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Abstract

It is classical to approximate the distribution of fractional Brown-
ian motion by a renormalized sum Sn of dependent Gaussian random
variables. In this paper we consider such a walk Zn that collects ran-
dom rewards ξj for j ∈ Z, when the ceiling of the walk Sn is located at
j. The random reward (or scenery) ξj is independent of the walk and
with heavy tail. We show the convergence of the sum of independent
copies of Zn suitably renormalized to a stable motion with integral
representation, whose kernel is the local time of a fractional Brownian
motion (fBm). This work extends a previous work where the random
walk Sn had independent increments limits.

1 Introduction

1.1 Motivations

Many stochastic processes have been proposed to model communication net-
works. We can refer to [13, 12, 9] for instance, where the limiting processes
are either fractional Brownian motion or Lévy β-stable process. More re-
cently, in [3] a process named H-fBm local time fractional stable motion was
constructed. When H = 1

2
, the so called Random Reward Schema, was also

proposed, it is a discrete schema, which could be thought of as a toy model
for INTERNET traffic, and which is converging to this process. The aim
of this paper is to extend these results to the case H 6= 1

2
. In the proof of

the convergence in [3] a strong approximation of the local time of standard
Brownian motion was used. As far as we know no strong approximation
of the local time of fractional Brownian motion is available and it was one
the problems to overcome. In [4] discrete approximations of local time frac-
tional stable motion have been obtained by Dombry and Guillotin-Plantard
[4] where the fBm local time is replaced by the local time of an α-stable
Levy motion. But they did not use strong approximation of the local time.
In this paper we use convergence of the local time of a classical walk with
dependent increments to the local time of fractional Brownian motion and
the technique in [4] to get our result. Please note that other approximations
of fBm local time fractional stable motion have been considered in [8], but
they are not related to walks in random sceneries.
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1.2 Model and results

Let ξ = (ξx)x∈Z denote a sequence of independent, identically distributed,
symmetric real-valued random variables. The sequence ξ is called a random
scenery. Suppose that it belongs to the normal domain of attraction of a
stable symmetric distribution Zβ of index β ∈ (0, 2]. This means that the
following weak convergence holds:

n− 1
β

n
∑

x=0

ξx
L

=⇒
n→∞

Zβ, (1)

where Zβ is the symmetric stable law with characteristic function λ̄ given by

λ̄(u) = E exp(iuZβ) = exp
(

−σβ|u|β
)

, u ∈ R (2)

for some constants σ > 0.

Let S = (Sk)k∈N be a random walk on Z independent of the random
scenery ξ. We suppose that

{

S0 = 0,
Sn =

∑n
k=1 Xk , n ≥ 1,

(3)

where Xi, i ≥ 1 is a stationary Gaussian sequence with mean 0 and correla-
tions r(i − j) = E[XiXj] satisfying

n
∑

i=1

n
∑

j=1

r(i − j) ∼ n2H , (4)

as n → ∞, with 0 < H < 1.

We define the random walk in random scenery as the process (Zn)n≥0

given by

Zn =

n
∑

k=0

ξ([Sk]), (5)

where [Sk] is the ceiling of Sk. Stated simply, a random walk in random
scenery is a cumulative sum process whose summands are drawn from the
scenery; the order in which the summands are drawn is determined by the
path of the random walk. We extend this definition to non-integer time s ≥ 0
by the linear interpolation

Zs = Z[s] + (s − [s])(Z[s]+1 − Z[s]). (6)

3



We now describe the limit theorem for the random walk in random scenery
established by Wang [14] (in the case β = 2).
Cumulative sums of the scenery converge in D(R), the space of càd-làg func-
tions:



n− 1
β

[nx]
∑

k=0

ξk





x∈R

L
=⇒
n→∞

(W (x))x∈R
,

where W is a bilateral β-stable Lévy process such that W (0) = 0, and W (1)
and W (−1) are distributed according to Zβ.
The covariance structure of the sequence Xi given by equation (4) implies
that Sn, n ≥ 0 belongs to the domain of attraction of the fractional Brownian
motion of Hurst index H , i.e. the following convergence hold in D([0,∞))
(cf. [11].)

1

nH
(S[nt])0≤t≤1

L
=⇒
n→∞

BH(t), (7)

To describe the limit process known as fractional Brownian motion in stable
scenery we suppose that BH and W are two independent processes defined
on the same probability space and distributed as above. Let Lt(x) the jointly
continuous version of the local time of the process BH (cf. [1]).

In the case β = 2 corresponding to the case of a Gaussian scenery, Wang
proves the following weak convergence in the space of continuous function
C([0,∞))

(

n−δZnt

)

t≥0

L
=⇒
n→∞

(∆(t))t≥0 (8)

where δ = 1 − H + Hβ−1 and ∆ is the process defined by

∆(t) =

∫ +∞

−∞

Lt(x)dW (x).

The limit process ∆ is a continuous δ-self-similar stationary increments pro-
cess.

Our results state the convergence of the so called Random Reward Schema
to the fBm local time stable fractionnal motion. We begin with a continuous
version and consider ∆(i), i ≥ 1 independent copies of the process ∆.

Theorem 1.1. The following weak convergence holds in C([0,∞)):
(

n− 1
β

n
∑

i=1

∆(i)(t)

)

t≥0

L
=⇒
n→∞

(Γ(t))t≥0 , (9)

where Γ is a H-fBm local time stable fractionnal motion.
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Replacing the stable process in random scenery by a random walk in ran-
dom scenery, we obtain the random rewards schema which yields a discrete
approximation of the process Γ. Let ξ(i) = (ξ

(i)
x )x∈Z, i ≥ 1 be independent

copies of ξ. Let S(i) = (S
(i)
n )n∈N be independent copies of S and also inde-

pendent of the ξ(i), i ≥ 1. Denote by D
(i)
n the i-th random walk in random

scenery defined by
D(i)

n (t) = n−δZ
(i)
nt (10)

where the definition of Z
(i)
n is given by equations (5) and (6) with ξ and

S replaced by the i-th random scenery ξ(i) and the i-th random walk S(i)

respectively.

Theorem 1.2. Let cn be a sequence of integers such that lim cn = +∞.
Then, the following weak convergence holds in C([0,∞)):

(

c
− 1

β
n

cn
∑

i=1

D(i)
n (t)

)

t≥0

L
=⇒
n→∞

(Γ(t))t≥0 . (11)

The limit process Γ is the same as in Theorem 1.1.

2 Sums of stable processes in random scenery

Proof of Theorem 1.1

For n ≥ 1, let Γn the continuous process defined by

Γn(t) = n− 1
β

n
∑

i=1

∆(i)(t) , t ≥ 0.

Theorem 1.1 claims that the sequence Γn converges weakly in C([0,∞)). We
prove this fact by proving the convergence of the finite dimensional distribu-
tions and the tightness of the sequence. Theorem 1.1 is thus a consequence
of Propositions 2.1 and 2.2 below.

We first need a Lemma giving the characteristic function of the finite
dimensional distribution of ∆:

Lemma 2.1. For any (θ1, · · · , θk) ∈ R
k and (t1, · · · , tk) ∈ [0, +∞)k

E

[

exp

(

i
k
∑

j=1

θj∆(tj)

)]

= E
[

exp(−σβX)
]
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with

X =

∫

R

|

k
∑

j=1

θjLtj (x)|βdx. (12)

Proof : This is the analogous of Lemma 5 in Kesten and Spitzer giving
the characteristic function of the finite dimensional distribution of the stable
Levy-process in stable scenery, for the fractional Brownian motion in stable
scenery. The demonstration is the same replacing the local time of a stable
Lévy process by the local time of the fractional Brownian motion. �

Proposition 2.1. The finite dimensional distributions of (Γn(t))t≥0 converge
weakly as n → ∞ to those of (Γ(t))t≥0.

Proof : Let (θ1, · · · , θk) ∈ R
k and (t1, · · · , tk) ∈ [0, +∞)k. We compute

the characteristic functions

E

[

exp

(

i

k
∑

j=1

θjΓn(tj)

)]

= E

[

exp

(

in− 1
β

k
∑

j=1

θj∆(tj)

)]n

= E
[

exp(−n−1X)
]n

(13)

We prove that the following asymptotic holds:

E
[

exp(−n−1σβX)
]

= 1 − n−1σβ
E(X) + o(n−1). (14)

Note that the integrability of the random variable X follows from the in-
equality

|X| ≤

(

k
∑

j=1

|θj |

)β
∫

R

Lt(x)βdx

where t = max{tj , 1 ≤ j ≤ k}, and the fact that E
∫

R
Lt(x)βdx < ∞ which

is proved in [3] Theorem 3.1.
We now prove equation (14). To this aim, observe that

n
(

E
[

exp(−n−1σβX)
]n

− 1
)

= E(fn(X)) −→
n→∞

−σβ
E(X)

where fn is defined on C by fn(x) = n(exp(−n−1σβx)− 1). The convergence
follows from the dominated convergence Theorem because fn(X) converges
almost surely to −σβX and |fn(X)| is almost surely bounded from above by
σβ |X| which is integrable. Finally, equations (13) and (14) together yield

E

[

exp

(

i
k
∑

j=1

θjΓn(tj)

)]

−→
n→∞

exp
(

−σβ
E(X)

)

.
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This proves Proposition 2.1. �

Proposition 2.2. The sequence of process Γn is tight in C([0,∞)).

Proof : We follow the proof of Proposition 2.2 in [4] and give only the
main lines of the proof, the details are to be found in[4]. The difference is
that the α-stable Levy motion Yt is replaced by the fBm BH(t) of index H.
Hence the local time process of Y is replaced by the local time of BH and
denoted in both context by Lt(x). Furthermore, the self-similarity index of
Y is equal to 1/α and has to be replaced by H .
The case β = 2 is straightforward and relies on Itô’s isometry: the process
Γn is square integrable and for all 0 ≤ t1 < t2

E
[

|Γn(t2) − Γn(t1)|
2
]

= E

[

|n− 1
2

n
∑

i=1

∆(i)(t2) − ∆(i)(t1)|
2

]

= σ2(t2 − t1)
2−H

E

[
∫

R

L1(x)2dx

]

.

Using Kolmogorov criterion, we deduce that the sequence Γn is tight.

In the case 0 < β < 2, the process Γn has infinite variance and we use
the truncation method. Introduce the Lévy-Itô decomposition of W :

Wx = bx +

∫ x

0

∫

|u|≤1

u(µ − µ̄)(du, ds) +

∫ x

0

∫

|u|>1

uµ(du, ds) (15)

where b is the drift and µ is a Poisson random measure on R×R with intensity
µ̄(du, dx) = λ(du) ⊗ dx, and λ is the stable Lévy measure on R:

λ(du) =
(

c−1{u<0} + c+1{u>0}

) du

|u|β+1
, c−, c+ ≥ 0, c− + c+ > 0.

For some truncation level R > 1, let W (R−) and W (R+) be the independent
Lévy processes defined by

W (R−)
x =

∫ x

0

∫

|u|≤R

u(µ − µ̄)(du, ds), W (R+)
x =

∫ x

0

∫

|u|>R

uµ(du, ds).

The Lévy-Itô decomposition (15) rewrites as

Wx = bRx + W (R−)
x + W (R+)

x
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where bR = b+
∫

1<|y|≤R
uλ(du) is a drift depending on R. This decomposition

of the stable scenery yields the following decomposition of the stable process
in random scenery:

∆(t) = bRt + ∆(R−)(t) + ∆(R+)(t),

with

∆(R−)(t) =

∫

R

Lt(x)dW (R−)
x , ∆(R+)(t) =

∫

R

Lt(x)dW (R+)
x .

Considering such decomposition for i.i.d. copies of ∆, we have with obvious
notations, the following decomposition of Γn:

Γn(t) = n1− 1
β bRn

t + Γ(R−)
n (t) + Γn(R+)(t), (16)

with

Γ(R−)
n (t) = n− 1

β

n
∑

i=1

∆(i,R−n )(t), Γ(R+)
n (t) = n− 1

β

n
∑

i=1

∆(i,R+
n )(t)

with truncation level Rn = Rn
1
β . The sequence n1− 1

β bRn
is known to be

bounded (assertion A1 in [4]).

Similarly to equation (23) in [4], the process Γ
(R−)
n (t) is square integrable and

for any 0 ≤ t1 < t2,

E

[

(Γ(R−)
n (t2) − Γ(R−)

n (t1))
2
]

=
c− + c+

2 − β
R2−β(t2 − t1)

2−H
E

[
∫

R

L1(x)2dx

]

.

Using Kolmogorov criterion, this estimate implies that the sequence of pro-

cess Γ
(R−)
n is tight.

On the other hand, similarly to assertion (A3) in [4], the probability that

Γ
(R+)
n ≡ 0 on [0, T ] satisfies

P

(

Γ(R+)
n ≡ 0 on [0, T ]

)

≥
[

P

(

∆(R+
n ) ≡ 0 on [0, T ]

)]n

≥

[

1 − 2
c+ + c−

β
R−β

n E

(

sup
0≤t≤T

|BH(t)|

)]n

.

and hence
lim

R→∞
lim sup

n→∞
P

(

Γ(R+)
n ≡ 0 on [0, T ]

)

= 1.

These facts imply the tightness of the sequence Γn. �
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3 Fractional Random Reward Schema

Proof of Theorem 1.2

We define the process Gn by

Gn(t) = c
− 1

β
n

cn
∑

i=1

D(i)
n (t), t ≥ 0, (17)

where D
(i)
n is the i-th random walk in random scenery properly rescaled

and defined by (10). Theorem 1.2 states that Gn converges weakly to Γ in
C([0,∞)). The key tool in the proof is the local time of the strongly corre-
lated random walk (Sk)k≥0 (we omit the superscript (i)).

Let x ∈ Z and n ≥ 1. The local time Nn(x) of the random walk (Sk)k≥0

at point x up to time n is defined by

Nn(x) =

n
∑

k=0

1{[Sk]=x}.

It represents the amount of time the walk spends in the interval [x, x + 1[
up to time n. We extend this definition to non-integer time s ≥ 0 by linear
interpolation:

Ns(x) = N[s](x) + (s − [s])(N[s]+1(x) − N[s](x)).

The random walk in random scenery writes for all s ≥ 0

Dn(t) = n−δ
∑

x∈Z

Nnt(x)ξx (18)

where the collection of random variables {Ns(x), x ∈ Z} and {ξx, x ∈ Z} are
independent.

We collect in the next subsection different results about the local times
of the strongly correlated random walks that will be of great use in the
sequel. Although the results are analogous to the ones in [4] for independent
increments random walks, some difficulties arise from the strong correlations
of the increments. However in [14], Wang shows how to use the Gaussian
structure to get some estimates on the local times of the strongly correlated
random walk.
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Then the proof of Theorem 1.2 is quite analogous to the proof of Theorem
2 in [4]. Proposition 3.1 states the convergence of the finite dimensional
distribution. The tightness of the sequence is stated in Proposition 3.2. We
give the main lines of the proof and omit some details that are to be found
in [4].

3.1 Some results about local times

3.1.1 Maximum local time, self intersection local time and range.

The maximum local time Ln of the random walk up to time n is defined by

Ln = sup
x∈Z

Nn(x).

The number of self-intersections Vn of the random walk up to time n is defined
by

Vn =
∑

0≤i,j≤n

1{[Si]=[Sj ]} =
∑

x∈Z

Nn(x)2.

The range Rn of the random walk up to time n is defined by

Rn =
∑

x∈Z

1{Nn(x)6=0}.

These definitions extend obviously to non-integer time s ≥ 0.

Our results rely on different estimations of these quantities that we gather
in the following Lemma:

Lemma 3.1.

• The following convergence in probability holds

n−δLn
P

−→
n→∞

0. (19)

• For any p ∈ [1, +∞), there exists some constant C such that for all
n ≥ 1,

E (V p
n ) ≤ Cnp(2−H). (20)

• For any p ∈ [1, +∞), there exists some constant C such that for all
n ≥ 1

E (Rp
n) ≤ CnpH . (21)

10



Proof:
• We follow the lines of Lemma 4 in Kesten and Spitzer. Let ε > 0, we have,

P(n−δLn > ε) ≤ P(Nn(x) > 0 for some |x| > AnH) +
∑

|x|≤AnH

P(Nn(x) > nδε)

≤ P( sup
0≤k≤n

n−H |[Sk]| > A) +
∑

|x|≤AnH

E(Nn(x)p)n−pδε−p

We now use the following estimation from [14] lemma 4.4: there exists some
C > 0 such that

E(Nn(x)p) ≤ Cnp(1−H),

and hence we have for all A > 0 and ε > 0
∑

|x|≤AnH

E(Nn(x)p)n−pδε−p ≤ 2AnHCnp(1−H)n−pδε−p,

and this quantity goes to 0 as n → ∞ if we choose p large enough such that
H + p(1 − H) − pδ = H(1 − p/β) < 0. At last, the term

P( sup
0≤k≤n

n−H |[Sk]| > A)

converges to P(sup0≤t≤1 |BH(t)| > A) as n → ∞, and this last term goes to
zero as A → ∞.

• First notice that we can suppose without restriction that p ≥ 1 is an
integer, because the bound for p′ ≥ 1 is a consequence of the case p ≥ p′.
The number of self-intersections up to time n is bounded from above by

Vn ≤
∑

0≤i≤j≤n

21{[Si]=[Sj]}.

Using Minkowski inequality,

||Vn||p ≤ 2
n
∑

i=0

||
n
∑

j=i

1{[Si]=[Sj]}||p, (22)

where ||X||p = E(|X|p)1/p. For fixed i, the stationarity of the random walk’s
increments implies that the distribution of

∑n
j=i 1{[Si]=[Sj]} and

∑n−i
j=0 1{[Si]=0} =

Nn−i(0) are equal. Since Nn−i(0) ≤ Nn(0), equation (22) yields

E(V p
n ) ≤ 2pnp

E (Nn(0)p) . (23)

11



We now refer to lemma 4.4 in [14] which states that there is some C > 0
such that

E (Nn(0)p) ≤ Cnp(1−H) (24)

Equations (23) and (24) together yield equation (20).
• We only have to notice that Rn ≤ 1+2 sup0≤k≤n |Sk| and hence it is enough
to prove that sup0≤k≤n n−H |Sk| is bounded in Lp for all p ≥ 1. Let Sn(t)t∈[01]

be the continuous process defined by

Sn(t) = n−HS[nt] + (nt − [nt])n−H(S[nt]+1 − S[nt]).

By equation (4), the sequence of process Sn converges weakly to BH in
C([0, 1]) furnished with the uniform norm ||.||∞. Furthermore,

sup
0≤k≤n

n−H |Sk| = ||Sn||∞.

Hence we need to show that ||Sn||∞ is bounded in Lp for all p ≥ 1. Using
a concentration result (see e.g. [6] p. 60), a sequence of Gaussian random
variables which is bounded in probability is bounded in all Lp spaces. Since
the sequence Sn converges in distribution to BH , it is bounded in probability,
and hence bounded in all Lp spaces.

3.1.2 Convergence of functional of local times

The following lemma is an analogous of Lemma 6 in [5] when the random
walk in the domain of attraction of a stable Levy motion is replaced by a
random walk in the domain of attraction of a fractional Brownian motion
Note that the case of walks in a L2 scenery was considered by Wang. We
here generalize Wang’s result (Proposition 3.2 in [14]) to the case of an heavy
tailed scenery.

Lemma 3.2. For all (θ1, · · · , θk) ∈ R
k, (t1, · · · , tk) ∈ [0, +∞)k, σ > 0,

β ∈ (0, 2], the distribution of

Xn = n−δβ
∑

x∈Z

∣

∣

k
∑

j=1

θjNntj (x)
∣

∣

β

converges weakly as n → ∞ to X defined by equation (12).
Furthermore, Xn is bounded in Lp for all p ≥ 1.

12



Proof:
Following Kesten and Spitzer [5] and Wang [14], we introduce for small τ > 0
and large N ,

U(τ, N, n) = n−βδ
∑

|x|≤NτnH

∣

∣

k
∑

j=1

θjNntj (x)
∣

∣

β

d(l, n) = n−1
k
∑

j=1

θj

∑

lτnH≤y<(l+1)τnH

Nntj (y)

V (τ, N, n) = τ 1−β
∑

|l|≤N

|d(l, n)|β.

Then,

Xn − U(τ, N, n) − V (τ, N, n)

=
∑

|l|≤N

∑

lτnH≤x<(l+1)τnH

n−δβ

{

∣

∣

k
∑

j=1

θjNntj (x)
∣

∣

β
− nβ[τnH ]−β|d(l, n)|β

}

+
∑

|l|≤M

(nβ−δβ [τnH ]1−β − τ 1−β)|d(l, n)|β. (25)

By Lemma 3.1 in [14] d(l, n) converges in distribution to

k
∑

j=1

θj

∫ (l+1)τ

lτ

Ltj (x)dx.

Since
nβ−δβ [τnH ]1−β − τ 1−β → 0,

the second sum over l in the right hand side of (25) tends to zero in probability
as n → ∞. We now show that the first sum over l in the right hand side of
(25) is small in probability when τ is small. We use the following inequality,
valid for any a ≥ 0, b ≥ 0

|aβ − bβ | ≤

{

|a − b|β if β ≤ 1
β|a − b|(aβ−1 + bβ−1) if β < 1,

to estimate the sum over x. In the case β ≤ 1,

E

∣

∣

∣

∣

∣

∣

∑

|l|≤N

∑

lτnH≤x<(l+1)τnH

n−δβ

{

∣

∣

k
∑

j=1

θjNntj (x)
∣

∣

β
− nβ [τnH ]−β|d(l, n)|β

}

∣

∣

∣

∣

∣

∣

≤ n−δβ
∑

|l|≤N

∑

lτnH≤x<(l+1)τnH



E

∣

∣

∣

∣

∣

k
∑

j=1

θjNntj (x) − n[τnH ]−1d(l, n)

∣

∣

∣

∣

∣

2




β/2
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and

E

∣

∣

∣

∣

∣

k
∑

j=1

θjNntj (x) − n[τnH ]−1d(l, n)

∣

∣

∣

∣

∣

2

≤ [τnH ]−1
k
∑

i=1

θ2
i

k
∑

j=1

∑

lτnH≤y<(l+1)τnH

E|Nntj(x) − Nntj (y)|2.

Now from Lemma 4.6 in [14], there exist C and r > 0 such that for large n,
large N and small τ (with A = Nτ large enough), and any |x| ≤ A and y
such that |x − y| ≤ τnH , the following holds :

E|Nntj (x) − Nntj (y)|2 ≤ CAτ rn2−2H .

Combining these estimates,

E

∣

∣

∣

∣

∣

∣

∑

|l|≤N

∑

lτnH≤x<(l+1)τnH

n−δβ

{

∣

∣

k
∑

j=1

θjNntj (x)
∣

∣

β
− nβ [τnH ]−β|d(l, n)|β

}

∣

∣

∣

∣

∣

∣

≤ n−δβ(2N + 1)[nHτ ]
(

[nHτ ]−1[nHτ ]CAτ rn2−2H
)β/2

≤ CNτ 1+rβ/2

This completes the estimate of (25) in the case β ≤ 1.

In the case β > 1, we have

E

∣

∣

∣

∣

∣

∣

∑

|l|≤N

∑

lτnH≤x<(l+1)τnH

n−δβ

{

∣

∣

k
∑

j=1

θjNntj (x)
∣

∣

β
− nβ [τnH ]−β|d(l, n)|β

}

∣

∣

∣

∣

∣

∣

≤ n−δβ
∑

|l|≤N

∑

lτnH≤x<(l+1)τnH

βE

[∣

∣

∣

∣

∣

k
∑

j=1

θjNntj (x) − n[τnH ]−1d(l, n)

∣

∣

∣

∣

∣

×

(

|

k
∑

j=1

θjNntj (x)|β−1 + |n[τnH ]−1d(l, n)|β−1

)]

≤ βn−δβ





∑

|l|≤N

∑

lτnH≤x<(l+1)τnH

E

∣

∣

∣

∣

∣

k
∑

j=1

θjNntj (x) − n[τnH ]−1d(l, n)

∣

∣

∣

∣

∣

2




1/2

×





∑

|l|≤N

∑

lτnH≤x<(l+1)τnH

E

(

|
k
∑

j=1

θjNntj (x)|β−1 + |n[τnH ]−1d(l, n)|β−1

)2




1/2

.
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With the same techniques as above, the first factor is shown to be bounded
from above by

βn−δβ [(2N + 1)τnHCAτ rn2−2H ]1/2

In order to upper-bound the second factor, introduce T = sup{tj; j = 1...k},

and note that |
∑k

j=1 θjNntj (x)| ≤ CNnT (x) and also n[τnH ]−1d(l, n) ≤

C[τnH ]−1
∑

lτnH≤y<(l+1)τnH NnT (y). Using Hölder and Minkowski’s inequali-
ties, the second factor is bounded from above by





∑

|l|≤N

∑

lτnH≤x<(l+1)τnH

E

(

|

k
∑

j=1

θjNntj (x)|β−1 + |n[τnH ]−1d(l, n)|β−1

)2




1/2

≤ C





∑

|l|≤N

∑

lτnH≤x<(l+1)τnH

E (NnT (x))2β−2





1/2

+C







∑

|l|≤N

∑

lτnH≤x<(l+1)τnH

E



[τnH ]−1
∑

lτnH≤y<(l+1)τnH

NnT (y)





2β−2






1/2

≤ C





∑

|l|≤N

∑

lτnH≤x<(l+1)τnH

(

ENnT (x)2
)β−1





1/2

+C







∑

|l|≤N

∑

lτnH≤x<(l+1)τnH

[τnH ]2−2β





∑

lτnH≤y<(l+1)τnH

(

ENnT (y)2
)1/2





2β−2






1/2

≤ C
[

(2N + 1)τnHn(2−2H)(β−1)
]1/2

where the last line follows from Lemma 4.4 in [14] stating that there is some
C > 0 such that

sup
x∈Z

E(NnT (x))2 ≤ Cn2−2H .

Combining these estimates,

E

∣

∣

∣

∣

∣

∣

∑

|l|≤N

∑

lτnH≤x<(l+1)τnH

n−δβ

{

∣

∣

k
∑

j=1

θjNntj (x)
∣

∣

β
− nβ [τnH ]−β|d(l, n)|β

}

∣

∣

∣

∣

∣

∣

≤ Cn−δβ [(2N + 1)τnHτ rn2−2H ]1/2
[

(2N + 1)τnHn(2−2H)(β−1)
]1/2

≤ CNτ 1+r/2
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Then the proof of Lemma 3.2 follows from equation (25) and from the above
estimates as in [5] or [14]: the idea is to show that for large N , n and small τ ,
Xn−V (τ, n, N) → 0 in probability and that V (τ, n, N) → X in distribution.
We omit the details.

Next we prove that (Xn)n≥1 is bounded Lp bound. Let T = sup(t1, · · · , tn)

and Θ =
∑k

j=1 |θj|. The random variables |Xn| is bounded above by

Θβn−δβ
∑

x∈Z

Nβ
[nT ]+1(x).

In the case β = 2, this quantity is equal to Θ2nH−2V[nT ]+1, and in this case
the Lp bound is a consequence of equation (20).
In the case β < 2, Hölder inequality yields

∑

x∈Z

Nβ
[nT ]+1(x) ≤

(

∑

x∈Z

1{N[nT ]+1(x)6=0}

)1−β

2
(

∑

x∈Z

N2
[nT ]+1(x)

)
β

2

= R
1−β

2

[nT ]+1V
β
2

[nT ]+1.

Hence, up to a multiplicative constant, the expectation E(|Xn|
p) is overesti-

mated by

E

[(

n−δβ
∑

x∈Z

Nβ
[nT ]+1(x)

)p]

≤ E

[

(

n−HR[nT ]+1

)p(1−β

2
) (

nH−2V[nT ]+1

)p β

2

]

We now apply Cauchy-Schwartz inequality,

E

[(

n−δβ
∑

x∈Z

Nβ
[nT ]+1(x)

)p]

≤ E

[

(

n−HR[nT ]+1

)p(2−β)
]

1
2

E

[

(

nH−2V[nT ]+1

)pβ
]

1
2
.

Now the Lp bound follows from equation (20) and (21) together. �

3.2 Convergence of the finite-dimensional distributions.

We study the asymptotic behaviour of the characteristic function of the
marginals of Gn. Let λ be the characteristic function of the variables ξ

(i)
k

defined by

λ(u) = E

(

exp(iuξ
(1)
1 )
)

.
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Since the random variables ξ
(i)
k are in the domain of attraction of Zβ,

λ(u) = λ̄(u) + o(|u|β) , as u → 0, (26)

where λ̄ is the characteristic function of Zβ given by equation (2).

Proposition 3.1. The finite dimensional distributions of (Gn(t))t≥0 converge
weakly as n → ∞ to those of (Γ(t))t≥0 defined in equation (8).

Proof:
Let (θ1, · · · , θk) ∈ R

k , (t1, · · · , tk) ∈ [0, +∞)k. Computations as in [4] show
that the characteristic function of Γn(t) writes

E

[

exp

(

i

k
∑

j=1

θjGn(tj)

)]

=

(

E

[

∏

x∈Z

λ

(

c
− 1

β
n Un(x)

)

])cn

(27)

where

Un(x) = n−δ

k
∑

j=1

θjNntj (x) , x ∈ Z.

We show that the following asymptotic holds as n → ∞:

E

[

∏

x∈Z

λ

(

c
− 1

β
n Un(x)

)

]

= E

[

∏

x∈Z

λ

(

c
− 1

β
n Un(x)

)

]

+ o(c−1
n ) (28)

To see this, note that

cn

∣

∣

∣

∣

∣

∏

x∈Z

λ

(

c
− 1

β
n Un(x)

)

−
∏

x∈Z

λ̄

(

c
− 1

β
n Un(x)

)

∣

∣

∣

∣

∣

≤ cn

∑

x∈Z

∣

∣

∣

∣

λ

(

c
− 1

β
n Un(x)

)

− λ̄

(

c
− 1

β
n Un(x)

) ∣

∣

∣

∣

≤ g̃(c
− 1

β
n Un)

∑

x∈Z

|Un(x)|β. (29)

with
Un = sup

x∈Z

|Un(x)|,

and g̃ the bounded continuous vanishing at zero function defined by

g̃(u) = sup
|v|≤u

|v|−β
∣

∣λ(v) − λ̄(v)
∣

∣ , v 6= 0.
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(The properties of g̃ follow from equation (26).) From Lemma 3.1, Un con-
verge in probability to 0 as n → ∞. Since g̃ is bounded continuous and

vanishes at 0, g̃(c
− 1

β
n Un) converges also in probability to 0 and is bounded

in L∞. From Lemma 3.2,
∑

x∈Z
|Un(x)|β converges in distribution and is

bounded in Lp. As a consequence, the right hand side of (29) converges to
zero in probability and is bounded in Lp, and hence its expectation has limit
0. This proves equation (28).

We now prove the following estimation

E

[

∏

x∈Z

λ̄

(

c
− 1

β
n Un(x)

)

]

= 1 − c−1
n σβ

E [X] + o(c−1
n ) (30)

where X is defined in Lemma 3.2.To see this, recall the definition of the
random variable Xn from Lemma 3.2 and of the characteristic function λ̄
from equation (2). With these notations, equation (30) is equivalent to

lim
n→+∞

E (fn(Xn)) = σβ
E(X),

where fn is the function defined on C by

fn(x) = cn

(

1 − exp(−c−1
n σβx)

)

.

It is easy to verify that the sequence of functions fn satisfies the following
property: for every x, for every sequence (xn)n≥1 converging to x,

lim
n→∞

fn(xn) = σβx.

Furthermore Lemma 3.2 states that the sequence (Xn)n≥1 converges in distri-
bution to X when n → ∞. Using the diagonal mapping Theorem (Theorem
5.5 of [2]), we prove the weak convergence of the sequence of random variables
fn(Xn) to σβX. Furthermore, using Lemma 3.2, |fn(Xn)| ≤ |Xn| is bounded
in Lp for any p ≥ 1. Hence E(fn(Xn)) has limit σβE(X) and equation (30)
is proved.
Finally, combining equations (27), (28) and (30) we prove easily that

E

[

exp

(

i
k
∑

j=1

θjGn(tj)

)]

=
(

1 − c−1
n σβ

E(X) + o(c−1
n )
)cn

−→
n→∞

exp(−σβ
E(X))

and Proposition 3.1 is proved. �
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3.3 Tightness

Proposition 3.2. The family of processes (Gn(t))t≥0 is tight in C([0,∞)).

Proof: As in the continuous case, we prove the tightness using truncations
in order to deal with finite variance processes. We decompose the scenery
(ξ

(i)
x )x∈Z,i≥1 into two parts

ξ(i)
x = ξ̄(i)

a,x + ξ̂(i)
a,x,

where (ξ̄
(i)
a,x) denote the i-th truncated scenery defined by

ξ̄(i)
a,x = ξ(i)

x 1
{|ξ

(i)
x |≤a}

,

and ξ̂
(i)
a,x the remainder scenery

ξ̂(i)
a,x = ξ(i)

x 1
{|ξ

(i)
x |>a}

.

We recall the following estimates from Lemma 3.3 in [4]: there exists some
C > 0 such that

|E
(

ξ̄(i)
a,x

)

| ≤ Ca1−β , E
(

|ξ̄(i)
a,x|

2
)

≤ Ca2−β , P

(

ξ̂(i)
a,x 6= 0

)

≤ Ca−β. (31)

For a > 0, we use truncations with an = an
H
β c

1
β
n and write

Gn(t) = Γ̄n,a(t) + Γ̂n,a(t), (32)

where

Γ̄n,a(t) = n−δc
− 1

β
n

cn
∑

i=1

∑

x∈Z

N
(i)
nt (x)ξ̄(i)

an,x,

Γ̂n,a(t) = n−δc
− 1

β
n

cn
∑

i=1

∑

x∈Z

N
(i)
nt (x)ξ̂(i)

an,x.

Now, with the same techniques as in the proof of Proposition 3.2 in [4], we
compute:

P

(

sup
t∈[0,T ]

|Γ̂n,a(t)| = 0

)

≥

(

E

[

(

P(ξ̂
(1)
an,0 = 0)

)R[nT ]+1

])cn

≥
(

E

[

(

1 − Ca−β
n

)R[nT ]+1

])cn

≥
(

1 + log(1 − Ca−β
n )E(R[nT ]+1)

)cn
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Using the asymptotic for an and Lemma 3.1 to estimate the range, the above
inequality implies

lim
a→∞

lim sup
n→∞

P

(

sup
t∈[0,T ]

|Γ̂n,a(t)| > 0

)

= 0 (33)

On the other hand, the variance of the truncated process Γn,a is overestimated
by

E

[

∣

∣ Γ̄n,a(t2) − Γ̄n,a(t1)
∣

∣

2
]

≤ n−2δc
− 2

β
n cn(cn − 1)

[

∑

x∈Z

E(N
(1)
nt2(x) − N

(1)
nt1(x))

]2
[

E|ξ̄
(1)
an,0|

]2

+n−2δc
− 2

β
n cn

∑

x 6=y∈Z

E

[

(N
(1)
nt2(x) − N

(1)
nt1(x))(N

(1)
nt2(y) − N

(1)
nt1(y))

] [

E|ξ̄
(1)
an,0||

]2

+n−2δc
− 2

β
n cn

∑

x∈Z

E

[

(N
(1)
nt2(x) − N

(1)
nt1(x))2

]

E

[

|ξ̄
(1)
an,0|

2
]

Using equation (31) and the following estimations,

E

[

∑

x∈Z

(N
(1)
nt2(x) − N

(1)
nt1(x))

]

= n(t2 − t1)

E





∑

x 6=y∈Z

(N
(1)
nt2(x) − N

(1)
nt1(x))(N

(1)
nt2(y) − N

(1)
nt1(y))



 = n2(t2−t1)
2−E

[

∑

x∈Z

(N
(1)
nt2(x) − N

(1)
nt1(x))2

]

E

[

∑

x∈Z

(N
(i)
nt2(x) − N

(i)
nt1(x))2

]

≤ E(V[nt2]−[nt1]+1) ≤ C([nt2] − [nt1] + 1)2−H

we prove that there exists some C such that if |t2 − t1| ≥
1
n
, then

E

[

∣

∣ Γ̄n,a(t2) − Γ̄n,a(t1)
∣

∣

2
]

≤ C|t2 − t1|
2−H .

In the case |t2 − t1| ≤ 1/n, we can see that

E

[

∑

x∈Z

(N
(1)
nt2(x) − N

(1)
nt1(x))2

]

≤ 2(nt2 − nt1)
2,

since in the sum, at most two terms are not zero and those terms are bounded
by (nt2 − nt1)

2. Using theorem 12.3 in Billingsley, these estimates prove the

20



tightness of the family of processes
(

Γ̄n,a(t)
)

t≥0
. This together with equations

(33) and (32) implies the tightness of the sequence Gn, and hence Proposition
3.2.

�
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