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ABSTRACT. We introduce a new causal hierarchical belief network for image segmentation. Con-
trary to classical tree structured (or pyramidal) models, the factor graph of the network contains
cycles. Each level of the hierarchical structure features the same number of sites as the base
level and each site on a given level has several neighbors on the parent level. Compared to
tree structured models, the (spatial) random process on the base level of the model is stationary
which avoids known drawbacks, namely visual artifacts in the segmented image. We propose
different parametrisations of the conditional probability distributions governing the transitions
between the image levels. A parametric distribution depending on a single parameter allows
the design of a fast inference algorithm on graph cuts, whereas the parameter is estimated with
a least squares technique. For arbitrary distributions, we propose inference with loopy belief
propagation and we introduce a new parameter estimation technique adapted to the model.

RESUME. Dans ce papier, on présente un nouveau réseau bayesien hiérarchique dédié a la seg-
mentation d’images. Contrairement aux modeéles classiques (e.g. le quad arbre), le graphe as-
socié a ce réseau bayesien contient des cycles. Chaque niveau de cette structure hiérarchique
contient autant de sommets que le niveau de base (qui contient lui-méme autant de sommets
que l'image a segmenter contient de pixels) et chaque sommet a plusieurs parents sur le niveau
supérieur. Contrairement aux structures d’arbre classiques, ce modéle possede la propriété
de stationnarité ce qui signifie qu’il est invariant aux translations de l'image. Le présence de
boucles dans le modeéle proposé rend le probleme de ’inférence exacte délicat. L’ apport majeur
de ce papier, outre le modéle lui-méme, est la présentation d’un algorithme d’inférence exact
basé sur le probleme classique de graphes, a base de maximisation de flots.

KEYWORDS: Image segmentation, hierarchical model
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1. Introduction

Image segmentation techniques aim at partitioning images into a set of non overlap-
ping and homogeneous regions taking into account prior knowledge on the results as
well as a probabilistic model of the observation (degradation) process. Belief net-
works, but also undirected probabilistic graphical models are widely used to incor-
porate spatial dependencies between the image pixels into the classification process,
very often modeling the problem as Bayesian estimation.

In their seminal paper (Geman et al., 1984), Geman and Geman introduced a max-
imum a posteriori (MAP) estimation technique for Markov random fields (MRF). An
alternative to the two-dimensional MRFs are hidden Markov chains (MC) on one-
dimensional traversals (Hilbert-Peano scans) of an image (Abend et al., 1965) or hy-
brid MC/MREF techniques (Fjortoft et al., 2003). The Markov chain models have been
extended to belief networks with a pseudo 2D graph structure (Kuo et al., 1994) and
to full 2D connectivity (Levin et al., 1992).

Hierarchical models introduce a scale dependent component into the classification
algorithm, which allows the algorithm to better adapt itself to the image characteris-
tics. The nodes of the graph are partitioned into different scales, where lower scale
levels correspond to finer versions of the image and higher scale levels correspond to
coarser versions of the image. Examples are stacks of flat MRFs (Bello, 1994), pyra-
midal graph structures (Kato et al., 1996) and the scale causal multi-grid (Mignotte
et al., 2000). Bouman and Shapiro were among the first to propose a hierarchical be-
lief network for image segmentation (Bouman et al., 1994) (refined by Laferte et al.
(Laferte et al., 2000)). A quad tree models the spatial interactions between the leaf
pixel sites through their interactions with neighbors in scale. The main problem of the
quad tree structure is the non stationarity it induces into the random process of the leaf
sites, which results in “blocky” artifacts in the segmented image.

In the same paper a second model is proposed, where each node has three parents.
At first sight, the structure of the dependency graph is similar to our solution (which
features four parents for each site), however, the model proposed by Bouman is a
pyramidal model in that the number of nodes decreases at each level. Moreover, as
an approximation the inference algorithm proposes a change of the graph after each
inference step, whereas in our work the whole graph keeps its full connectivity.

The work described in this paper concentrates on the solution to the lack of shift
invariance of the quad tree structured network. Our new model combines several
advantages:

— Adaptation to the image characteristics with a hierarchical graph structure (sim-
ilar to the quad tree)

— A stationary random process at the base level (where each site corresponds to
one pixel of the input image).

— Fast inference using minimum cut/maximum flow algorithms for a subclass of
transition probability distributions.
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Figure 1. The quad tree structured model with and without observed nodes.

The paper is organized as follows: section 2 describes the quad tree structured net-
work and section 3 extends it to the cube. Section 4 presents an inference algorithm
using loopy belief propagation and section 6 presents a fast inference algorithm for a
parametric class of transition probability distributions. Section 7 describes parameter
estimation for the latter class of distributions and section 5 introduces an estimation
technique for a nonparametric family of transition probability distributions. Section
8 discusses the computational complexity and memory requirements and section 9
experimentally valides the method. Finally, section 10 concludes.

2. Quad tree structured models

In the following we describe belief networks, thus graphical models defined on a di-
rected acyclic graph G = {G, E}, where G is a set of nodes (sites) and F is a set of
edges. The edges of the graph assign, to each site s, a set of parent sites (written as
s7) and a set of children sites (written as s_). The hierarchical nature of the graph
partitions the set of nodes into levels G(V,i € 0..L — 1, G(°) being the base level
corresponding to finest resolution.

Each site s is assigned a discrete random variable X ; taking values from the label
set A = {0,...,C — 1} where C is the number of classes. X¢, or short X denotes
the field of random variables of the graph, whereas X ) denotes the field of random
variables at level [. The space of all possible configurations of the field X is denotated
as Q = AICI,

In the case of the quad tree structured model (Bouman et al., 1994; Laferte et
al., 2000), the graph G forms a tree structure with a single root node r € G(X~1 four
children nodes for each node and a single parent node for each node except the root
node (see Fig. 1). Each hidden variable X is related to an observed variable Y which
is conditionally independent of the other observed variables given a realization of X:
P(ys|lz) = P(ys|zs) and P(y|z) = [],cq Pys|zs) (see Fig. 1) . The objective is
to estimate the hidden variables = given the observed variables y. In this paper we
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Figure 2. A one dimensional representation of the stepwise extension of the quad tree
(shown as a dyadic tree) to the cube

consider maximum a posteriori estimation (MAP) estimation which corresponds to
the mode of the posterior distribution:

T = = 1
T argrgggp(wly) argrgggp(x)p(ylw) [1]

The absence of cycles in the dependency graph allows the application of optimization
techniques similar to the ones used for the Viterbi algorithm (Jr., 1973; Viterbi, 1967)
computing the optimal configuration using dynamic programming.

3. The proposed cube structured model

The main disadvantage of the Markov quad tree is the non stationarity introduced into
the random process of the leaf sites G(?) due to the fact that, at any given level, two
neighboring sites may share a common parent or not depending on their position on
the grid. We therefore propose an extension shown in Fig. 2b (for easier representation
the one dimensional case — a dyadic tree — is shown)

First, a second dyadic tree is added to the graph, which adds a common parent to
all neighboring leaf sites which did not yet share a common parent. In the full two
dimensional case, three new quad trees are added. The problem is solved for the first
level, where the number of parents increased to 4 (for the full 2D model). We repeat
the process for each level. New trees connect sites of the original quad tree, but also
sites of the trees added at the lower levels. The final result can be seen in Fig. 2b.
Note, that the final graph is not a pyramid anymore, since each level contains the same
number of nodes. In general, each node has 4 parents (2 in the 1D representation)
except border nodes.

The whole graph can be efficiently implemented by a cube of dimensions N X
M x [log, max(N, M)], N x M being the size of the image. In practice, the full
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height H of the cube is not always required. The parents and children of site s with
coordinates x and y on level [ are given as follows:

x+ A" y+ A" xr+Any+ A,
s — T+ A"y + AP s — T+ Any+ A4, [2]
) z+H AP y+ A" T ) z+ALy+A,
x4+ APy + AP T+Apy+ 4,
where
—1 ifl =0 0 ifl=20
n _ P —
A —2l=1 else A 2!=1 else 3]
A0 ifl=1 , _[1 ifi=1
T =272 else P 2072 else

The graph as it is described in Fig. 2d (in a 1D representation) corresponds to the
hidden part, i.e. the prior model p(z) in the Bayesian sense. The full Markov cube in-
cluding observed nodes is parametrized through three probability distributions: the
discrete prior distribution of the top level labels p(x), the transition probabilities
p(xs|zs—) and the likelihood of the observed nodes given the corresponding hidden
nodes p(ys|zs) — a probability density.

For the inference algorithm, observations at different cube levels are needed. In
most cases this will require resampling the data in all levels except the finest one.

4. Inference with loopy belief propagation

Loopy belief propagation (Pearl, 1988) is an approximative inference technique for
general graphs with cycles. In practice, convergence does occur for many types of
graph structures. Murphy et al. present an empirical study (Murphy et al., 1999)
which indicates that with LBP the marginals often converge to good approximations
of the posterior marginals.

Loopy belief propagation is equivalent to the sum-product (or max-product) algo-
rithm proposed for factor graphs (Kschischang et al., 2001). Any directed or undi-
rected dependency graph can be transformed into a factor graph which contains two
different types of nodes: variable nodes corresponding to the random variables of the
model and factor nodes corresponding to the factors of the joint probability distribu-
tion. Figure 3 shows the 1D representation of a Markov cube without observed nodes
as well as a small part of the full 2D Markov cube with observed nodes and their
corresponding factor graphs.

The sum-product algorithm operates by passing messages between the nodes of
the graph, each message being a function of the corresponding variable node. Due to
the nature of our graph, there are two types of messages: messages from a variable
node to a factor node, and the opposite:

— messages from a variable node z s upwards to the factor node.
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© (d)

Figure 3. A cube in 1D without obervations (a) and a small part in 2D with observa-
tions (b) and the corresponding factorgraphs (c-d).

— messages downwards to a variable node x, coming from the factor node.
— for each child x. of a variable node x,, a message from x; downwards.

— for each child z. of a variable node x,, a message upwards to .

The message passing schedule for the Markov Cube alternates between bottom up
passes and top down passes.

5. Interpretation of the hidden variables

In this section, we propose a methodology to estimate the conditional probability
distributions p(xs|x - ) by taking into account statistical invariance of images belong-
ing to the same corpus. Concretely, we propose to give an interpretation of the hidden
variables x; (i.e. the variables belonging to level 1>0) such that :

1) the independence model given by the structure is satisfied. Given a topological
numerotation of vertices, a variable x5 should be independent of all smaller index
variables given its parents z .

2) the conditional probabilities are significantly different of conditional probabili-
ties obtained on randomly binary images.

3) the conditional probabilities are close for all images of the corpus

For simplicity reasons, in the following we describe the binary case (C' = 2), the
adaptation to multiple labels is straightforward. The Let x; be a vertex of the Markov
cube and [ its level. We call U, the set of vertices of level O reachable by a directed
path from z. U, is a 2! * 2 square on the image. Then, we naturally define the class
of z as the class with the maximum number of variables U, (in case of equality, we
choose the class randomly). In order to achieve estimation, we just have to compute
the frequency of label O (resp 1) for each parent configuration. In the corpus used in
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the experiments, the 3 issues claimed above were verified. This interpretions allows
several strategies for unsupervised estimation of the conditional probabilities:

— Nonparametric definition of the conditional probabilities. Given initial labels at
the base level, the labels at the upper levels are computed as described above and the
probabilities are estimated using histograming.

— Parametric functions are fitted to the histograms. This strategy is pursued in the
next section.

6. Inference with minimum cut/maximum flow

Algorithms calculating the minimum cut/maximum flow in a graph are a powerful tool
able to calculate the exact MAP solution on a number of binary labeling problems
(D.M.Greig et al., 1989; Boykov et al., 2004; Boykov et al., 2001; Kolmogorov et
al., 2004) with low order polynomial complexity. It has been shown recently, that
energy functions for which the optimal solution is equivalent to the minimum cut in
an appropriate graph contain only “regular” terms on binary labels (Kolmogorov et
al., 2004), where regular means that any projection of a term E(z;, ;, Zk, . ..) onto
any subset of two of its arguments satisfies the following condition:

E(0,0)+ E(1,1) < E(0,1) + E(0,1) [4]

In the case of the proposed model, not all energy terms are regular, especially the
terms corresponding to the logarithm of the transition probabilities In p(x 4|z -), so
the general model cannot be solved with graph cuts. However, for a large sub class
with interesting properties, graph cut solutions can be found. We propose a regulariz-
ing term based on the number of parent labels which are equal to the child label:

]- Lgy L  —
P(zs|z,-) = = o) (5]

where « is a parameter depending on the level I, £(x, - ) is the number of labels
in x~ equal to 5 and Z is a normalization constant. The such defined transition
probabilities favor homogeneous regions which corresponds to the objective of an
image segmentation algorithm. We then decompose it into a sum of binary terms:

Inp(zs|z,-) = Z (Ina) 0p,,2,] —Z [6]

s'es—

where 4, 5, is the Kronecker delta defined as 1 if @ = b and O else. It should be noted
that each binary term is regular in the sense of (Kolmogorov et al., 2004). Fig. 4 shows
a cut graph constructed for the dependency graph of Fig. 3b: the cut with minimum
cost separating source S from sink 7' corresponds to the exact MAP estimate for a
Markovcube with binary labels (C' = 2). Each non terminal node is connected to one
of the terminal nodes with weight |In p(ys|zs = 1)/p(ys|zs = 0)|, according to the
sign inside the absolute value. The weights of top level nodes s contain an additional
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—Inp(ys|lzs = 1)/p(ys|zs = 0)

Inp(ys|zs = 1)/p(ys|zs = 0)

Figure 4. The cut graph constructed for the binary problem from the dependency
graph shown in Fig. 3b, including the two terminal nodes S and T. For more than 2
labels, the expansion move algorithm ressorts to a similar graph.

term Inp(xs = 1)/p(zs = 0). Additionally, each non terminal node is connected to
each of its parents with an undirected edge and weight In .

Minimum cut algorithms are restricted to binary labeling problems (C' = 2). Dis-
continuity preserving energy minimization with multiple labels is NP-hard (Boykov
et al., 2001), but the a-expansion move algorithm introduced in (Boykov et al., 2001)
allows to find a local minimum with garantueed maximum distance to the global mini-
mum. It consists of iteratively applying the minimum cut algorithm to the sub problem
of labeling each node of the whole graph between two labels: keeping the current label
and changing the a new label o, which is changed at each iteration.

7. Parameter estimation with least squares

We chose the unsupervised technique Iterated Conditional Estimation (ICE)
(Pieczynski, 2007) for parameter identification. Given supervised estimators of the
parameters from a realization of the full set of variables (X, Y), an iterative procedure
alternates between estimating the parameters and creating realizations of the label field
based on the current parameters. The initial set of parameters can be obtained from an
initial segmentation of the input image.

The prior probabilities of the top level labels (3; can be estimated using histogram
techniques. Similarly, for most common observation models, maximum likelihood es-
timators of the sufficient statistics of the conditional distributions are readily available.
In this paper, we work with a simple observation model assuming Gaussian noise, re-
quiring as parameters means and (co)-variances for each class. Arbitrary complex
likelihood functions are possible using Gaussian mixtures.

For the parameters «; of the transition probabilities, we propose a solution based
on least squares estimation similar to the works proposed by Derin et al. for the
estimation of Markov random field parameters (Derin et al., 1987). For each level [,
we consider pairs of different site labels z; and 4 (s € G()) with equal parent labels
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rs— = xgy-. Note that the parent sites are different, whereas their labels are equal.
From (5) the following relationship can be derived:
&(zs sTg— )

P<x8 |',I"S’ ) — al [7]
, _ E(xgryw )
Plavle, )

Expressing the conditional probabilities through absolute probabilities and taking the
logarithm we get:

(8]

R IR

P(zs,xs—)

The right hand side of the equation can be estimated from the label process, e.g. by
histogramming, whereas the factor in the left hand side can be calculated directly.
Considering a set of different label pairs, we can augment this to

bT[lnal] =a [9]

where b is a vector where each element corresponds to the value in the left hand side
of equation (8) for a given label pair and each value in the vector a corresponds to
the right hand side of equation (8) for a given label pair. The solution of the over
determined linear system can be found using standard least squares techniques.

8. Complexity and storage requirements

Inference complexity for loopy belief propagation (LBP) can be given as O(I - N -
M - (H —1) - C%) where I is the number of iterations. H is the height of the cube and
bounded by [log, max(N, M)]. Storage requires N - M - (H — 1) - 15C variables.
In practice, LBP in its original form is applicable for low numbers of classes (2, 3 or
maximum 4), which is enough for a large number of problems. For higher numbers
of classes, the classes may be quantisized and the message passing equations slightly
changed.

Inference with minimum cut/maximum flow is considerable faster with a complex-
ity bounded by O(E « f), where E is the number of edges in the graph and F is the
maximum flow. We use the graph cut implementation by Boykov and Kolmogorov
(Boykov et al., 2004) which has been optimized for typical graph structures encoun-
tered in computer vision and whose running time is nearly linear in running time in
practise (Boykov et al., 2001). Table 1 gives effective run times and memory require-
ments measured on a computer equipped with a single core Pentium-M processor
running at 1.86Ghz and 1GB of RAM.

9. Experimental results

We applied the model to two common problems in document image analysis: bina-
rization (C' = 2) and ink bleed through, i.e. the removal of the verso side of the
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| Method | MB [ seconds || Error rate
K-means 1 1 27.01
K-means (incl. low pass filter) 1 1 9.01
Quad tree 5 1 7.57
MRF-GC ~20 2 6.28
Cube-LBP (4 levels, non-parametric) 103 46 6.82
Cube-LBP (4 levels, parametric) 103 46 6.91
Cube-LBP (5 levels, parametric) 150 64 6.84
Cube-GC (5 levels, parametric) ~180 4 5.58

Table 1. Execution times, memory requirements and segmentation performance for
images of size 512x512 and (C=2)

scanned image assuming that a verso scan is not available, which makes it a three
class segmentation problem (C' = 3).

In all experiments, we initialized the label field with k-means clustering after low
pass filtering. The algorithms are vulnerable to numerical instabilities, we therefore
resort to a widely used method calculating in the logarithmic domain.

We compared the cube model with different methods of the state of the art: flat
MREF segmentation with a potts model and graph cut optimization (D.M.Greig et al.,
1989; Boykov et al., 2001), a quad tree (Laferte et al., 2000) and k-means clustering.
The k-means algorithm is only method whose performance is improved when the
image is low pass filtered before the segmentation.

To be able to evaluate the model quantitatively, we applied it to 30 synthetic images
of size 512x512 (60 images total) and very low quality subject to multiple degrada-
tions: low pass filtering, amplification of ring shaped frequency bands causing ringing
artifacts, low quality JPEG artifacts and additional Gaussian noice in various stages
(with variances between 0=20 and 0=40). Table 1 shows the error rates on the dif-
ferent sets.

Figure 5 shows the results of the same methods applied to a real scanned document
image. The images depict the restoration result, i.e. an image where the gray values
of the pixels classified as “verso” have been replaced by the gray values of the nearest
background pixels. As can be seen, the k-means result is noisy and the quad tree result
tends to be blocky at some points. The MRF result is similar to the cube result, but
tends to misclassify text pixels which are part of very fine structures.

10. Conclusion and discussion
In this paper we presented a new causal model which features the advantages of hi-

erarchical models, i.e. scale dependent behavior and the resulting adaptivity to the
image characteristics, without the main disadvantage of the quad tree model, i.e. the
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Figure 5. Restoration results on real images. From top to bottom, left to right: input
image, kmeans+filtering, quad tree, MRF-GC, Cube-LBP, Cube-GC.

lack of shift invariance. Bayesian maximum a posteriori estimation on this model has
been tested on binarization and ink bleed through removal tasks for document im-
ages and compared to widely used graphical models. Segmentation quality is better
or equal to the results of a MRF model, the difference depending on the scale char-
acteristics of the input image and the nature of the degradation. We proposed two
inference algorithms: loopy belief propagation and an algorithm based on graph cuts
for regular transition probability distributions. In future work we will extend the cube
to a conditional (discriminative) model.
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