Dense flows of cohesive granular materials
P. Rognon, Jean-Noël Roux, Mohamed Naaim, François Chevoir

To cite this version:

HAL Id: hal-00280133
https://hal.archives-ouvertes.fr/hal-00280133
Submitted on 16 May 2008
Dense flows of cohesive granular materials

By Pierre G. Rognon 1,2, Jean-Noël Roux 1, Mohamed Naaïm 2 and François Chevoir 1†

1 LMSGC, Institut Navier, 2 allée Kepler, 77 420 Champs sur Marne, France
2 CEMAGREF, 2 rue de la Papeterie, BP 76, 38402 Saint-Martin d’Hères, France

(Received 8 July 2007)

Using molecular dynamic simulations, we investigate the characteristics of dense flows of model cohesive grains. We describe their rheological behavior and its origin at the scale of the grains and of their organization. Homogeneous plane shear flows give access to the constitutive law of cohesive grains which can be expressed by a simple friction law similar to the case of cohesionless grains, but intergranular cohesive forces strongly enhance the resistance to the shear. Then we show the consequence on flows down a slope: a plugged region develops at the free surface where the cohesion intensity is the strongest. Moreover, we measure various indicators of the microstructure within flows which evidence the aggregation of grains due to cohesion and we analyze the properties of the contact network (force distributions and anisotropy). This provides new insights into the interplay between the local contact law, the microstructure and the macroscopic behavior of cohesive grains.

1. Introduction

Dense flows of cohesionless grains have a rich rheological behavior, as it has been pointed out during the last 20 years or so. However, real granular materials often present significant inter-particular cohesive forces resulting from different physical origins: van der Waals forces for small enough grains such as clay particles, powders (Rietema 1991; Quintanilla et al. 2003; Castellanos 2005) or third body in tribology (Iordanoff et al. 2001; Iordanoff et al. 2002), capillary forces in humid grains as in unsaturated soils or wet snow, and solid bridges in sintered powders (Miclea et al. 2005) or when liquid menisci freeze (Hatzes et al. 1991). How do these cohesive forces affect dense granular flows? Up to now, this question is largely ignored.

In this paper we provide new insights in the understanding of dense flows of cohesive grains. Flow characteristics are investigated through discrete numerical simulations (with a standard molecular dynamics method) which enable to easily control the intensity of cohesion and provide information at the level of the grains, most often inaccessible to experiments. We simulate model cohesive grains with a simple intergranular adhesive force which captures the main feature of any cohesion model, the tensile strength of contacts. From homogeneous plane shear flows, prescribing pressure and shear rate, we measure a strong evolution of the constitutive law as the intergranular cohesion is increased, and we relate this macroscopic behavior to the micro-mechanical properties of the grains and their microstructural organization. The understanding of the effect of intergranular cohesive force on constitutive law enables to discuss practically relevant flows down inclined planes, which are more complex since stresses are no more homogeneous.

† chevoir@lcpc.fr
§ 2 presents the knowledge about the effect of cohesion on granular flows. The flow geometries and the interaction model are described in § 3. From homogeneous plane shear flows and using dimensionless parameters identified in § 4, the macroscopic constitutive law of cohesive grains is measured and expressed in a simple manner in § 5. The consequences of this constitutive law for flows down rough inclined plane are discussed in § 6. We then come back to plane shear flows in § 7, to describe various microstructural quantities which evidence the development of space-time heterogeneities as the cohesion is increased. The link between the evolution of the microstructure and the macroscopic behavior is given in § 8. Conclusion are drawn in § 9.

2. Background

Granular flows are currently a very active research domain motivated by fundamental issues (see for example Hutter & Rajagopal 1994; Rajchenbach 2000) as well as practical needs such as the transport of minerals, cereals or powders (Rietema 1991), or in geophysical applications: rock falls, landslides (Campbell et al. 1995), pyroclastic flows (Félix & Thomas 2004) and snow avalanches (Bouchet et al. 2003; Rognon et al. 2007) involve large scale flows of particulate solids.

2.1. Dense flow of cohesionless grains

Up to now, most studies on granular flows focused on cohesionless grains, and both experimental and numerical approaches provided a good understanding of their behavior in various geometries (see for example the review by GDR MiDi 2004). Among them, homogeneous plane shear and inclined plane allowed to highlight some unusual flow characteristics (these geometries are described in figure 1).

Using discrete simulations, da Cruz et al. (2005) investigated the behavior of two dimensional quasi-rigid grains of mass \(m \) submitted to plane shear, prescribing pressure \(P \) and shear rate \(\dot{\gamma} \). Depending on the single inertial number \(I = \dot{\gamma} \sqrt{m/P} \), they highlighted three flow regimes called quasi-static when grain inertia is negligible (\(I \lesssim 10^{-3} \)), collisional when the medium is agitated and dilute (\(I \gtrsim 0.3 \)), and, between these two extremes, dense when grain inertia is important with a contact network percolating through particles. They pointed out a simple expression for the constitutive law in this dense flow regime: the apparent friction coefficient \(\mu^* = \tau/P \) linearly increases with the inertial number \(I \):

\[
\mu^* = \mu_{\min}^* + bI. \tag{2.1}
\]

Both parameters \(\mu_{\min}^* \) and \(b \) depend on the properties of the grains. Also using discrete simulations of plane shear flows, Campbell (2002) distinguished two kinds of dense flows depending on the contact stiffness of the grains: an elastic-inertial regime for rather soft grains and an inertial-non-collisional regime for rather rigid grains.

Several experimental and numerical studies focused on the flows of cohesionless grains down inclined plane (see for example Pouliquen & Chevoir 2002; Pouliquen & Forterre 2002). Flows stop if the slope \(\theta \) is lower than a critical slope (\(\theta < \theta_{\text{stop}} \)), accelerate if the slope is higher than \(\theta_{\text{acc}} \) and, in between these two limits, reach a steady and uniform regime in which stress components vary along the flow depth \(y \) hydrostatically: \([P(y), \tau(y)] \propto (H-y) [\cos \theta, \sin \theta] \). According to the constitutive law (2.1) integrated in this stress field, the shear rate profile follows a Bagnold scaling:

\[
\dot{\gamma}(y) \propto (\theta - \theta_{\text{stop}}) \sqrt{H-y}, \tag{2.2}
\]
Dense flows of cohesive granular materials

with some deviation toward a constant shear rate profile for thin flowing layer (Azanza 1998; Silbert et al. 2001; Prochnow 2002).

2.2. Effect of cohesive force on macroscopic behavior

It is well known that cohesion strongly affects the mechanical properties of a granular material in the solid regime (see for example, Nedderman 1992). At the other extreme, the collisional regime of cohesive grains can be well described by extension of the kinetic theory (Kim & Arastoopour 2002). By contrast, how cohesion affects the dense flow behavior previously described is much less understood.

Static properties of a cohesive piling are extremely sensitive to its preparation, since depending on the quantity of agitation during the assembling phase, the cohesive sample is more or less heterogeneous. This loose structure is evidenced in plastic flows or in the compaction of the sample (see for example, Gilabert et al. 2007). The macroscopic shear strength \(\tau_{\text{max}} \) of the granular packing is strongly enhanced by cohesion (Richefeu et al. 2006; Taboada et al. 2006). This is usually described by the Coulomb criterion, \(\tau_{\text{max}} = \mu_c P + C \) where \(\mu_c \) is the apparent friction coefficient of the assembly submitted to pressure \(P \) and \(C \) represents the macroscopic intensity of cohesion, which Rumpf (1958) has related to the microstructure (solid fraction and coordination number) and the strength of inter-granular cohesive force. Cohesion also strongly increases the angle of avalanches, above which a static assembly of grains flows, and the angle of repose, below which the flow stops. This has been shown through rotating drum experiments using wet glass beads (Frayssé et al. 1999; Tegzes et al. 1999; Nase et al. 2001; Bocquet et al. 2002) as well as powders (Castellanos et al. 1999, 2001; Valverde et al. 2000), through heap flow experiments (Mason et al. 1999; Samandani & Kudrolli 2001), and through crater experiments and simulations using wet glass beads or powder (Hornbaker et al. 1997; Tegzes et al. 1999; Nase et al. 2001; Mattutis & Schinner 2001).

Castellanos et al. (1999, 2001) showed that dense flows cannot be achieved using too small grains such as fine powders \((d \lesssim 10^{-4} \text{m}) \), since they are directly fluidized by the interstitial fluid from a solid to a suspension of fragile clusters. However, dense cohesive flows can be experimentally observed with large enough grains such as wet glass beads, as in Nase et al. (2001); Tegzes et al. (2002, 2003), or with natural snow (Rognon et al. 2007). Rotating drum experiments using wet glass beads or powders highlighted the development of correlated motion which leads to an irregular free surface and an increase of avalanche size (Samandani & Kudrolli 2001; Tegzes et al. 2002, 2003; Alexander et al. 2006). Discrete simulations also pointed out the aggregation of cohesive grains in various flow geometries (Ennis et al. 1991; Tahu et al. 2001; Weber et al. 2004), which was evidenced by measuring the increasing fluctuation of local solid fraction (Mei et al. 2000) or the increasing time of contact between grains (Brewster et al. 2005). Using annular shear flows, Klauser (2000) measured an increase of the apparent friction coefficient of powders from 0.2 for rather weak cohesion, up to 0.8 for rather strong cohesion. This cohesion enhanced friction was also observed in plane shear simulations by Iordanoff et al. (2005); Aarons & Sundaresan (2006); Alexander et al. (2006). Brewster et al. (2005) simulated the flow of a thick layer of cohesive grains down an inclined plane, and pointed out a breakdown of the Bagnold scaling for the shear rate profile (2.2) due to the development of a plugged region at the surface of the flow, whose thickness increases with cohesion.

Existing studies thus indicate that cohesion strongly affects the behavior of dense granular flow as well as its microstructure. However, the constitutive law of dense cohesive flow has not yet been formulated, and the interplay between microstructure and macroscopic behavior is still an open question.
3. Simulated system

The review by GDR MiDi (2004) revealed a good agreement between two dimensional simulations and three dimensional experiments of cohesionless granular flows. Consequently, we choose to simulate two dimensional systems which favor low computational time without affecting the results qualitatively. The granular material is an assembly of \(n \) disks of average diameter \(d \) and average mass \(m \). A small polydispersity (±20%) is introduced to prevent crystallization.

3.1. Flow geometry

Two flow geometries are studied: the homogeneous plane shear (without gravity) and the rough inclined plane. The length \(L \) and the height \(H \) of the simulated systems are summarized in Table 1. In both cases, periodic boundary conditions are applied along the flow direction (\(x \)) and rough walls are made of contiguous grains sharing the characteristics of the flowing grains: same polydispersity and mechanical properties (especially same cohesion), but without rotation.

Plane shear flows are performed prescribing pressure and shear rate through two kinds of boundary conditions along the transverse direction \(y \). First, the material is sheared between two parallel rough walls distant of \(H \) (figure 1 a). One of the wall is fixed while the other moves at the prescribed velocity \(V \). The other method was introduced by Lees & Edwards (1972) to avoid wall perturbations: it consists in applying periodic boundary conditions along \(y \), as shown in figure 1 (b). The top and bottom cells move with a velocity ±\(V(t) \), which is adapted at each time step \(t \) to maintain a constant shear rate \(\dot{\gamma} = V(t)/H(t) \). The control of the pressure is achieved by allowing the dilatancy of the shear cell along \(y \) (\(H \) is not fixed), either through the motion of the moving wall, or through a global dilation of the cell (in the absence of walls). The evolution of \(H \) is:

\[
\dot{H} = (P_0 - P)L/g_p
\]

(Campbell 2005; Gilabert et al. 2007), where \(g_p \) is a viscous damping parameter, and \(P_0 \) is the pressure exerted by the grains on the moving wall, or the average pressure in the shear cell (in the absence of walls). Steady state corresponds to \(\langle P_0 \rangle = P \), where \(\langle \cdot \rangle \) denotes an average over time.

Flows down rough inclined plane are driven by gravity \(\overrightarrow{g} \) (Figure 1 c). Grains constitute a layer of thickness \(H \) flowing along a rough inclined wall (slope \(\theta \)).

3.2. Contact law

Let us consider the contact between two grains \(i \) and \(j \) of diameter \(d_{i,j} \), mass \(m_{i,j} \), centered at position \(\vec{r}_{i,j} \), with velocity \(\vec{v}_{i,j} \) and rotation rate \(\omega_{i,j} \). We call the reduced mass \(m_{ij} = m_i m_j/(m_i + m_j) \) and the reduced diameter \(d_{ij} = d_i d_j/(d_i + d_j) \). Let \(\vec{n}_{ij} \) denote the normal unit vector, pointing from \(i \) to \(j \) \((\vec{n}_{ij} = \vec{r}_{ij}/||\vec{r}_{ij}||)\) with the notation \(\vec{r}_{ij} = \vec{r}_j - \vec{r}_i \), and \(\vec{t}_{ij} \) a unit tangential vector such that \((\vec{n}_{ij}, \vec{t}_{ij}) \) is positively oriented.

The intergranular force \(\vec{F}_{ij} \) exerted by the grain \(i \) onto its neighbor \(j \) is split into its normal and tangential components, \(\vec{F}_{ij} = N_{ij}\vec{n}_{ij} + T_{ij}\vec{t}_{ij} \). The contact law relates \(N_{ij} \) and \(T_{ij} \) to the corresponding components of relative displacements and/or velocities. The

<table>
<thead>
<tr>
<th></th>
<th>(n)</th>
<th>(L/d)</th>
<th>(H/d)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plane shear with walls</td>
<td>2000</td>
<td>50</td>
<td>40-60</td>
</tr>
<tr>
<td>Plane shear without walls</td>
<td>800</td>
<td>40</td>
<td>20-30</td>
</tr>
<tr>
<td>Inclined plane</td>
<td>1500</td>
<td>50</td>
<td>~ 30</td>
</tr>
</tbody>
</table>

Table 1. Size of simulated systems: length \(L \), height \(H \) and number of grains \(n \).
Dense flows of cohesive granular materials

Figure 1. Flow geometries: plane shear (a) between two rough walls and (b) without wall; (c) rough inclined plane; (—) periodic boundary conditions, (black grains) rough walls.

relative velocity at the contact point is equal to \(\vec{V}_{ij} = \vec{v}_i - \vec{v}_j + 1/2(d_i \omega_i + d_j \omega_j)\vec{n}_{ij}. \) Its normal component \(V^N_{ij} = \vec{n}_{ij} \cdot \vec{V}_{ij} \) is the time derivative of the normal deflection of the contact (or apparent overlap of undeformed disks): \(h_{ij} = (d_i + d_j)/2 - |\vec{r}_{ij}|. \) Its tangential component \(V^T_{ij} = \vec{t}_{ij} \cdot \vec{V}_{ij} \) is the time derivative of the tangential relative displacement \(\delta_{ij}. \)

The normal contact force is the sum of three contributions, an elastic one \(N^e \), a viscous one \(N^v \), and a cohesive one \(N^a. \)

The linear (unilateral) elastic law reads \(N^e_{ij} = k_n h_{ij} \) with a normal elastic stiffness coefficient \(k_n \) related to the Young’s modulus \(E \) of the grains: \(k_n \sim E \) (Hertz 1881). A normal viscous force is added to dissipate energy during collisions: \(N^v_{ij} = \zeta_{ij} \dot{h}_{ij} \) with a damping coefficient \(\zeta_{ij} \) related to the restitution coefficient \(e \) in a binary collision of cohesionless grains: \(\zeta_{ij} = \sqrt{m_{ij} k_n (-2 \ln e) / \sqrt{\pi^2 + \ln^2 e}}. \)

The different models which represent the various physical origins of cohesive interaction generally oppose to the repulsive force an attractive force \(N^a(h) \). The shape of the total static normal force \(N(h) = N^e(h) + N^a(h) \) involves at least three parameters: a maximum attractive force \(N^a \), an equilibrium deflection \(h^e \) (for which \(N(h^e) = 0 \)), and a range \(D \) of the attractive interaction (\(N^a(h) = 0 \) for \(h \leq -D \)). Direct adhesion between solid surfaces associated to van der Waals forces was well characterized in (Tabor 1981; Kendall 1993, 1994; Gady et al. 1996). It can be fully described by the model of Maugis (1992) whose two limits give rise to the simpler models plotted in figure 2 (a). The DMT (Derjaguin et al. 1975) and the JKR (Johnson et al. 1971) models respectively apply for soft or hard grains whose contacts are slightly or strongly defomed by cohesion. In the DMT model, the attractive force \(N^a(h) \) is constant and its range \(D \) is null. In the JKR model, the attractive force \(N^a(h) \) is proportional to the contact area, and a neck formation when the grains recedes for \(-D \leq h \leq 0 \), thereby leading to an hysteresis. The capillary cohesion was fully described experimentally in Pitois (1999); Bocquet et al. (2002) and theoretically in Elena et al. (1999); Chateau et al. (2002). It also presents an hysteresis which corresponds to the difference between the formation and the breaking distance of a liquid meniscus (Figure 2 b). In both cases, the roughness of the surface plays an important role in cohesive contact. The asperities decrease the effective surface where the short range van der Waals force is significant (see Fuller & Tabor 1975; Thornton 1997; Tomas 2004), and, in the case of humid grains they give rise to different scales of liquid menisci (Bocquet et al. 2002). Moreover their plastic deformation leads to aging process for the contact (Ovarlez & Clément 2003). In their simulations, Gilabert et al.
Figure 2. Common cohesive interactions: (a) DMT (—) and JKR (- -) models; (b) capillary force; simplified models used in numerical simulation: (c) linear (—) and square(- -), (d) plasticity.

Figure 3. Cohesion model used in the present paper: normal force N/N^c versus normal deformation h/h^c (inset: apparent interpenetration).

(2007); Kadau et al. (2002); Weber et al. (2004) approximated these models of cohesion by the simple functions plotted in figure 2 (c), and Luding et al. (2003); Richefeu et al. (2005) used a little more complex function which takes into account the contact plasticity (figure 2 d).

We choose a simple cohesive force which captures the main feature of the previous cohesion models: the maximum attractive force N^c. We consider the limit of $D = 0$ and we do not take into account any hysteretic behavior or contact plasticity. As previously proposed by Mattutis & Schinner (2001) and Radjai et al. (2001), we choose the smooth function:

$$N_{ij}^a(h_{ij}) = -\sqrt{4k_nN^c h_{ij}}.$$ (3.1)

In the static limit ($N_{ij}^v = 0$), this model leads to a maximum attractive force N^c and to an equilibrium deflection $h^c = 4N^c/k_n$ (see Figure 3). Richefeu et al. (2005) showed that the shape of $N^a(h)$ does not have influence on provided it leads to the same N^c. In Rognon et al. (2006), we compared the previous function $N^a(h)$ with the DMT model $N^a(h) = -N^c$ and checked that they give rise to similar flow properties.
Dense flows of cohesive granular materials

Polydispersity μ e k_t/k_n
±20% 0.4 0.1 0.5

Table 2. List of fixed material parameters.

As usual (Radjai et al. 2001; Richefeu et al. 2005; Wolf et al. 2005; Gilabert et al. 2007), friction between grains is described by a Coulomb condition enforced with the sole elastic part of the normal force:

$$|T_{ij}| \leq \mu N^e_{ij},$$

where μ is the coefficient of friction between grains. The tangential component of the contact force is related to the elastic part δ^e_{ij} of the relative tangential displacement δ_{ij}: $T_{ij} = k_t \delta^e_{ij}$, with a tangential stiffness coefficient k_t. δ^e_{ij} satisfies:

$$\dot{\delta}^e_{ij} = \begin{cases} 0 & \text{if } |T_{ij}| = \mu N^e_{ij} \text{ and } T_{ij}V^T_{ij} > 0, \\ V^T_{ij} & \text{otherwise}, \end{cases}$$

and vanishes when the contact opens. The contact is termed *sliding* in the first case in (3.3) (the condition that T_{ij} and V^T_{ij} share the same sign ensuring a positive dissipation due to friction) and *sticking* in the second case. Rolling friction could also be considered (Gilabert et al. 2007). However, this mechanism is significant for very small particles, less than one micron (Jones et al. 2004). For much larger particles (of the order of hundred microns), this mechanism should not be relevant. In fact, an analysis of the influence of rolling friction, keeping sliding friction, was performed in Gilabert et al. (2007) in the case of the isotropic compaction of an assembly of cohesive grains, and it was found that the inclusion of small rolling friction has only a small quantitative effect, but no qualitative influence.

Table 3.2 summarizes the list of material parameters which are fixed in all our calculations. The friction coefficient between grains is fairly realistic ($\mu = 0.4$), except in §8.2 where the case of frictionless grains ($\mu = 0$) is discussed. $e = 0.1$ corresponds to a rather strongly dissipative material, which favors dense flows. da Cruz et al. (2005) showed that the values of μ and e do not significantly affect the characteristics of cohesionless granular flows, except for the extreme case $\mu = 0$. Johnson (1985) showed that k_t is of the same order of magnitude as k_n, and Silbert et al. (2001); Campbell (2002) pointed out that it has a very small influence on the results for cohesionless grains. k_t is then fixed to $k_n/2$ in all our calculations. The values of the stiffness coefficient k_n and of the maximum attractive force N^c will be discussed in §4.

3.3. Simulation method

Numerical simulations are carried out with the molecular dynamics method, as in Cundall & Strack (1979); Silbert et al. (2001); Roux & Chevoir (2005); da Cruz et al. (2005). The equations of motion are discretized using a standard procedure (Gear’s order three predictor-corrector algorithm Allen & Tildesley (1987)). The time step is chosen equal to $\tau_e/50$ where τ_e is the collision time for a pair of cohesionless equal-sized grains: $\tau_e = \sqrt{m(\pi^2 + \ln^2 e)/(4k_n)}$.

4. Dimensional analysis

The grains and the flow geometries are described by a list of independent parameters. It is convenient to use dimensional analysis to extract dimensionless numbers which express the relative importance of different physical phenomena and enable quantitative comparison with real materials.

Grains are described by their diameter d, mass m, coefficient of restitution e and coefficient of friction μ, elastic stiffness parameters k_n and k_t, and maximum attractive force N_c. d and m respectively constitute the length and mass scales. Since the dimensionless number μ, e and k_t/k_n are fixed, there remain two dimensional parameters that describe grains: k_n and N_c. The flow geometries are described either by the gravity \vec{g}, the slope θ and the thickness H of the flowing layer for the inclined plane, or by the prescribed pressure P, the prescribed shear rate $\dot{\gamma}$, and the viscous damping parameter g_p for plane shear. The dimensionless number $g_p/\sqrt{mk_n}=1$ is chosen, which ensures that the time scale of the fluctuations of H is imposed by the material rather than the wall, and the wall sticks to the material. Consequently, the shear state is described by pressure P and shear rate $\dot{\gamma}$. Among the various possible choices (see Campbell 2002; da Cruz et al. 2005), we use the following dimensionless numbers.

4.1. Inertial number I

da Cruz et al. (2005); GDR MiDi (2004) showed that the shear state of cohesionless rigid grains is controlled by the single inertial number I, combination of the shear rate $\dot{\gamma}$ and of the pressure P, whose expression is (for a two dimensional system):

$$I = \dot{\gamma} \sqrt{\frac{m}{P}}.$$ \hfill (4.1)

I compares the inertial time $\sqrt{m/P}$ with the shear time $1/\dot{\gamma}$ and is called inertial number. Small values ($I \lesssim 10^{-3}$) correspond to the quasi-static regime where the grain inertia is not relevant. Inversely, large values ($I \gtrsim 0.3$) correspond to the collisional regime where grains interact through binary collisions.

4.2. Cohesion numbers Bo_g and η

Different dimensionless numbers are used to quantify the intensity of cohesion. They compare the maximum attractive force N_c to a typical force scale in the system. In the presence of gravity, Nase et al. (2001) introduced the Granular Bond Number:

$$Bo_g = \frac{N_c}{mg},$$ \hfill (4.2)

which compares N_c with the weight of a grain. For plane shear flows without gravity, we define, as in Wolf et al. (2005); Gilabert et al. (2007), another dimensionless number η:

$$\eta = \frac{N_c}{Pd},$$ \hfill (4.3)

which compares N_c with the average normal force Pd due to the pressure. According to this definition, the transition between a regime of low cohesion and a regime of high cohesion should depend on η and should occur for η of the order unity. Let us now give an estimation of the parameter η in realistic three dimensional situations. Then $\eta = N_c/(Pd^2)$. N_c can be estimated by $\pi\gamma d$ in the case of humid grains (where γ is the surface tension of the liquid, of the order of 0.05 N/m) and by $Ad/(24z_0^2)$ in the case of van der Waals adhesion (where A is the Hamaker constant, of the order of 10^{-19} Nm and...
Dense flows of cohesive granular materials

Plane shear

| I | 10\(^{-2}\) → 0.3 | \(\eta\) | 0 → 85 | \(h_0^*\) | 10\(^{-5}\) | \(H/d\) | \(\approx 30\) | \(\theta\) | 14\(^{\circ}\) → 39\(^{\circ}\) | \(B_{og}\) | 0 → 200 | \(h_0^*\) | 10\(^{-6}\) |

Table 3. Ranges of dimensionless numbers explored.

\(z_0\) a molecular distance, of the order of 2 Å. In the presence of gravity, the pressure \(P\) is given by \(p\rho g H\), at the bottom of a layer of height \(H = Nd\), with a solid fraction \(\nu \approx 0.6\). Considering glass beads for which \(\rho \approx 2500\, \text{kg/m}^3\), we get \(\eta \approx 10^{-5}/(Nd^2)\) for capillary cohesion and \(\eta \approx 710^{-5}/(Nd^2)\) for van der Waals adhesion (where \(d\) is expressed in m).

This means that a value of \(\eta \approx 100\) at the bottom of a layer of 10 grains is relevant if \(d = 10^{-4}\) m for capillary cohesion or if \(d = 10^{-5}\) m for van der Waals adhesion. However this estimation does not take into account the screening of cohesion by the roughness of the grains.

4.3. Stiffness number \(h^*\)

The third dimensionless number measures the average relative deformation of the contacts in the system: \(h^* = h/d\). Without cohesion, this deformation is merely due to the pressure and limited by the stiffness: \(h_0^* = P/k_n\). Cohesive force enhances this deformation:

\[
h^*(\eta) = h_0^* \mathcal{H}(\eta)
\]

with \(\mathcal{H}(\eta) = 1 + 2\eta + 2\sqrt{\eta + \eta^2}\). For strong cohesion \(h^*\) measures the deformation of grains due to the sole cohesive force (without pressure): \(N^c/(k_n d)\) and ranges from \(10^{-5}\) for powders (Israelachvili 1992; Aarons & Sundaresan 2006) down to \(\approx 10^{-12}\) for wet glass beads.

4.4. Range of dimensionless numbers explored

Plane shear flows are performed prescribing six values of \(I\) between \(10^{-2}\) and 0.3 and 36 values of \(\eta\) from cohesionless grains, \(\eta = 0\), up to \(\eta = 85\) (Table 3). It was shown that the properties of cohesionless granular packings as well as flow characteristics do not depend on the value of \(h_0^*\) once it is small enough (\(h_0^* \lesssim 10^{-4}\)) (Roux & Combe 2002; da Cruz et al. 2005). We choose \(h_0^* = 10^{-5}\) so that the systems are in this rigid limit at least for low cohesion: \(h^*(\eta) \lesssim 10^{-4}\) for \(\eta \lesssim 2.5\). For larger values of \(\eta\), there might be an influence of the deformation of the grains, which is specifically discussed in Campbell (2002); Aarons & Sundaresan (2006). However lowering the value of \(h_0^*\) below \(10^{-5}\) would strongly increase computational time.

Flows down inclined are performed with slopes varying between 15\(^{\circ}\) and 39\(^{\circ}\), and with a thickness \(H = 30d\), in order to get steady and uniform regime. Six value of \(B_{og}\) are set starting from cohesionless grains, \(B_{og} = 0\), up to \(B_{og} = 200\). This corresponds to the range of \(B_{og}\) which was experimentally reached by Nase et al. (2001) varying the size of glass beads (0.5 < \(d\) < 10 mm, \(\rho \approx 2500\, \text{kg/m}^3\)) and the surface tension of the liquid (40 < \(\gamma_l\) < 72 mN/m).

5. Measurement of the macroscopic constitutive law

Using homogeneous plane shear flows, we present in this section the measurement of the effect of cohesive force on the macroscopic behavior of grains. Such a method
5.1. Steady homogeneous shear state

The preparation which has been used most of the time consists in starting from a configuration where the disks are randomly deposited without contact and without velocity. The average solid fraction is around 0.5. Then the prescribed shear rate and the prescribed pressure are applied. After a sufficient amount of time, the flowing layer reaches a steady shear state characterized by constant time-averaged kinetic energy, stress tensor and solid fraction. This contrasts with the static case (Gilabert et al. 2007), where if P is slowly decreased, a hysteresis is observed, with a microstructure which strongly depends on the maximum value of P applied to the packing in the past. These steady flows do not depend on the initial solid fraction or on the initial velocity profile (plug or linear). A great advantage of the bi-periodic boundary conditions is that the convergence toward a steady state is around ten times faster than with walls.

When a continuous steady state is reached, the simulation is carried out during a sufficient amount of time Δt, so that the relative displacement of two neighboring layers is larger than around ten grains ($\dot{\gamma} \Delta t \geq 10$). In this steady state, we consider that the statistical distribution of the quantities of interest (structure, velocities, forces...) are independent of time and uniform along flow direction, so that we proceed to an average in space along the flow direction and in time on 100 time steps distributed over the period Δt. Using averaging methods described in Lätzel et al. (2000); Prochnow (2002), the figures 4 plots the profiles of solid fraction $\nu(y)$, shear rate $\dot{\gamma}(y)$, pressure $P(y)$, and shear stress $S(y)$. The stress tensor is dominated by the term associated to contact forces between grains (da Cruz et al. 2005):

$$\Sigma = \frac{1}{LH} \text{Sym} \left(\sum_{i<j} F_{ij}^T \otimes r_{ij}^T \right).$$

(5.1)

For every steady and homogeneous shear flows, we observe that $\Sigma_{xx} \simeq \Sigma_{yy}$, implying that stress tensors share common principal directions. Consequently, the pressure P given by $(\Sigma_{xx} + \Sigma_{yy})/2 \approx \Sigma_{yy}$.

The figures 4 also compare the profiles for the two kinds of boundary conditions, with
Dense flows of cohesive granular materials

Figure 5. Homogeneous plane shear flows: picture from simulations for different values of inertial number I and cohesion intensity η.

and without walls. Except in the five first layers near the walls, where the granular material is organized, the two kinds of boundary conditions give rise to consistent shear states. Even when starting from a localized velocity profile near one of the walls, we systematically observed a relaxation toward an homogeneous shear state. The conclusion is that the granular material is completely sheared and that the shear is homogeneous. This allows to define average (along time and space) solid fraction ν, shear rate $\dot{\gamma}$, pressure P and shear stress S. The following measurements are done in the whole system using simulations without walls.

In the range of I and η explored (see table 3), the flows are homogeneous as it was previously described. Figure 5 shows some pictures of such flows. For strong enough cohesion (η larger than around 100), the shear state becomes heterogeneous. Between two walls, the flow is made of a single rigid block which sticks alternatively to one of the two walls (Forsyth et al. 2002; Iordanoff et al. 2005). In the absence of walls, the shear is localized in a few layers between two rigid assemblies. These localized shear flows would require specific studies. They are not discussed in this paper.

5.2. Constitutive law

The homogeneous shear states give a direct access to the rheological law of the granular materials through the measurement of two fundamental dimensionless quantities, the solid fraction ν and the apparent friction coefficient $\mu^* = S/P$, which adjust in response to the two prescribed dimensionless numbers: the inertial number ($0.01 \leq I \leq 0.3$) and the cohesion number ($0 \leq \eta \leq 85$). For cohesionless grains, the influence of I on ν and μ^* was measured by da Cruz et al. (2005). We are going to show the strong influence of the cohesion number η on those two quantities.

We call friction law the variations of the effective friction coefficient μ^* as a function of I and η (figure 6 a). The first general observation is that cohesion strongly increases
\[\mu^*(I, \eta) \simeq \mu^*_{\min}(\eta) + b(\eta) I. \]

Figure 6 (b) plots both functions \(\mu^*_{\min}(\eta) \) and \(b(\eta) \), which have the same shape. Below a cohesion threshold (\(\eta \lesssim 10 \)) the cohesion does not affect \(\mu^*_{\min} \) or \(b \). Above this threshold, \(\mu^*_{\min}(\eta) \) and \(b(\eta) \) strongly increase.

We call dilatancy law the variations of the solid fraction \(\nu \) as a function of \(I \) and \(\eta \) (figure 6 c). The first general observation is the strong expansion of the material due to cohesion. da Cruz et al. (2005) showed that the solid fraction of cohesionless granular materials decreases approximately linearly as a function of \(I \), starting from a maximum value \(\nu_{\text{max}} \):
\[\nu(I) \simeq \nu_{\text{max}} - aI. \]

Figure 6 (d) plots both functions \(\nu_{\text{max}}(\eta) \) and \(a(\eta) \) which have the same shape. They strongly decrease for weak cohesion \(\eta \lesssim 2 \), then still decrease but more slowly. On the one hand, the decrease of \(\nu_{\text{max}}(\eta) \) means that cohesion tends to dilate the flows, especially for low \(\eta \). On the other hand, the decrease of \(a(\eta) \), down to zero for the highest cohesion,
Dense flows of cohesive granular materials

Starting from both variations of solid fraction and apparent friction as function of \(I \) and \(\eta \), we draw on figure 7 the variation of the apparent friction as a function of solid fraction instead of \(I \) and \(\eta \). We observe an approximate collapse of the data on a master curve made of complementary zones of high solid fraction (low \(\eta \)) and smaller solid fraction (higher \(\eta \)). The apparent friction strongly decreases when the solid fraction increases. This tendency of the data, which was previously observed for cohesionless grains by Craig et al. (1986) and da Cruz et al. (2005), appears as a robust feature which shows the importance of solid fraction in granular flows and may be of great help in rheological models (see for example Josserand et al. 2004).

The constitutive law is usually written as the dependencies of the pressure and shear stress on the shear rate and solid fraction. With cohesion, we should also include the dependency on the cohesion intensity \(\eta \). From the definition of \(I \) (4.1) and the friction law (5.2), this leads to the following expression of the shear stress \(S \):

\[
S = \mu_{\text{min}}^* P + b(\eta)\sqrt{mP} \dot{\gamma},
\]

which corresponds to a viscoplastic constitutive law, with a Coulomb friction term and a viscous term. The apparent viscosity \(b(\eta)\sqrt{mP} \) depends on the cohesion intensity through the parameter \(b(\eta) \) (Figure 6 b). We shall then define a low cohesion regime \((\eta \lesssim 10)\) where the cohesion does not affect the apparent viscosity and a high cohesion regime \((\eta \gtrsim 10)\) where the apparent viscosity is strongly enhanced by cohesion.

5.3. Quasi-static limit

In the quasi-static limit \((I \to 0)\), the extrapolation of the constitutive law 5.4 predicts that \(S = \mu_{\text{min}}^*(\eta) P \). Figure 6 (b) shows that \(\mu_{\text{min}}^*(\eta) \) is roughly linear, \(\mu_{\text{min}}^* + \alpha \eta \) with \(\alpha \approx 0.012 \), so that constitutive law can be expressed as:

\[
S = \mu_{\text{min}}^* P + \alpha N^c/d,
\]

This is reminiscent of the Coulomb criterion described in §2.2. \(\mu_{\text{min}}^* \) then identifies to the apparent friction coefficient \(\mu_c \) and \(\alpha N^c/d \) to the macroscopic intensity of cohesion \(C \).

Assuming that all the contacts break at the shear threshold, Rumpf (1958) related \(C \) to
the microstructure (solid fraction \(\nu \) and coordination number \(Z \)) and the strength of intergranular cohesive force \(N^c \) through the following formula (written in two dimensions):

\[C = \frac{2\nu Z\mu c}{\pi d}. \]

Considering the following values (\(Z \approx 3, \nu \approx 0.8, \mu c \approx \mu^*_{\text{min}} \approx 0.3 \)) provides \(C \approx 0.2N^c/d \). The form is similar but the factor \(\alpha \) estimated from quasi-static flows is much smaller (by a factor around 20 than the value predicted by Rumpf formula. We shall try to interpret this difference in section 8.4, after having analyzed the microstructure of the flow.

6. Cohesive flows down an inclined plane

It is clear that the homogeneous plane shear cannot be achieved in real situations because of gravity \(g \). Nevertheless, it provides a good understanding of the macroscopic behavior which can now be used to discuss flows down inclined planes. This geometry is closer to practical needs but more complex since stresses are no more homogeneous along the depth. This section presents the behavior of cohesive grains flowing down rough inclined plane, focusing on steady and uniform regime. The dimensionless number that measures the cohesion intensity is the Granular Bond Number \(Bo_g \), defined in section 4.

6.1. Steady and uniform flow regimes

An important feature of cohesionless granular flows down inclined is that they reach a steady and uniform regime in a large range of slope (Pouliquen 1999). In this regime, friction exactly compensates the gravity driving force. In presence of cohesion, this regime also exists, as detailed in this section.

The preparation which was used most of the time consists in starting from an initial configuration where the disks are randomly deposited without contact and without velocity. The average solid fraction is around 0.5. Then the gravity is applied so that the plane is inclined with a slope \(\theta \). After a sufficient amount of time, the flowing layer may reach a steady shear state characterized by constant time-averaged kinetic energy, stress tensor and solid fraction. A second method consists in starting from a steady uniform regime at given slope and cohesion, then changing either slope or cohesion. The final flow does not depend on the initial state.

The figures 8 plots the profiles of solid fraction, stresses and velocity along the depth for flows of similar thickness (\(H \approx 30d \)), same slope (\(\theta = 25^\circ \)) but with different cohesion \(Bo_g \). Without cohesion (\(Bo_g = 0 \)), as previously shown by Silbert et al. (2001); Prochnow (2002), the solid fraction \(\nu(y) \) is constant along the depth except for a thin layer (few grains) near the rough wall where oscillations reveal the organization of grains in layers. As cohesion increases, \(\nu(y) \) remains constant in the bulk and oscillates near the wall, but its mean value decreases. Figure 8 (b) compares the stresses measured within the flow using (5.1) with the hydrostatic stresses under gravity:

\[[P^h(y), \tau^h(y)] = \rho p g \int_{y_1}^y \nu(y_1) dy_1 [\cos \theta, -\sin \theta] \]

and reveals a good agreement (\(\rho p \) is the mass density of the grains). Shear stress \(\tau \) compensates the gravity stress \(\tau^h \), which reveal that the flow is in a uniform regime. Neglecting the small fluctuations of solid fraction around its mean value \(\nu \), stresses follows:

\[
\begin{pmatrix}
P(y) \\
\tau(y)
\end{pmatrix} = \rho p g \nu (H - y) \begin{pmatrix}
\cos \theta \\
\sin \theta
\end{pmatrix}.
\]

Consequently, the apparent friction coefficient \(\mu^* = \tau(y)/P(y) \) is constant along the depth and directly prescribed by the slope: \(\mu^* = \tan \theta \). Furthermore, since the pressure in-
Dense flows of cohesive granular materials

Figure 8. Steady and uniform flows down inclined plane ($\theta = 25^\circ$, $H/d \approx 30$). For different values of the granular Bond Number B_{og}, profiles of solid fraction $\nu(y)$ and comparison of profiles of measured stresses P and τ (—) with hydrostatic stresses P^h and $-\tau^h$ (surface). For clarity, pressures are plotted along the negative values and shear stresses along the positive values.

creases along the depth, the cohesion number η varies according to $\eta(y) = B_{og}d/ (\nu \cos \theta(H - y))$ so that the cohesion increases close to the free surface.

6.2. Constitutive law deduced from flows down inclines

Steady and uniform flows down inclines consist in applying through the slope θ an apparent friction coefficient $\mu^* = \tan \theta$ to the material. The local constitutive law of the granular material can be deduced from the measurements of the inertial number profiles at various slope. The following method is used to explore different slopes: for various cohesive intensity B_{og}, steady and uniform flows are initially performed at a given slope; then, the slope is decreased (or increased) at a low enough rate so that flows can be considered as steady and uniform at each time step, until the flows stop (or accelerate).

The figures 9 plots the profiles of solid fraction, velocity, and inertial number I for various slope and cohesion intensity B_{og}. According to the relation $\mu^*(\nu)$ (Section 5.2), the solid fraction is set by the slope and is constant along the depth (except near the free surface and near the rough base). Without cohesion, as shown by Silbert et al. (2001), the velocity profile satisfies the Bagnold scaling, since the inertial number is approximately constant along the depth, except in the first bottom layers where I increases (probably due to the organization of the grains in layers near the wall, leading to a sliding velocity), and the first free surface layers where I diverges due to the low pressure. With cohesive force, the shear rate drops to zero in a solid layer near the free surface. The thickness of
Figure 9. For various slope and various cohesion intensity, profiles of solid fraction, velocity v^* (in units of \sqrt{gd}) and inertial number I.

this layer increases as Bo_g increases. This breakdown of the Bagnold scaling, observed by Brewster et al. (2005), is evidenced by the variation of the inertial number which is no more constant along the depth, and drops to zero in the solid surface layer. Since each layer into the flows is submitted to a shear with a prescribed $\mu^* = \tan \theta$, but a varying cohesion intensity $\eta(y)$, the constitutive law can be deduced by measuring the inertial number profile $I(y)$ and extracting $\mu^*(I(y), \eta(y))$. The figures 10 plot $\mu^*(\eta)$ for various I, and compare the results obtained using inclined plane with the constitutive law measured using plane shear flows. Results are in good agreement, although data from inclined plane are scattered. This is not surprising since they are not averaged over time, neither over transverse direction. The great difference between these two approaches is that the shear rate is prescribed in plane shear whereas the shear stress is prescribed in flows down inclined plane. As a consequence, large value of I combined with strong cohesion, which can be explored using plane shear, cannot be reached within flow down inclined since the most cohesive part of the flow is plugged. Since the apparent viscosity of cohesive grains is strongly enhanced by cohesion above $\eta \gtrsim 10$ but is not affected for lower values, the thickness of the plugged layer is of the order of $Bo_g/10$ grains.
Dense flows of cohesive granular materials

7. Microstructure

The two previous sections have shown the strong effect of cohesion on the macroscopic rheological law. We now turn to the evolution of the microstructure of the flow. As shown in figure 5, when the intensity of cohesion increases, large voids appear separating dense areas. This was also observed in Mei et al. (2000); Weber et al. (2004). Experimentally, Tegzes et al. (2002, 2003) observed correlated motions of grains in dense flows of humid grains. We notice that there is a large literature on the formation of aggregates in agitated dilute systems, such as fluidized powders (Castellanos et al. 2001) or coagulation of dusts in astrophysical situation (Dominik & Tielens 1997). In the present section, we measure various microstructural indicators showing the development of space-time heterogeneities within the granular flow submitted to homogeneous plane shear.

7.1. Coordination number \(Z \)

The first quantitative indicator is the average number of contacts per grain, called coordination number \(Z \). The variations of \(Z \) as a function of \(I \) and \(\eta \) are shown on figure 11. In the low cohesion regime (\(\eta \lesssim 10 \)), \(Z \) strongly increases when \(I \) decreases and tends to a maximum value when \(I \rightarrow 0 \). This is consistent with the dilatancy of the granular material when going from the quasi-static regime to the collisional regime. This behavior is similar to what is observed with cohesionless grains (da Cruz et al. 2005). For higher cohesion, the dependency of \(Z \) on \(I \) becomes smaller, and \(Z \) is around 2.5 even for the highest value of \(I \). This indicates that cohesion tends to increase the value of \(I \) for the transition between dense and collisional regime.

As cohesion increases, the coordination number first strongly increases while \(\eta \lesssim 5 \), then increases more slowly to reach a maximum value. The increase of \(Z(\eta) \) whereas the solid fraction \(\nu(\eta) \) decreases is unexpected, and reveals that cohesive grains agglomerate in dense areas where the coordination number is high, while, on the whole, the granular material is becoming more porous, which decreases the average solid fraction.

7.2. Distribution of local solid fraction, length scale \(\ell' \)

As a way to characterize quantitatively the increasing heterogeneity of density induced by cohesion, we measured the distribution of local solid fraction (Richard et al. 2003; da Cruz et al. 2005). At each time step, we performed a radical tessellation. The local solid fraction around each grain is defined as the ratio of the areas of the grain and of
its Voronoi cell (the points which are closer from this grain than from any other grain). This defines the field of local solid fraction \(\nu(\vec{r}) \). Figure 12 (a) shows the distribution of local solid fraction for a given \(I \) and for various \(\eta \). The small polydispersity allows high values of solid fraction \((\nu(\vec{r}) \rightarrow 0.9) \). With cohesion, dense areas still exist, whereas the local solid fraction of the grains close to the voids decreases \((\nu(\vec{r}) \rightarrow 0.2) \). The standard deviation \(\Delta \nu \) of the distribution may be used to characterize the heterogeneity of density. Figure 12 (b) shows that cohesion enhances \(\Delta \nu \).

The auto-correlation \(F(\vec{R}) \) of the fluctuating solid fraction field \(\delta \nu(\vec{r}) : \)

\[
F(\vec{R}) = \frac{\langle \delta \nu(\vec{r})\delta \nu(\vec{r} + \vec{R}) \rangle}{\delta \nu^2}, \tag{7.1}
\]
gives access to a characteristic length scale of the heterogeneities, associating dense areas and voids. We observe that \(F \) is isotropic, and apart from a small peak around \(R = d \), decreases approximately exponentially with \(R \), as shown in figure 12 (c). In order to quantify this effect, we define the correlation length \(\ell_\nu \) as the distance where the correlation is equal to 0.4 (other values give similar qualitative results). Figure 12 (d) shows that cohesion enhances \(\ell_\nu \).

7.3. Distribution of porosity, length scale \(\ell_p \)

Another indicator of the organization of the granular material is given by the distribution of pore sizes. The first step is a discretization of the picture of the granular flow at each time step, with a pixel size of \(d/20 \). This allows to distinguish the pixels lying on voids from those lying on grains. Then, using an invasion algorithm, it is possible to make a list of the connected voids, and to measure their area \(S \). Figure 12 (c) shows the proportion of void space \(G(S) \) belonging to a pore of area larger than \(S \). \(G(S) \) decreases approximately exponentially with \(S \): \(G(S) \approx \exp(-S/S_p) \). Then \(\ell_p = \sqrt{S_p} \) characterizes the length scale of the pores, but does not account for their anisotropy (the pores may be elongated). Figure 12 (f) shows that cohesion strongly enhances \(\ell_p \). This length also increases with the inertial number, which is not surprising because increasing \(I \) decreases the solid fraction (dilatancy law) i.e increases the void fraction, so the connecting void probability.

7.4. Persistence of contacts, strain scale \(\ell_\varepsilon \)

\(\ell_\varepsilon \) and \(\ell_p \) provide information on the spatial organization of the granular material. We now present another quantity associated to the time correlation of the contact network.
Starting from a population of contacts at time t, we define the function $P(T)$ as the proportion of contacts which have not been broken at the time $t + T$ (an average over time t is performed). We notice that a similar quantity, called topological correlation function was defined in Choi et al. (2004), to measure the diffusion in granular flows. This function obviously starts from the value 1. Figure 12 (g) shows that it decreases
exponentially to zero with time T or the associated strain $\epsilon = \dot{\gamma} T$: $P(\epsilon) \approx \exp(-\epsilon/\epsilon^p)$. ϵ^p is the characteristic strain scale of persistent contacts. Figure 12 (h) shows that ϵ^p is lower than 1 for cohesionless grains, and that cohesion increases it above 1. This means that the persistent time of the contacts becomes larger than the shear time.

7.5. Velocity correlations, length scale ℓ^v

Correlated motions of grains and transient rigid clusters were evidenced with cohesionless grains (Bonamy et al. 2002; GDR MiDi 2004; Pouliquen 2004), and found to affect the rheological properties of the granular flows (Ertas & Halsey 2002; Mills et al. 2005). Pouliquen (2004) measured the fluctuating velocity field $\delta \vec{v}(\vec{r})$ at the surface of a flow down an inclined plane and showed that its correlation length ℓ^v strongly increases as the inclination decreases near jamming. This observation suggests that jamming mechanism is connected to the development of space-time correlations within the flow when going from the collisional regime to the quasi-static regime. It is then tempting to measure this correlation length ℓ^v within an homogeneous shear flow, as a function of the two dimensionless numbers I and η.

We start by measuring the auto-correlation function $C(\vec{R})$ of the fluctuating velocity field $\delta \vec{v}(\vec{r})$:

$$C(\vec{R}) = \frac{\sum_{i,j} \delta v_i \delta v_j g(\vec{r}_{ij} - \vec{R})}{\sum_{i,j} g(\vec{r}_{ij} - \vec{R})},$$ \hspace{1cm} (7.2)

where $\delta v_i = |\delta \vec{v}_i|$, and g is a Gaussian function of width $w = 0.4d$. We checked that the results do not depend significantly on w, and are qualitatively the same when considering only one component of $\delta \vec{v}$. We observe that $C(\vec{R})$ is isotropic and decreases exponentially with R: $C(\vec{R}) \propto \exp(-R/\ell^v)$, which defines the correlation length ℓ^v.

Figure 13 (a) shows ℓ^v as a function of I for cohesionless grains. Consistently with the measurements down an inclined plane performed by Pouliquen (2004), ℓ^v strongly increases when the inertial number I decreases, that is to say when going from the dense regime to the quasi-static regime. Figure 13 (b) shows ℓ^v as a function of η for three values of I. For $I \gtrsim 0.1$, ℓ^v is small for cohesionless grains and increases as a function of η. Conversely, for small I, there are already correlated motions for cohesionless grains, then as η increases, there is first an expansion of the material which decreases ℓ^v before an increase for larger η.

8. Links between the microstructure and the macroscopic behavior

In §5, we have shown the strong effect of the cohesion number η on two macroscopic quantities, the apparent friction μ^* and the solid fraction ν. Then, in §7, we have measured the dependencies of several indicators of the microstructure of the granular flow ($Z, \ell^v, \ell^p, \epsilon^p, \epsilon^v$) as a function of η. Their increase is a clear signature of the development of space-time heterogeneities induced by cohesion. In this section, we focus on the relation between the evolution of the microstructure and of the macroscopic behavior.

8.1. Distribution of normal forces

The cohesion seems to increase the apparent viscosity for η larger than around 10 (see section 5.2). This is surprising since estimating by Pd the normal traction force necessary to separate two cohesive grains would predict an high cohesion regime for $\eta \approx 1$. However, this assumption is rather crude since, like in cohesionless granular pilings (Radjaï et al.
Dense flows of cohesive granular materials

Figure 13. Correlation of velocity fluctuations: (a) $\ell^v(I)$, \(\eta = 0\), (b) $\ell^v(\eta)$, \(I = 0.01\) (□), 0.1 (○), 0.3 (∆).

Figure 14. (a) Distribution of normal force: \(\eta = 1\) (○), 10 (∆), 30 (▽), 85 (∗). (b) Dispersion $\Delta N/N^c(\eta)$: \(I = 0.01\) (□), 0.025 (○), 0.05 (∆), 0.1 (▽), 0.2 (○), 0.3 (∗).

1996) or granular flows (O’Hern et al. 2001), we observe a large distribution of normal forces \(N = N^c + N^a\). Figure 14 (a) plots the distribution of \(N/N^c\). In cohesive granular systems, \(N/N^c\) may be negative but is always larger than \(-1\). For \(\eta \leq 1\), the force scale \(Pd\) is larger than \(N^c\): the distribution is broad, so that contacts may be easily broken. For much larger \(\eta\), the force scale is given by \(N^c\): the distribution is much more peaked, so that most contacts cannot be broken. Figure 14 (b) shows that the standard deviation of the distribution slightly decreases when \(I\) increases but significant decreases when \(\eta\) increases. It becomes smaller than unity for \(\eta\) between 3 and 10. This suggests that the high cohesion regime transition might be controlled by the distribution of normal forces rather than by their average value.

8.2. Increase of apparent friction

Friction between grains is described by a Coulomb condition enforced with the sole elastic part of the normal force: \(|T/N^c| \leq \mu\) (see section 3.2). When compared with the total normal force \(N = N^c + N^a\), it is easy to show that \(|T/N| \leq \mu \mathcal{H}(|N^c/N|)\), where the function \(\mathcal{H}\) was defined in section 4.3. For \(N \gg N^c\), which happens for small cohesion,
Figure 15. Increase of apparent friction: (a) solid fraction $\nu(\eta)$, $I = 0.2$, $\mu = 0.4$ (□), $\mu = 0$ (▷); (b) proportion of sliding contacts: $I = 0.01$ (□), 0.025 (○), 0.05 (△), 0.1 (▽), 0.2 (⋄), 0.3 (⊳).

$H \simeq 1$. Then the apparent friction coefficient between grains remains μ. However, for $N \ll N^c$ which is frequent for large cohesion, $H \simeq 4|N^c/N|$ which means that the apparent friction coefficient between grains is strongly increased. For cohesionless grains, it was shown that an increase of μ significantly decreases ν_{max} (da Cruz et al. 2005). Consequently, we predict that this increase of the apparent friction between grains induced by cohesion should result in an expansion of the granular flow. In order to evidence this effect, we have compared the evolution of solid fraction for frictional ($\mu = 0.4$) and frictionless grains ($\mu = 0$) on figure 15 (a). Contrarily to frictionless grains, the expansion of frictional grains starts for small η ($\eta \lesssim 2$). Consistently, this increase of apparent friction between grains strongly reduces the proportion of sliding contacts in the same range of η, as shown in figure 15 (b). This suggests that conversion of sliding into sticking contacts might be responsible for this dilation (Rivier 2005).

8.3. Anisotropy

We now come back to the friction law and analyse the strong increase of the apparent friction $\mu^*(\eta)$ above the agglomeration transition. It has been shown by da Cruz et al. (2005); Campbell & Brennen (1985) that μ^* may be written as the sum of two contributions, associated to the angular distribution of normal and tangential forces:

$$\mu^* = -\int_0^\pi \zeta_N(\phi) \sin(2\phi) d\phi + \int_0^\pi \zeta_T(\phi) \cos(2\phi) d\phi. \quad (8.1)$$

ϕ is the direction of a contact counted counterclockwise from the flow direction, between 0 and π. ζ_N and ζ_T are the products of the distribution of contact orientations by the intensities of normal and tangential forces respectively, normalized by the average normal force in the system, and are shown in figure 16. As expected, figure 17 (a) shows that the calculation of the apparent friction using (8.1) is in excellent agreement with the direct calculation. Figure 17 (a) highlights that both normal and tangential anisotropies significantly increase as a function of η, as was previously shown in quasi-static evolutions by Radjai et al. (2001). The increase of the amplitude of ζ_N occurs for $\eta \gtrsim 10$, so that it seems related to the agglomeration transition: $\zeta_N(\phi)$ increases in the direction of force chain compression ($\phi \simeq 120$), but decreases and may even become negative in the direction of force chain traction ($\phi \simeq 30$). This evolution, strongly enhanced by the
factor $\sin 2\phi$, leads to an increase of the normal contribution to the apparent friction μ_N^*. On the other hand, the enhancement of the amplitude $\zeta_T(\phi)$ starts for small η, so that it seems connected to the increase of apparent friction induced by cohesion. As well, this evolution, strongly enhanced by the factor $\cos 2\phi$, leads to an increase of the tangential contribution to the apparent friction μ_T^*. Figure 17 (b) shows that the relative contribution of normal forces to the apparent friction μ_N^*/μ^* decreases with cohesion (going from around 90% for $\eta = 0$ to around 70% for $\eta \gtrsim 10$).

8.4. Basic mechanisms

We now summarize as simply as possible the previous quantitative analysis. The shear of dense cohesionless grains requires that each individual grain get over the neighbour grain in front of it (Figure 18 a). The macroscopic resistance to the shear is then merely
due to the repulsive forces acting throughout the ascension. With cohesion, a second contribution enhances the macroscopic resistance to the shear: after the ascension, the cohesive contact must be broken. Naively, this reasoning predicts that the part of the shear stress due to cohesion should increase as the maximum attractive force is increased, and consequently that the part of the friction coefficient due to cohesion should increase as η increases. Our measurements show that when the cohesion intensity η increases from 0 to 85, μ^* increases from 0.25 to 3. However, the agglomeration of cohesive grains must also be taken into account. Then the previous mechanism where a grain gets over the neighbour grain in front of it must be considered at the scale of the large clusters, rather than at the scale of individual grains (Figure 18 b). This leads to a strong expansion of the granular media since two scales of porosity appears: between and inside the clusters. Moreover, after the ascending phase, the separation of two clusters merely requires to break the contacts of the grains at the interface of the clusters, while the contacts inside the clusters are not broken. Consequently, the organization in clusters strongly favors the flow of cohesive grains.

The interpretation of the difference between our interpolation of the friction law in the quasi-static regime and the Coulomb criterion using Rumpf formula is now clear: since the flowing granular materials is made of aggregates with enduring contacts, all the contacts do not break simultaneously when the material is flowing but only those which are at the periphery of the aggregates. This may reduce the number of breaking contacts significantly. At the other limit, the aggregation of grains due to cohesion may affect the transition between dense and collisional flow regimes. Cohesion favors multiple enduring contacts within aggregates, and wether there exists a regime with binary collision at high I is an open question which requires a specific study.

9. Conclusion

The existence of intergranular cohesive forces is found to strongly affect dense granular flows. The simulations of simple systems with a generic cohesion model enable to identify the rheological behavior of cohesive grains, and to provide a complete scheme on its origin at the scale of the grains and of their organization.

The simulation of a simple flow geometry, the homogeneous plane shear, and the use of dimensional analysis appears to be efficient to describe the behavior of cohesive granular flows. We point out that their constitutive law can be expressed by a simple friction law,
similar to the case of cohesionless grains, but that the cohesion strongly enhances the resistance to the shear. The consequence on cohesive granular flow down a slope is that a plugged region develops at the free surface where the cohesion intensity is the strongest. Then, flows are made of a fluid bottom layer and a solid-like top layer, which thickness increases with the intergranular cohesive force.

Moreover, we reveal the strong interplay between the local contact law (friction and cohesion), the properties of the contact network (force distributions and anisotropy) and the rheological law (dilatancy and apparent friction). For small cohesion, due to the increase of the apparent friction between grains, the proportion of sliding contacts decreases which induces expansion of the material. For larger cohesion, the agglomeration of the grains results in the growth of heterogeneities (large voids separating dense granular areas), and in the increase of the contact force anisotropy, which strongly enhances the resistance to the shear. Then, for larger cohesion, the granular material breaks apart.

This study is a first step toward the understanding of the rheology of cohesive granular materials. It is clear that further studies are necessary to take into account other specificities of cohesive forces (range of interaction, hysteresis, viscous dissipation in liquid bridges, solid bridges...). It would be extremely interesting to compare those predictions with physical experiments on model materials such as wet glass beads, or controlled powders in vacuum.

We gratefully acknowledge Ivan Iordanoff, Philippe Coussot, Anaël Lemaitre, Guillaume Ovarlez, Dietrich Wolf and Frédéric da Cruz for interesting discussions at various stages of this study. We thank Pierre-Olivier Camus for help in the numerical simulations. Laboratoire des Matériaux et Structures du Génie Civil is a joint laboratory, depending on Laboratoire Central des Ponts et Chaussées, Ecole Nationale des Ponts et Chaussées and Centre National de la Recherche Scientifique.

REFERENCES

Dense flows of cohesive granular materials

Dense flows of cohesive granular materials