted UCB&r Confidence Bound) proposed by Koczis
and Szepesvari and the Sliding Window UCB we introduce. Wdevsthat they are almost rate-optimal, as
their regret almost matches a lower-bound.

1.1 The stationary MAB problem

At each times, the player chooses an athne {1,..., K} to play according to a (deterministic or random)
policy = based on the sequence of past plays and rewards, and obtangm@ X, (I,)*. The rewards
{Xs(i)}s>1 for each armi € {1,..., K} are modeled by a sequence of independent and indentically
distributed (i.i.d.) random variables from a distributianknown to the player. We denote i) the
expectation of the reward; (7).

The optimal (oracle) policy™ consists in always playing the arthe {1,..., K} with largest expected
reward

plx) = max u@i), o= afggzxu@)-

The performance of a policy is measured in terms aégret in the first T plays, which is defined as
the expected difference between the total rewards cotidzyethe optimal policyr* (playing at each time
instant the armi* with the highest expected reward) and the total rewardscet by the policyr.

Denote by, (i) = 22:1 1y7,—; the number of times armhas been played in thefirst games. The
expected regret aftar plays may be expressed as:

Er

> Aulx) - M(It)}] = {p(x) — p(i)} Bx [Np(i)],
t=1 ii*

wherekE . the expectation under policy.

1. Note that we use here the convention that the reward &ftigma s if the i-th arm is played is supposed to B& (i) and
not the NV, (¢)-th reward in the sequence of rewards for armvhere N, (i) denotes the number of time the ainhas been
played up to times; while this convention makes no difference in the statigrase, because the distribution of the rewards
are independent, it is meaningful in the non-stationarng camce the distribution of the armay changeven if the arm has
not been played. These models can be seen as a special isfdhe so-calledestlesandit, proposed by Whittle (1988).



Obviously, bounding the expected regret affeplays essentially amounts to controlling the expected
number of times a sub-optimal arm is played. In their semyzgder, Lai and Robbins (1985) consider
stationary MAB problem, in which the distribution of rewardias taken from a one-dimensional parametric
family (each being associated with a different value of taeameter, unknown to the player). They have
proposed a policy achieving a logarithmic regret. Furttemnthey have established a lower-bound for
the regret for policy satisfying an appropriately definedsistency condition, and show that their policy
was asymptotically efficient. Later, the non-parametriatest has been considered; several algorithms
have been proposed, among whatftmax action selectiopolicies andUpper-Confidence BounCB)
policies.

Softmax methods are randomized policies where, at tirttee arml; is chosen at random by the player
according to some probability distribution giving more gl to arms which have so-far performed well.
The greedy action is given the highest selection probgpititt all the others are ranked and weighted
according to their accumulated rewards. The most commadmaafaction selection method uses a Gibbs,
or Boltzman distribution. A prototypal example of softmactian selection is the so-called EXP3 policy
(for Exponential-weight algorithm for Exploration and Exphdibn), which has been introduced by Freund
and Schapire (1997) for solving a worst-case sequentiatation problem and thouroughly examined as
an instance of “prediction with limited feedback” problemGhapter 6 of Cesa-Bianchi and Lugosi (2006)
(see also Auer et al. (2002/03); Cesa-Bianchi and Lugo€iq))9

UCB methods are deterministic policies extending the dlgor proposed by Lai and Robbins (1985)
to a non-parametric context; they have been introduced aalyzed by Agrawal (1995). They consist in
playing during the-th round the armi that maximizes the upper bound of a confidence interval fpeeted
rewardy (), which is constructed from the past observed rewards. Thst papular, called UCB-1, relies
on the upper-bound(; (i) + c;(i), where X, (i) = (N;(i))~' S0_; X4(i)1{1,—;; denotes the empirical
mean, and (i) is apadding function A standard choice is;(i) = By/{log(t)/N:(i), whereB is an
upper-bound on the rewards afid> 0 is some appropriate constant. UCB-1 is defined in Algorithm 1

Algorithm 1 UCB-1
fort from 1to K, play arml; = ¢;
for ¢t from K + 1to T, play arm

I = argmax X;(4) + ¢4 (7).
1<i<K

UCB-1 belongs to the family of “follow the perturbed leadexigorithms, and has proven to retain
the optimal logarithmic rate (but with suboptimal consjam finite-time analysis of this algorithm has
been given in Auer et al. (2002); Auer (2002); Auer et al. 03). Other types of padding functions are
considered in Audibert et al. (2007).

1.2 The non-stationary MAB problem

In the non-stationary context, the rewa#ds; (i) }s>1 for arm: are modeled by a sequence of independent
random variables from potentially different distributsofunknown to the user) which may vary across time.
For eachs > 0, we denote by, (i) the expectation of the rewarli; (i) for armi. Likewise, leti; be

the arm with highest expected reward, dengte@), at timet¢. The regret of a policyr is now defined as
the expected difference between the total rewards colldnyethe optimal policyr* (playing at each time
instant the armi;) and the total rewards collected by the policyNote that, in this paper, the non-stationary
regret is not defined with respect to the best arm on averageyith respect to a strategy tracking the best
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arm at each step (this notion of regret is similar to the ‘®e@gainst arbitrary strategies” introduced in
Section 8 of Auer et al. (2002/03) for the non-stochasticditgsroblem).

In this paper, we considebruptly changing environmentthe distributions of rewards remain constant
during periods and change at unknown time instants cdliedkpoints In the following, we denote by
T the number of abrupt changes in the reward distributions dbeur before timel". Another type of
non-stationary MAB, where the distribution of rewards al continuously, are considered in Slivkins
and Upfal (2008).

Standard soft-max and UCB policies are not appropriatetfor@ly changing environments:as stressed
in Hartland et al. (2006), “empirical evidence shows thairtfExploration versus Exploitation trade-off is
not appropriate for abruptly changing environments“. Tdrads this problem, several methods have been
proposed.

In the family of softmax action selection policies, Auer £t(2002/03) and Cesa-Bianchi et al. (2006,
2008) have proposed an adaptation referred tBX83.Sof the Fixed-Share algorithm, a computationally
efficient variant of EXP3 called introduced by Herbster anariuth (1998) (see also (Cesa-Bianchi and
Lugosi, 2006) and the references therein). Theorem 8.1 anoll&ry 8.3 in Auer et al. (2002/03) state that
when EXP3.S is tuned properly (which requires in partictifet Y7 is known in advance), the expected
regret is upper-bounded as

E. [Rr] < 2ve—1/KT(Trlog(KT) +e) .

Compared to the stationary case, such an upper-bound maydseiving: the rat® (/T log T') is much
larger than th& (log T") achievable in absence of changes. But actually, we provedtié 4 that no policy
can achieve an average regret smaller t&k/'T') in the non-stationary case. Hence, EXP3.S matches the
best achievable rate up to a factgtog 7. Moreover, by construction this algorithm can as well bedlise

an adversarial setup.

On the other hand, in the family of UCB policies, severalrafies have been made; see for examples
Slivkins and Upfal (2008) and Kocsis and Szepesvari (2006 particular, Kocsis and Szepesvari (2006)
have proposed an adaptation of the UCB policies that reliea discount factory € (0,1). This policy
constructs an UCEX, (v, )+ ¢ (v, 1) for the instantaneous expected reward, where the disabemeirical
average is given by

— 1
Xt(fy’ ) Nt(’Y nyt SX ( )]l{fs 2}7 Nt 77 nyt S]l{fs Z}7

and the discounted padding function is defined as

N §logny(v)
Ct(’y,l) =2B W ZNt 75

for an appropriate parametérUsing these notations, discounted-UCB (D-UCB) is defime@ligorithm 2.
Remark that fory = 1, D-UCB boils down to the standard UCB-1 algorithm.

In order to estimate the instantaneous expected rewar@-th€B policy averages past rewards with a
discount factor giving more weight to recent observatioig propose in this paper a more abrupt variant
of UCB where averages are computed on a fixed-size horizotimétt, instead of averaging the rewards
over all past with a discount factaliding-window UCBrelies on a local empirical average of the observed
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Algorithm 2 Discounted UCB
for ¢t from 1to K, play arml; = t;
for ¢t from K + 1to T, play arm

Iy = argmax Xy(7,14) + c¢(7, ).
1<i<K

rewards, using only the last plays. Specifically, this algorithm constructs an UERT,4) + ¢ (7, 1) for
the instantaneous expected reward; the local empiricahgeds given by

t

¢
5 . 1 . . s
Xi(r,i) = ACT) SZ;H Xs()lgr—iy,  Nily,i) = ;7 Ler,=iys

and the padding function is defined as

Elog(t A T)

Ct(7—>i) =B Nt(’T Z) >

wheret A 7 denotes the minimum afandr, and¢ is a some appropriate constant. The policy defined in
Algorithm 3 will be called in the sequé&liding-Window UCRSW-UCB).

Algorithm 3 Sliding-Window UCB
for ¢t from 1to K, play arml; = t;
for ¢t from K + 1to T, play arm

Iy = arg max Xy(7,4) + c4(7, 1),
1<i<K

In this paper, we investigate the behaviors of the discalsld€B and of the sliding-window-UCB in an
abruptly changing environment, and prove that they are stimate-optimal in a minimax sense. In Section
2, we derive a finite-time upper-bound on the regret of D-UBSection 3, we propose a similar analysis
for the SW-UCB policy. We establish that it achieves thehgligbetter regret. In Section 4, we establish
a lower-bound on the regret of any policy in an abruptly clag@nvironment. As a by-product, we show
that any policy (like UCB-1) that achieves a logarithmicreggn the stationary case cannot reach a regret
of order smaller thaf’/ log T' in presence of breakpoints. The upper-bounds obtaineddtioBe 2 and 3
are based on a novel deviation inequality for self-nornealiaverages with random number of summands
which is stated and proved in Section A. A maximal inequalifyindependent interest, is also derived in
Section B. Two simple Monte-Carlo experiments are preskttsupport our findings in Section 5.

2. Analysis of Discounted UCB

In this section, we analyze the behavior of D-UCB in an allyugitanging environment. Lefr denote the
number of breakpoints before tinTg and let/Ny (i) denote the number of times arimvas played when it
was not the best arm during thefirst rounds:

T
Nr() = 3 Vn=iip)-
t=1
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Denote byApr (i) the minimum of the difference of expected reward of the beat;a (x) and the expected
rewardy, (i) of thei-th arm for all timest € {1,...,T} such that armi is not the leading armi ¢ ;),

A:“T(i) = min {t € {17 T ’T}’i 7& i;fkvﬂt(*) - ﬂt(i)} : (l)

We denote byP, andE, the probability distribution and expectation under pol2yJCB with discount
factor~. The next theorem computes a bound for the expected numbienes inT" rounds that the arm
is played, when this arm is suboptimal.

Theorem 1 Leté > 1/2 andy € (0,1).Forany armi € {1,..., K},

B, [Nr()] < BO)T(L~ 7)log 7+ Cl) T log 7= @
where
B 1682 T -] 2 {— log(1 — )/ log(1 + 4y/1 — 1/25)]
BO) = e o T —) T —log(1 =) (1 —~¥/1=7)
and 1
C(7) = ————— xlog ((1 — )¢ log nk (7)) - 3)

~ log(1 —7)logy
Remark 2 Wheny goes tol we haveC(y) — 1 and
16e B%¢ 2

(Apr(i))? " (1—e1)log (1 +4/1— 1/25) '

Proof The proof is adapted from the finite-type analysis of Auerle{2002). There are however two
main differences. First, because the expected reward esatige discounted empirical mean (v, ) is
now a biasedestimator of the expected reward(i). The second difference stems from the deviation
inequality itself: instead of using a Chernoff-Hoeffdingumd, we use a novel tailored-made control on a
self-normalized mean of the rewards with a random numbeumisands. The proof is in 5 steps:

B(y) —

Step 1 We upper-bound the number of times the suboptimal aisiplayed as follows:

T
Ne()) =1+ Y Tg—iz

t=K+1
T T
=1+ Z L =itiz Ne ()< A()} T Z Lir =ity Ni(rii)>AM)} 5

t=K+1 t=K+1
where ) )
16 B¢ lognp (v

Ay) = . (4)
)= R i)

Using Corollary 26 (stated and proved in the Appendix), wg ongper-bound the first sum in the RHS as:

T

> Lz Ni<Am} < [T =AMy H0)
t=K+1



In the sequel, for any positive:, we denote by7Z () the set of all indices € {K + 1,...,T} such that
ws(j) = ue(j) forall j € {1,..., K} and allt — D(v) < s < t, where

_ log((1 —7)¢lognk(v))
log y '

D(v)

During a number of rounds (that dependsypollowing a breakpoint, the estimates of the expected rdsa
can be poor. Because of this, the D-UCB policy may play caistdhe suboptimal armi, which leads to
the following bound:

T
Z Ln=iiz Nz A0y < TrD(y) + Z W r=iztip No(y,i)2A()} -
t=K+1 teT (v)

Putting everything together, we obtain:

Nr(i) <14 [T(1 =AMy YO + YrD(y) + Z Lip=istiz Ni(v,)>A(y)} - 5)
teT ()

Step 2 Now, fort € 7 () the event{ I, = i # iy, Ni(v,7) > A(v)} may be decomposed as follows:

{I =i # i, Ne(7,9) = A} C {Xe(7,8) > (i) + eel(,9) } U {Xe (7, %) < pelx) — (v, %)}
U {:U’t(*) - :U't(l) < 2Ct(7ai)7Nt(7>i) > A(ry)} . (6)

In words, playing the suboptimal arinat time¢ may occur in three cases: jif,(i) is substantially over-
estimated, ifu,(«) is substantially under-estimated, onif(i) andu.(*) are close from each other. But for
the choice ofA(~) given in Equation (4), we have

{logni(y) _ Apr(i)
Ay — 27

ci(v,1) < 2B

so that the evenfiu, (x) — (i) < 2¢4(7y,1), Ni(7,7) > A(y)} never occurs.

In Steps 3 and 4 we upper-bound the probability of the two éveints of the RHS of (6). We show
that fort € 7 (v), that is at leasD(~) rounds after a breakpoint, the expected rewards of all arewall
estimated with high probability. For alle {1,..., K}, consider the following events

E(,7) = {Xe(v,1) > w(G) + (v, 4) }

The idea is the following: we upper-bound the probabilitygfy, j) by separately considering the fluctua-
tions of X, (v, 7) aroundM; (v, j)/N¢ (v, §), and the ‘bias’M; (v, 7) /N (v, 7) — pe(5), where

t
Mi(v,5) =Y A" T —gyms(d) -
s=1



Step 3 Let us first consider the bias. First note tfdt(~, j)/N:(v,7), as a convex combination of ele-

mentsus(j) € [0, B], belongs to interval0, B]. Hence,|M;(~, j)/N (v,4) — me(3)| < B. Second, for
teT(y)
t—D(v)
IMy(7,5) = DN = D0 A (ws() = () Lyra—yy
s=1
t—D(7) t—D(y)
> VT () — ) ypmjy B Y AT g2y = BYPON,_p( (1,4)-
_ s=1
AS Ny py(1,4) < (1 —~)71, we get| My (v, 5) /N (v, 5) — pe(§)| < ByPO) (1 — )~ Altogether,
Mt(’%])

N | <8 (nPu ‘7)_1) |

Hence, using the elementary inequality. « < \/z and the definition ofD(~y), we obtain fort € 7 (v):

Mi(v,4) ) ‘ AP ®) §lognK
~ —ut(j)| < B _C (7,7)
Nt(77]) t( ) Nt ’Y7 7 ] !

In words: D() rounds after a breakpoint, the ‘bias’ is smaller than thé diathe padding function. The
other half of the padding function is used to control the flatibns. In fact, fot € 7(~):

flogny(y) | | Mi(y,j)
NGrd) M) ’“‘*‘”D

M(v,5) {logny(v)
Nivd) O\ MG) ) |

Step 4 Denote the discounted total reward obtained with gy

P, (E(y,5)) <Py (Xt(%j) > u(j) + B

< ]P’Y (Xt(77]) -

t

Se(v ) =Y A gy Xe(G) = Ny, ) Xe (7, 4) -

s=1
Using Theorem 18 and the fact th& (v, j) > N;(72, j), the previous inequality rewrites:

$i(0,4) = Mi(.3) _ \/gzvt(w,j) log mu(7)
N:(+2,7) Ni(72,5)

IP,v(St(’Y,J) Mt Vs ] >B\/§IOT>

N nt(’y)N (2, J)_ L
[log(l + n)w P ( 2 logms(7) (1 16>>

log n¢(7) —2¢(1-%
el

P, (&t(%j)) < Pv(

IN

IN



Step 5 Hence, we finally obtain from Equation (5) :

E, [Nr(i)] <14 [T(1 = )]AMy Y0 + D) rr+2 3 [ - ﬁ n W iy ),
teT (7)

WhenY # 0, v is taken strictly smaller thah (see Remark 3). A§ > % we taken = 4/1 — 1/2¢, so
that2¢ (1 — n?/16) = 1. For that choice, withr = (1 — 7)™,

> [Mw nt(v)_%(l_%) <r-K+ i {Mw o)

ver iy 1 1oL +m)

<K+ Fogm(vw n
n

log(1+ 1) | nr(v)
log = | T(1—~)
-
sT-E+ {log(l n n)w — )
we obtain the statement of the Theorem. [ |

Remark 3 If horizonT" and the growth rate of the number of breakpoifits are known in advance, the
discount factory can be chosen so as to minimize the RHS in Equation 2. Takiag — (4B) "'/ Y7 /T
yields:

E, {NT(Z)] =0 (\/TTTlog T) .

Assuming thafly = O(T") for someg € [0,1), the regret is upper-bounded & (7+#/21og T). In
particular, if 3 = 0, the number of breakpoint¥ is upper-bounded b{f independently of’, taking

vy =1-(4B)~'/T/T, the regret is bounded hy <\/—log T) Thus, D-UCB matches the lower-bound
of Theorem 13 up to a factdog 7.

Remark 4 On the other hand, if the breakpoints have a positive dermsigr time (say, iftr < T for

a small positive constant), then~ has to remain lower-bounded independentlyIpfTheorem 1 gives
a linear, non-trivial bound on the regret and permits to badite the discount factoty as a function of
the density of the breakpoint: taking= 1 — \/r/(4B) we get an upper-bound with a dominant term in

O (=T+/rlogr).

Remark 5 Theorem 22 shows that fgr > 1/2 andt € 7 (v), with high probability X;(v, ) is actually
neverlarger than (i) + c(7, 7).

Remark 6 If the growth rate ofY7 is known in advance, but not the horiz@h then we can use the
“doubling trick” to set the value ofy. Namely, fort and k& such that2* < t < 2Ft1 takey = 1 —
(43)*1(216)(&1)/2_



3. Sliding window UCB

In this section, we analyze the performance of SW-UCB in anly changing environment. We denote
by P andE, the probability distribution and expectation under po&W-UCB with window sizer.

Theorem 7 Let{ > 1/2. For any integerr and any armi € {1,..., K},

TlogTt

Er {NT(Z)] < C(7) + 7Y + log2 (1), 7)
where
C(r) = 4B%¢ | T/ﬂ 2 log(T)
Bur@)? T/r  logr log(1 +4+4/1 — (26)~

Remark 8 Ast goes to infinity

4B%¢ N 2
(Aur(@))?  log(1+4y/1—(26)71)
Proof We follow the lines of the proof of Theorem 1. The main diffece is that fort € 7 () defined

here as the set of all indicésc {K + 1,...,T'} such thatus(j) = u(y) forall j € {1,..., K} and all
t — 7 < s < t, the bias exactly vanishes; consequently, Step 3 can bessypa

C(r) —

Step1 Let A(7) = 4B?*¢log 7(Apr(i))~2; using Lemma 25, we have:

T
Ne() =14 D Ly
t=K+1
T

T
ST+ Y Lpmimmi<am} + O Lmivis Ni(ri)2A(n)
t=1 t=K-+1
T

ST+ [T/TIAT) + D Lgmigiz N(ri)=A()
t=K+1

S+ [T/TIAM) + Trr+ Y Lrmigis Ni(ri)>A(r) ®)
teT (1)

Step2 Fort € 7(7) we have

{I; = i, Ne(7,0) > A(T)} C {Xe(7,0) > pe(d) + ce(7,4) } U {Xo(7, %) < pe () — co(7, %) }
U { e (%) — e (3) < 2¢¢(7,4), Ni(1,1) > A(T)}. (9)

On the even{ N,(r,i) > A(7)}, we have

£10g(MT) £logT §log(7) (Apr (@) _ Apr(i)
Ny(T,1) 4B%¢log T - 2 7

so that the evenfiu, (x) — (i) < 2¢4(7, 1), N¢(7,3) > A(T)} hasP,-probability 0.
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Steps 3-4 Now, fort € 7(7) and for allj € {1,..., K}, Corollary 21 applies and yields:

B (Xi(r,5) > 1) + et(r,5)) < B( Xi(r,3) > ) + B M)

Nt(ij)
log(t A7) n?
< [ttt | oo (2esenn (1-55))
_ [log(t A7) \—2€(1-12/16)
hog(l + n)w EA) T (10)
and similarly
P(Xi(rud) < i) — a(ri)) < | i ] (eam)0-r), a1

Steps 5 In the following we takey = 4,/1 — % so that we haves (1 —7?/16) = 1. Thus, using
Equations (9),(10) and (11), Inequality (8) yields

~ r [te]
B, [Fr(i)] < 14 [7/714() + o T+ 2 30 0

—  (tAT) '
The results follows, noting that
i log(t/\7)< a logz‘/%_ilog7'<11 2()+Tlog7'
>N 7 —_— — 10 T .
tANT T t T = 2 & T
t=K-+1 t=2 t=1

Remark 9 If the horizonT" and the growth rate of the number of breakpoitts are known in advance, the
window sizer can be chosen so as to minimize the RHS in Equg@i@nTakingT = 2B/T log(T')/Yr

yields
E. [Nr(i)] = 0 (VIrTIogT) .

Assuming thal'; = O(T") for somes € [0, 1), the average regret is upper-bounded@$7+%)/2,/log T) .
In particular, if 5 = 0, the number of breakpoint is upper-bounded b¥ independently of’, then with

T = 2By/Tlog(T)/Y the upper-bound i®) (/TTlogT). Thus, SW-UCB matches the lower-bound of
Theorem 13 up to a factoylog 7', slightly better than the D-UCB.

Remark 10 On the other hand, if the breakpoints have a positive demsigy time, thenr has to remain
lower-bounded independently Bf For instance, ifY' < rT for some (small) positive rate, and for the
choicer = 2B/—logr/r, Theorem 7 gives

E, [NT(z)} =0 (T —rlog (7")) .

11



Remark 11 If there is no breakpoint{ = 0), the best choice is obviously to take the window as a large as
possible, that is = T'. Then the procedure is exactly standard UCB. A slight madiéia of the preceeding
proof for¢& = % + e with arbitrary smalle yields

2
%bﬂ(uou)).

We recover the same kind of bounds that are usually obtaimétki analysis of UCB, see for instance Auer
et al. (2002), with a better constant.

Eycs [NT(Z')] <

Remark 12 The computational complexity of SW-UCB is, as for D-UCRdirin time and does not involve
7. However, SW-UCB requires to store the lasictions and rewards at each tinién order to efficiently
updateN; (7, i) and X;(7,1).

4. A lower-bound on the regret in abruptly changing environment

In this section, we consider a particular non-stationaryditgoroblem where the distributions of rewards on
each arm are piecewise constant and have two breakpointsn @y policyr, we derive a lower-bound on
the number of times a sub-optimal arm is played (and thushemedgret) in at least one such game. Quite
intuitively, the less explorative a policy is, the longemnitly keep a suboptimal policy after a breakpoint.
Theorem 13 gives a precise content to this statement.

As in the previous sectiorfy denotes the number of arms, and the rewards are assumeddarimehl in
[0, B]. Consider any deterministic policy of choosing the arm,, ..., I played at each time depending
to the past rewards

Gy 2 Xy(Iy),

and recall thaf; is measurable with respect to the sigma-fieldr1, . . ., G;) of the past observed rewards.
Denote byN.(i) the number of times arrhis played between timesandt¢

t
Ns:t(i) = Z ]]-{Iu:i}a

andNr(i) = Ny.r(i). Forl < i < K, let P, be the probability distribution of the outcomes of ainand
let 1(7) denote its expectation. Assume thet) > u(i) for all 2 < i < K. Denote byP, the distribution
of rewards under policyt, that is:

T
dPW(gl:T|IlzT) — H dPZt (gt)
t=1

For any random variabl&” measurable with respect tqG1, ..., Gr), denote byE,[W] its expectation
under distributior?.

In the sequel, we divide the peridd, ..., T} into epochs of size € {1,...,T}, and we modify the
distribution of the rewards so that on one of those periods, fd& becomes the one with highest expected
reward. Specifically: le) be a distribution of rewards with expectation> (1), letd = v — (1) and
let @ = D(Px; Q) be the Kullback-Leibler divergence betweBy and@. Foralll <j < M = |L|, we

12



consider the modificatio]ﬂﬂ'T of P, such that on thg-th period of sizer, the distribution of rewards of the
K-th arm is changed to. That is, for every sequence of rewargdsy,

AP Al dQ
P, (gr.7|lr) = H dPre ——(gt) -
t=14+-1)7r,I;=K
Besides, let ‘
N7 (i) = Ny (j—1)r5-(9)
be the number of times ariis played in thej-th period. For any random variabl¢’ in o(G1,...,Gr),
denote b)ZE] [W] its expectation under distributid,. Now, denote byP: the distribution of rewards when

J is chosen uniformly at random in the gt ..., M} - in other words[P;: is the (uniform) mixture of the
(P%)1<j<m, and denote biEx[-] the expectation undét?:

1 ok
W=7 > EIW]
j=1

In the following, we lower-bound the expect regret of anyi@olr underP; in terms of its regret undef,..

Theorem 13 For any policyr and any horizori” such thatt4/(9a) < E;[Nr(K)] < T/(4a),

Ex[Rr] > C(”)EW[RT] ,

where 320((1) — (K)

_ pl) —p
Proof The main ingredients of this reasoning are inspired by tlwfpof Theorem 5.1 in Auer et al.
(2002/03), see also Kulkarni and Lugosi (2000). First, rioge the Kllback-Leibler divergende(P,., P%)
is:

D(P,,P}) = ZD(PW (G4|Grp—1) ;P2 (Gt|Gr:4-1))

— Z P, (I = K)D(Pg;Q)

t=1+(j—-1)7
= 0Ex [Nyyoayryr(K)] -

Hence, by Lemma A.1 in Auer et al. (2002/03),

B} [N (K)] < Eq[N/(K)] + 5/ D(Br, B) = Ex[N? ()] + 51/ 0B[N (K)] .

Consequently, sincg> ., N7(K) < Np(K),
Mo M .
> ELINY(K)] < E[Np(K)] + 5 Z \/oR )]+ 5\/04ME7T[NT(K)] :
i=1 j=1

13
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Thus, there exists < j < M such that

B3N (K)] < 2 Ex[Np(K)] + 50 \/a b Ny (K

< B [Nr(K)] + 3\/%7_3 B [N7(K)]

Now, the expectation undé@’ of the regretR is lower-bounded by:

3

. [N () - WaT—_TEW[NﬂKn) .

E:[Rr) > 6 (1 — E5[Nr(K)]) = 6 <T— T ;

Maximizing the right hand side of the previous inequalitydiyposingr = 167"/(9aE, [N (K)]) or equiva-
lently M = 9«/(16E, [N (K)]) leads to the lower-bound:

. 326 o, [Nr(K)]\? 16 I
st 20 (1- =) (- s B

To conclude, simply note thadtr(K) < E.[Rr]/(u(1) — p(K)). We obtain:

o 328(u(1) — p(K)) [ OB [Np(K)]\? 16 T
Ealltr] = =50 (1‘ T ><1‘9aEW[NT<K>1>EW[RT]’

which directly leads to the statement of the Theorem. |

The following corollary states that no policy can have a stationary regret of order smaller thaf{.
It appears here as a consequence of Theorem 13, althoughdtstabe proved directly.

Corollary 14 For any policyr and any positive horizoff’,
max{E.(Rr),E:(Rr)} > /C(u)T .
Proof If E[Np(K)] < 16/(9«), or if EL[Np(K)] > T'/«, the result is obvious. Otherwise, Theorem 13

implies that:

miae{E (Rr). By (Fr)} > miae{En (Rr). € s} = VOGIT -

Remark 15 To keep simple notations, Theorem 13 is stated and provedfbedeterministic policy. It is
easily verified that the same results also holds for randethitrategies (such as EXP3-P, see Auer et al.
(2002/03)).

Remark 16 In words, Theorem 13 states that for any policy not playinghearm often enough, there is
necessarily a time where a breakpoint is not seen after apangpd. For instance, as standard UCB satisfies
E,[N(K)]=0©6(ogT), then

< T

- Clog T

for some positive depending on the reward distribution.

Ex[Rr]

14



Remark 17 This result is to be compared with standard minimax lowauats on the regret. On one hand,
a fixed-game lower-bounih O(log T') was proved in Lai and Robbins (1985) for the stationary cagesn
the distributions of rewards are fixed afdis allowed to go to infinity. On the other hand, a finite-time
minimax lower-boundor individual sequences i@ (/T is proved in Auer et al. (2002/03). In this bound,
for each horizonl" the worst case among all possible reward distributions issidered, which explains
the discrepancy. This result is obtained by letting theagtise between distributions of rewards tend to 0
(typically, as1/+/T). In Theorem 13, no assumption is made on the distributibneveardsP; and Q, their
distance actually remains lower-bounded independentllj.dh fact, in the case considered here minimax
regret and fixed-game minimal regret appear to have the sader of magnitude.

5. Simulations

We consider here two settings. In the first example, thergkare 3 arms and the time horizon is set to
T = 10*. The agent goal is to minimize the expected regret. The dsvafrarmi € {1,..., K} at timet
are independent Bernoulli random variables with successatility p. (i), with p,(1) = 0.5, p:(2) = 0.3
andfort € {1,...,T}:

3 = 0.4 for t < 3000o0rt > 5000,
Pro) =19 09 for 3000 <t < 5000.

As one may notice, the optimal policy for this bandit taskdsselect arm 1 before the first breakpoint
(t = 3000) and after the second breakpoint£ 5000). In the left panel of Figure 1, we represent the
evolution of two criteria in function of: the number of times policy 1 has been played, and the custilat
regret (bottom plot). These two measures are obviouslyemldut they are not completely equivalent as
sub-optimal arms can yield relatively high rewards. We carapghe UCB-1 algorithm witlf = % the
EXP3.S algorithm described in Auer et al. (2002/03) withttiveed parameters given in Corollary 8.3 (with
the notations of this paper = 7! andy = \/K (Y7 log(KT) + ¢)/[(e —1)T] with Y7 = 2), the D-UCB
algorithm with¢ = 1/2 andy = 1 — 1/4y/T and the SW-UCB witit = 1/2 andr = 4y/nlogT. The
parameters are tuned to obtain roughly optimal performéoicehe chosen horizofi® and the number of
breakpoints.

As can be seen in Figure 1 (and as consistently observedtmeimhulations), D-UCB performs almost
as well as SW-UCB. Both of them waste significantly less timentEXP3.S and UCB-1 to detect the
breakpoints, and quickly concentrate their pulls on thénogltarm. Observe that policy UCB-1, initially
the best, reacts very fast to the first breakpaint (3000), as the confidence interval for afrat this step is
very loose. On the contrary, it takes a very long time aftergbcond breakpoint & 5000) for UCB-1 to
play arml again.

In the second example, there dke = 2 arms, the rewards are still Bernoulli random variables with
parametergy, (i) but are in persistent, continuous evolution. Arm 2 is takem aeferencep((2) = 1/2
for all ¢), and the parameter of arm 1 evolves periodicallyygét) = 0.5 + 0.4 cos (67 Rt/T"). Hence, the
best arm to pull evolves cyclically and the transitions an@ath (regularly, the two arms are statistically
indistinguishable). The middle plot in the right panel affrie 1 represents the cumulative frequency of arm
1 pulls: D-UCB, SW-UCB and, to a lesser extent, EXP3.S traekcycles, while UCB-1 fails to identify the
best current arm. Below, the evolutions of the cumulatiggets under the four policies are shown: in this
continuously evolving environment, the performance of BBJand SW-UCB are almost equivalent while
UCB-1 and the Exp3.S algorithms accumulate larger regrets.
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6. Conclusion and perspectives

This paper theoretically establishes that the UCB policias also be successfully adapted to cope with
non-stationary environments. The upper bound of the SW-WCibruptly changing environment matches
the upper bounds of the Exp3.S algorithm (ii&.\/T log(7T'))), showing that UCB policies can be at least
as good as the softmax methods. In practice, numerical iexpets also support this finding. For the
two examples considered in this paper, the D-UCB and SW-U@Rips outperform the optimality tuned
version of the Exp3.S algorithm.

The focus of this paper is on abruptly changing environmiautjt is believed that the theoretical tools
developed to handle the non-stationarity can be appliedfferent contexts. In particular, using a similar
bias-variance decomposition of the discounted or winderegdards, the analysis of continuously evolving
reward distributions can be done (and will be reported inrthémming paper). Furthermore, Theorems 18
and 22, dealing with concentration inequality for discaghimartingale transforms, are powerful tools of
independent interest.

As the previously reported Exp3.S algorithm, the perforoeanf the proposed policy depends on tuning
parameters, the discount factor for D-UCB and the window &z SW-UCB. These tuning parameters may
be adaptively set, using data-driven approaches, sucteamthproposed in Hartland et al. (2006). This is
the subject of on-going research.

Appendix A. A Hoeffding-type inequality for self-normalized means with a random number
of summands

Let (X¢):>1 be a sequence of non-negative independent bounded randibles defined on a probability
space(2, A, P). We denote by3 the upper boundX; € [0, B], P-a.s. and by, its expectation:; = E[X}].
Let 7; be an increasing sequenceaofields of A such that for each, o(X; ..., X;) C F; and fors > t,
X, is independent fronf;. Consider a previsible sequeng@g);>; of Bernoulli variables (for alt > 0, ¢;
is F;_1-measurable). Denote hy the Cramer transform of;: for A € R,

d1(A) = log E[exp(AX})] .

Forv € [0,1), consider the following random variables

t t
Si(y) =D " Xees s My(y) =) A e, Ni(7) =) 7" e (12)
s=1 s=1

Let also
’Yt

t 1— .
. I
n(y) =Y 7" = { Iy K

t if y=1.

Theorem 18 For all integerst and all § > 0,

forall n > 0.
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Remark 19 Actually, we prove the slightly stronger inequality:

— 2
p [ 500) = Mi(v) -5 < Fognt(ﬂ -‘ woxp - 86 Ny
N7 g1+ B (0 a1 (L) )
Proof Flrst observe that we can assume= 1, since otherwis¢s; (v N/ N:(72) = (Si-1(

M;—1(7))/+/ Ni—1(7?) and the result follows from a simple mductlon Second ot for every posmve
A and for everyu < t, sinceeuﬂ is predictible, and sinc&,, 1 is independent fronf,,

E [exp (AXyt1€u+1)| Fu] = exp (¢ur1 (Aeut1)) = exp (Qut1 (A) €ut1) -

Hence, as,+1(7) = vSu(7) + Xut1€ut1,

u+1
exp (ASU—H Z¢g u+1 S s)] =E [exp (AVS Z¢s )"7 “ 8 63)] .

As ¢(0) = 0, this proves by induction that

E [exp (ASM) - th b5 (M) )] =1,

s=1

E

It is easily verified (see e.g. (Devroye et al., 1996, Lemnid)8hat under the stated assumptions, for all
positive \,
¢s(N) < Aus + B7N?/8, (14)

showing that

E [exp ()\ {Si(y) = My(7)} — B—2A2Nt( ))] <1.

Hence, for any: > 0, the Markov inequality yields

P(&(v) — M;(v) - T N AB?\/Nt(72)>
Ni(7?) A/ Ni(7?) 8

Now, taken > 0, let D = “ggﬁﬁﬂ and, for every integet € {1,..., D}, define

8x

M= |———
B2(147)"

Elementary algebra shows that for akkuch that(1 + n)*~! < » < (1 + n)*, we have

\/1+" < (LY (1) (15)
1+77




Thus, if (1 + 7)1 < N;(7?) < (14 1), then

T % 1—{—77’?7% Ni(v
Ak Nt(’Y) Ny \/7< (1+n)* é)
< B\/% <(1 +)Vt 1 +77)’1/4> .

Therefore, ag; = 1 we havel < N;(7?) < (1 +n)” and

Si(v) = My(v) T _

P Siy) = My(y) z A.B2/N.(72)
CU{ N0D)  wyNGE 8 |

The union bound thus implies that:

Si(v) = My(v) x -
P (Tﬂ > B\/g ((1 +)Yi 4 (1 40) V‘*))

D — M (%) x B2V N (72
Z ( Ni(v?) - e/ Ne(72) + 8 < Dexp(—zx) .

Fors = B\/Z ((1+n)* + (1 +n)~1/4), this yields

b <St(7) ~ M) 5)  Dexp (_ 862 2) |
Ni(7?) B2 (14 )4 + (1+n)~1/4)

The conclusion follows, as it is easy to see that, foraH 0,

4 1o (16)
(L4 (1 4m-1)? = 167

Remark 20 For example, takingy = 0.3 in (13) yields

p [ 5:00) = Mi(v)
Ni(7v?)
Classical Hoeffding bounds for deterministicyield an upper-bound in

. <St(v) — M) 5) <o
Ni(7?)

1.9952

> 5) <A4dlogns(y)e B2
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for all positivet. The factor behind the exponential and the very slightlgdarexponent are the price to
pay for the presence of random. Theorem 18 is maybe sub-optimal, but it is possible to shaifor all
d > 0 and for an appropriate choice of the previsible sequefice;>1

. (M y 5> .
Nt(’YQ)

ast goes to infinity.

If all variables X; have the same expectatipn takingy = 1 in Theorem 18 immediately leads to the
following corollary:

Corollary 21 For all integerst and,
P Zomt-rrnn (X — 16 >4 < {M-‘ exp <_ﬁ <1 — 77_2))
\/Zi:(t*TJrl)/\l €s ~ [ log(1+1) B2 16

Appendix B. A maximal inequality for self-normalized meanswith a random number of
summands

In this section, we prove a stronger version of Theorem 18upger-bound the probability that, at some
timet, the average reward deviates from its expectation. We keepame notations as in Section A.

Theorem 22 For all positive integerl" and all § > 0,

Si(7) = My(v) log (v"*"nr(+)) Lt
g <1§£T Ni(72) >5> = { log(1 +1n) eXP( B? (1 16)) .

for all n > 0.

Remark 23 Note that ify < 1, then

log (,Y—QTnT(,}/Z)) < 2T(1 — )

1
+ log =2
while fory = 1 we have:
log (’y_QTnT('yQ)) = logT.
Remark 24 Classical Hoeffding bounds for deterministicyield an upper-bound in
p [ 5100 = M:(v)
Ni(v?)

for all positivet. The factor behind the exponential (dependingioand ¢) and the very slightly larger
exponant are the price to pay for uniformityinFor example, taking = 0.3 yields

Si(y) — Mi() - 1.9952
v (122}% > 6) < [‘Hog (V QTTLT(WQ)H exp <——> .

> 5) < exp(—262)
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Proof For\ > 0, define
ZA = exp ()\’y Sy (v Zqﬁs )\fy_s 63) . (a7)

Note that
E [exp ()\’y_tXtet) | .7-}_1] = exp (etqﬁt ()\’y_t)) .

Sincey S (v) = v~ “VS;_1(y) + v~ ! X,€;, we may therefore write
E [exp(My'Si(7))| Fio1] = exp <>\'y A Y )) exp (ede(Myh))

showing that{ Z}} is a martingale adapted to the filtratidh= {F;,¢ > 0}. As already mentionned (see
e.g. (Devroye et al., 1996, Lemma 8.1)), under the statathgssons

(X)) < Mg + B3N8,

showing that for all\ > 0,

WP = exp (M7 Si(v)— M Mi(7) — (B /8)A°y* Ni(v?)) (18)
is a super-martingale. Hence, for any- 0 we have
P ( sup W > exp(w)) < exp(—x) . (19)
1<t<T

On the other hand, note that

{Wt)‘ > exp(w)} = {St(y)]\;t({\?)( ) )\\/Nti + —)\7%\/ Ni(y } (20)

-‘ and for every integek € {1,..., D}, define

=27

2
Now, letD = Fogqog(lifﬁh .

8x

M= | ————
32(14—77)’“_%

Thus, if (1 + 7)1 <472 N;(v?) < (1 +n)*, then using Equation (15) yields:

! B — 5.5/ (1+m)k2 72 N(7?)
e/ Ne(72) 3 My VN () = B\/; ( YNy (?) " (1 +77)"“é)

< B\/g ()M () ™/)

which proves, using Equation (20), that

Si(v) = My(v) T _

D t
e {St(v)—Mt(W) L Am N } { “ > exple )} ‘
k=1

Ni(7?) N/ Ne (72 )
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But as

s S M) o Si) — M)
1<t<T Ni(72) 1<t<T,e;=1 N (v?)

we assume; = 1 and thusl < N;(v?) < (1 4+ n)”. Hence, thanks to Equation (19) we obtain:

]P’( U {%(VM;)M > B\/g <(1 +)t +77)’1/4> })

1<¢<T

<P ( U U {VV;"C > exp(az)}) =P ( U U {VV;"C > exp(az)}) < Dexp(—z) .

1<t<T 1<k<D 1<k<D 1<t<T
For
0=2D

&‘

S (@i ),

and using Equation (16), this yields

p<M >5> Do (_ s )
N(7?) B2 ((1+ )4+ (14 5)1/4)

262 2
§Dexp< §27) (1—717—6>>

Appendix C. Technical results

Lemma 25 For anyi € {1,..., K} and for any positive integer, let N;_,..(1,7) = Z';:HH Tg,—iy-
Then for any positiven,

T
Z L =i N (L) <my < K[T/7T]m
t=K+1
Proof
T/r1 gt
Z l{ft 4, Ni—rt(1,i)<m} < Z Z ]l{ft:i7Nt—7—:t(17i)<m}'
Jj=1 t=(j—1)7+1
For any giveny € {1,...,[T/7]}, eltherzt (Go1)rt1 HI=i,Ni— (1) <m} = 0 OF there exists an index

te{(j—-Dr+ 1,...,37} such thatl; = i, Ny_4(1,7) < m. In this case, we put; = max{t €
{G—-Vr+1,...,457} : I = i, Ne—74(1,7) < m}, the last time this condition is met in theth block.
Then,

JT 4
Z Lir=i,Ne e (1,0)<m) = Z Lir=i Ny pia(1,0)<m}
t=(j—1)7+1 t=(j—1)7+1
2 2
< Z ]l{ft=i,Nt—T;t(1,i)<m} < Z ]l{lt:i} = th —Titj (1,4) <m.
t:tj—T-f—l t=t; —7+1
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Corollary 26 Forany: € {1,..., K}, any integers- > 1 and A > 0,

T
Z =i N, (yi)<ay < K[T/T]Ay7T .
t=K+1
Proof Simply note that
T T
Z L= No(r,i)< A}y < Z Lir=i Ny pie(1,0)<y—T A} > (21)
t=K+1 t=1
and apply the preceeding lemma with= ~~7 A. [ |
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Left panel: Bernoulli MAB problem with two swaps.pfkr: evolution of the probability of
having a reward 1 for each arm; Middle: cumulative frequeotgarm 1 pulls for each policy.
Below: cumulative regret of each policy. Right panel: BexdfioVIAB problem with periodic
rewards: Upper: evolution of the probability of having a eed/1 for arm 1 (and time intervals
when it should be played); Middle: cumulative frequency whd. pulls for each policy. Below:
cumulative regret of each policy.
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