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Abstract

This paper considers a single machine scheduling problem with several mainte-
nances periods. Specifically, two situations are investigated. In the first one, main-
tenance periods are periodically fixed: maintenance is required after a periodic time
interval. In the second one, the maintenance is not fixed but the maximum continu-
ous working time of the machine which is allowed is determined. The objective is to
minimize the maximum tardiness. These problems are known to be strongly NP-hard.
We propose some dominance properties and an efficient heuristic. Branch-and-bound
algorithms, in which the heuristics, the lower bounds and the dominance properties
are incorporated, are proposed and tested computationally.

Keywords: Scheduling; Periodic maintenance; Maximum tardiness; Non resumable

job.



1 Introduction

The majority of the studies in machine scheduling literature assumes that machines
are available all times. However, this availability may not be true in real industry settings.
Unavailability periods often appear in industry due to a machine breakdown (stochastic)
or preventive maintenance (deterministic) during the scheduling period. Therefore, a more
realistic scheduling model should take into account associated machine maintenance ac-
tivities. For a survey of scheduling problems with limited machine availability we refer
the reader to the survey paper [15]. Recent papers take into account these unavailability
periods (see for instance [1], [2], [3], [6], [8], [9], [12], [14] etc...). Most of these papers
consider that characteristics of the unavailability periods are known in advance, i.e. that
the maintenance of a machine is a fixed time interval known beforehand and study how
to schedule jobs under the constraint of machine unavailability. However, in some cases
(e.g. preventive maintenance), the maintenance of a machine is also controllable. In other
words, we can decide when to maintain the machine. The jobs and the maintenances are
scheduled simultaneously. In this paper, we study the problem of minimizing maximum
tardiness of jobs.

In most of papers, there is only one unavailability or availability period for each ma-
chine [15]. As stated earlier, however, maintenance is scheduled regularly, or periodically,
in many manufacturing systems. Therefore, there is a need to develop scheduling methods
to deal with periodic maintenance, which usually has more than one maintenance period.
In our problem, there are several maintenance periods where each maintenance is required
after a time interval.

More precisely, in this paper we consider the single machine maximum tardiness prob-
lem subject to periodic maintenance and no preemption (i.e. once a job is started it must

be completed without interruption). We consider two situations. In the first case (periodic



maintenance) the maintenance periods are fixed periodically. This problem was considered
in [4] and [11]; and is NP-hard since the problem that minimizes the maximum lateness
subject to one unavailability period and non resumable jobs is NP-hard [10]. Chen and
Liao [4] and [11] proposed a heuristic and branch-and-bound algorithm to solve this prob-
lem. Other works can be found in the literature regarding fixed maintenance period. We
can quote Allaoui and Artiba [2]. They consider the problem of more complex environment
such as hybrid flowshop. They proposed an hybrid approach, combining simulation and
heuristics to solve the problem of minimizing makespan, mean flowtime and total tardiness.
They showed that classical heuristics became ineffective if unavailability constraints, such
as maintenance, are taking into account. In |3] same authors proposed also a branch and
bound procedure for minimizing the makespan in a two stage hybrid flowshop, where the
first stage has only one machine and all machines are subject to unavailability constraints.
In the second case (flexible periodic maintenance) that we consider, the maintenance is
not fixed but the maximum continuous working time allowed of the machine is fixed. This
problem is strongly NP-hard because it becomes a bin packing problem when all due dates
are 0. It is known that bin packing is a strongly NP-hard problem [5]. Note that the same
problem was studied in [13] in order to minimize the total completion time of jobs, where
several heuristics and a branch-and-bound algorithm are proposed. Graves and Lee [7]
study several variants of the same problem.

The rest of this paper is organized as follows. Section 2 defines the problems and in-
troduces some notation. Sections 3 and 4 are devoted respectively to periodic maintenance
and flexible periodic maintenance. Various dominance rules (different form that of [4] and
[11]) are derived and used in the heuristic and branch and bound algorithm proposed.
Section 5 reports on computational experience with the algorithms. Finally, Section 6
provides a summary of the main results of this paper, and outlines some useful directions

for future research.
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Figure 1: A schedule with periodic maintenance : Jy is the number of job in ith position
and M; is the i operation of maintenance

2 Problem definition and notation

We consider the scheduling problem with n jobs Jy, Js, ..., J, to be processed on a
single machine. Each job J; has a processing time p; and a due date d;. All jobs are
available at time zero and no preemption is allowed. The machine must be maintained
periodically. In the periodic version the distance between two consecutive maintenance
periods is A (see Figure 1) whereas in the flexible periodic version the distance is less than
A (see Figure 2). The maintenance time is t. We assume that p; < A for all i € {1,...,n}
otherwise there is no feasible schedule. A sequence giving the processing order of the jobs
defines a schedule since there is no advantage in keeping the machine idle when there are
jobs to be processed. A schedule m = (Juj, Jig, ---Jpua]s M, Jpny 1) -0 o]y M, -..) contains
a sequence of jobs and the maintenance inserted in job sequence. In a schedule, jobs
processed continuously form a batch, denoted as B. Thus a schedule 7 can be denoted
as m = (By,t, Bo,t,....,t, By) where t is the maintenance and L is the number of batches.
Note that L is a decision variable in our problem. Let Jj; be the ith job in a schedule,
C;(m) be the completion time of job J;, and T;(7) = max{C;(r) — d;; 0} be the tardiness
of job J;. The objective is to find a schedule which minimizes the maximum tardiness of
jobs Thax(m) = mZaXTi(ﬂ). It is worth mentioning that when preemption is allowed the first
problem can be solved by the preemptive EDD (PEDD) rule and any optimal solution of

the first problem is also optimal for the second one.
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Figure 2: A schedule with flexible periodic maintenance : Jj; is the number of job in ith

position and M; is the i** operation of maintenance
Giving a partial schedule o we will use the following notations:
J(0): the set of jobs scheduled in o.
C;(o): completion time of job J; € J(o) in o.
C(o): completion time of o.
Tnax(0): maximum tardiness of o.
By.(0): mth batch in o.
gm(0): total processing time of jobs in batch B,, (o).
m(i,0): the index of the batch where job J; € J(o) is scheduled i.e. J; € Byy;.0)(0).
For J; ¢ J(o), ooi: schedule obtained by adding job i after o. Note that if job i requires a
processing time greater than the slack time in the current (last) batch in o, it is scheduled
in the next time interval A.
When there is no ambiguity, Ci(0), Tiax(0), Bm(0), ¢n(c) and m(i, o) are simplified into

Ci, Tmax, Bm, @m and m(i), respectively.

3 Periodic maintenance

We propose here a first approach considering the periodic maintenance case.



3.1 Dominance properties and lower bounds

In this section, we introduce some dominance properties and give lower bounds that
will be used in our algorithms. The following property is similar to the EDD schedule in

the ordinary T},., problem.

Property 3.1. There exists an optimal schedule in which in each batch jobs are sequenced

in EDD (earliest due date) order.

Property 3.1 can be proved by the pairwise interchange procedure within the same
batch.

The next property states that the length of a job scheduled after batch i is longer than
the gap A — ¢; between scheduled jobs in batch ¢ and the next scheduled maintenance (we

remaind that g; represents the total completion time of batch B;).

Property 3.2. There exists an optimal schedule in which for each batch B;, we have

A—q <pj, forall J; € By, k=1i+1,...,L.

Proof.  Suppose 7 is an optimal schedule where batch B; does not satisfy Property 3.2.
Let job J; be the first job satisfying A — ¢; > p;, J; € By, k > i. Consider the sequence
7’ obtained from 7 by removing J; from its original position and inserting it at the end of
batch B;. Then it is clear that «’ is also an optimal sequence. Repeating this procedure a

finite number of times, we obtain an optimal sequence verifying Property 3.2. O

In order to give others dominance properties we need to introduce some notation.
From now on we restrict ourselves to schedules satisfying Property 3.1. Giving a partial
schedule o we denote by O(o) the schedule obtained by appending to o the optimal partial

schedule of the remaining jobs while keeping Property 3.1 satisfied.



To compute lower bounds for T, (O(0)), we start with the following which give a
lower bound for the starting date in O(co) for jobs not scheduled in o. Let J; denote the

last job in o.

Lemma 3.1. Let J; ¢ J(0) such that p; > A — @i\ (0) or dj < d;, then

Cj(0(0)) —pj =2 m(i)(A +1).

Proof.  If p; > A — @;)(0), i.e. J;j not fit into batch B, then it will not starts before
m(i) (A +t).
If d; < d;, because EDD rule within the batch, J; cannot be scheduled in B,,;), so it will

start after m(i)(A + t). O

Lower bound 1. To each job J; not scheduled in o we associate a ready time as follows:

m(i)(A+1t) ifp; > A = g (o) or dj < d;;

C(o) otherwise.

We consider then the problem Pj(0): Pursue the scheduling of jobs not scheduled in
o subject to preceding ready times in order to minimize the maximum tardiness while
allowing preemption.

We denote by LBj(c) the maximum tardiness in optimal solution of P;(o). It is ob-
tained by a dynamic version of Preemptive Earliest Due Date (D-PEDD) rule. Namely,
sequencing decisions must be considered both at job completion times and at job ready
times as follows:

1. At each job completion the job with minimum d; among available jobs is selected
to begin processing.

2. At each ready time, r;, the due-date of the newly-available job j is compared to



the due-date of the jobs being processed. If d; is lower, job j immediately preempts the

job being processed, otherwise job j is simply added to the list of available jobs.

Lower bound 2. To calculate the second lower bound L Bs(c) we consider P(o) analogous

to Py(o) except in the definition of ready times:

C(o) otherwise.

It is clear that LBy < LBj. In fact, the interest of the second lower bound lies in Lemma
3.2 used in the branch and bound algorithm.
Let LB(o) denote any lower bound for T,,x(O(c)) (for e.g. LB; or LBs), then we

have:

Property 3.3. For any partial schedule o and any job j not scheduled in o, schedule

O(o o j) is dominated if there is a job i scheduled in o such that

m(i) <m(j),  pi<p; <pi+ (A—ame(o)) and C(ooj)— (pj —pi) —di < LB(0),

where m(i1) = m(i,o) and m(j) = m(j,0 0 7).

Proof.  Consider the sequence 7 obtained from O(o o j) by putting job i at the place of
job j and by putting the latter at the end of batch B,,; which is possible thanks to the
condition p; < p; < p; + (A — g (0)). Conditions m(i) < m(j) and p; < p; ensure that
only job ¢ is completed later in 7. But since C;(7) —d; = C(00j)— (p; —pi) — d;, we deduce
that Tj(m) < LB(0) < Twmax(O(0)). By re-segencing batches B,,; and B,,;) in the EDD
order we obtain a better schedule 7’ satisfying Property 3.1, and Tiax(7") < Thax(O(0)).
O



Property 3.4. Let o be a partial schedule, and i the last job scheduled in o. We suppose
that there are no unscheduled jobs which fit into last batch of o. Then schedule O(o) is

dominated if there is an unscheduled job 7 such that

Pi <0 < i+ (A =G (0) and d; > d; — (pj — pi)-

Proof.  Consider the sequence 7 obtained from O(c) by putting job i at the place of job j
and by putting the latter at the end of batch B,, ;) which is possible thanks to the condition
Pi <pj < pi+ (A —gm@)(0)). Conditions m(i) < m(j) and p; < p; ensure that only job i is
completed later in 7. Since T;(7) = max{C;(m)—d;; 0} = max{C;(0(0))—(pj—pi)—d;; 0} <
max{C;(O(0)) — d;; 0} = T;(O(0)), we conclude that Tiax(7) < Thax(O(0)). Finally, by
re-sequencing each B,; and B,,;) in EDD order we obtain a new schedule 7’ such that

Tmax(ﬂ-/) < Tmax(ﬂ-) < Tmax(0(0>>- ]

3.2 Heuristic algorithm

Based on the preceding dominance properties, we propose, in this section, a heuristic
to provide a near-optimal schedule for the stated problem. The heuristic is denoted H1,

its steps are outlined as follows:

Heuristic H1

Step 1. Sort jobs in EDD order with ties broken by nonincreasing order of p;: Jy, Jo,...,J,.
Step 2. Calculate a lower bound T, for the problem by P-EDD.

Step 8. Leti=1,5=1,B; =0, ¢; =0, (J,p,d) = (J;,pj,d;) and Tyax = 0.

Step 4. Is there at least one batch B, such that A — ¢, > p;. If so, among them choose



the batch with the smallest index, say £, put job J; at the end of batch By, qi = qi + pj,
Tax = max{Tax; (K —1)(A+1)+ qx — d;}, and moreover (J,p,d) = (J;,p;,d;) if k =1,

goto Step 8.
Step 5. If ¢; —p+p; > A or p; < p, goto Step 6. Otherwise, goto Step 7.

Step 6. Let 1 =4+ 1, insert a maintenance and let job J; be the first job in the new batch
Bi, ¢i = pj, Tmax = max{Tyax; (1 —1)(A+1t)+q;—d;}, (J,p,d) = (J;,p;,d;), goto Step 8.
Step 7. If i(A+1t) +p—d <max{i(A +1t) +p; — dj; Tomax; Tmax}, Bi = (B:\{J}) U{J;},
¢i = ¢; —p+pj, ¢ =i+ 1, insert a maintenance and let job J be the first job the new batch
Bi, ¢i = p, Tinax = max{Tax; (1 —1)(A+t)+p—d; (i—2)(A+1t)+¢gi—1 —d;}. Otherwise,

goto Step 6.

Step 8. If j = n, stop. Otherwise, j = j + 1, return to Step 4.

Remark 1. Steps 1, 4 and 7 are motivated respectively by Properties 3.1, 3.2 and 3.3. The

computational time complexity of Heuristic H1 is O(n?).

As an illustration of the heuristic, consider the following two examples from [11] and

|4] respectively.

Table 1 The data for example 1 (in hours); A =8 and t = 2
Ji S S Js Jy Iy Js Jr Js Jy

p 1 5 3 5 2 2 3 4 4

di 1 13 2 30 10 13 20 12 14

Table 2 The schedule obtained by the heuristic in [11]
Ji NI St Jy Js ot Jg Jy t Jr 4

77 0 0 0 11 5 9 12 13 8

Table 3 The schedule obtained by our heuristic

10



i L Js Jg ot I o ot Js Jy 0 Jr oy

7, 0 2 0 2 4 9 12 13 8

Table 4 The data for example 2 (in hours); A =12 and t = 3
Ji S S Iz Jo Js Js Jro Js Jy Jwoo Jn

pi 3 4 4 4 7 2 4 5 4 3 3

d; 5 10 32 12 32 16 18 36 19 20 40

Table 5 The schedule obtained by the heuristic in 4]

Ji Jl J2 Jﬁ JIO t J4 J5 t J7 Jg t J3 Jg J11

7 0 0 0 0 7 0 16 19 17 18 17

Table 6 The schedule obtained by the our heuristic

Ji Jl J2 J4 t Jﬁ J7 Jg t Jl() J5 t J3 Jg Jn

7 o0 o o 1 3 6 13 8 17 18 17

The algorithm will be studied by computational experiments later. It will also be

compared to the heuristic proposed by Liao and Chen [11].

3.3 Branch and Bound algorithm

The proposed branch and bound algorithm uses a usual schema. During the compu-

tation, we keep a list of unexplored nodes arranged in increasing order according to the

lower bounds of nodes, with ties broken by nonincreasing number of scheduled jobs. Each

node represents a partial schedule. The algorithm always try to develop the head of the

list. The branching from a node consists of creating child nodes by adding an unscheduled

job to the end of the partial schedule. We will calculate a lower bound for each node that

cannot be eliminated by the dominance proprieties. In particular we use the following

comparison lemma.

11



Lemma 3.2. Let o be a partial schedule, and i1 and 15 two jobs not scheduled in o. If

d;, < d;, then at least one of the following holds:
1. O(o o1iy) is dominated.
2. O(o oiy) is dominated.

3. LBQ(O' o Zl) S LBQ(O’OiQ).

Proof.  Let J; be the last job in o.

o If min{p; ;pi,} <A —@um)(0) <max{p;;pi,} = p; for j € {41,i2}, then by Property 3.3
O(o o j) is dominated.

o If max{p;;pi,} < A — gm@p)(0). Let r} (respectively 77) the ready time of job J; in
Py(00iy) (respectively in Py(o0ip)). Since d;, < d;, then r; <77 for J; ¢ J(o)U{Ji;; Ji,};
ri, = C(ooiy) and r7 > C(0 0iy). Let my the optimal schedule for the problem Py(o o iy)
obtained, as said above, by D-PEDD rule. Let A be the set of jobs scheduled in 75 in
the interval [C(0); C(o) + p;,|. Consider the schedule 7; obtained by interchanging A
with J;,. This interchange will not delay jobs except possibly jobs in A. But because
di, < d;, < dj for J; € A we have Cj(m) — d; < max{Cj,(me) — d;;; C;(m) — d;}
for J; € A, and consequently Tj(m;) < max{Tj(ms); T;,(m2)}. This shows that m is
better than my. On the other hand, m is feasible for Py(o o 4y) since rjl- < rjz. Finally,
LBsy(0011) < Thax(m1) < Thax(m2) = LBa(0 01y).

e We use the same arguments to tackle the case A — ¢,)(0) < min{p;,;ps, }- O

In fact if o o4 is eliminated, then we never consider o o j for all J; such that d; > d;.

The computation time of the B&B algorithm is reported in Section 5.

12



4 Flexible periodic maintenance

In this section we deal with the flexible periodic version. Recall that in this case
maintenance periods are not fixed but the maximum continuous working time allowed of

the machine is A.

4.1 Dominance properties and lower bounds

It is clear that Property 3.1 remains true in this case. However we have to make some

modifications on the others properties.

Property 4.1. There exists an optimal schedule in which for each batch B;, we have
A — q; < pj for the first job J; in the next batch B;y.

Proof.  Suppose 7 is an optimal schedule which does not satisfy Property 4.1. Consider
the sequence 7’ obtained from 7 by removing J; from its original position and inserting it
at the end of batch B;. Then it is clear that 7" is also an optimal sequence. Repeating this
procedure a finite number of times, we obtain an optimal sequence verifying Property 4.1.

g

There exists an optimal schedule satisfying at the same time Properties 3.1 and 4.1.
More precisely, we can prove that every schedule not satisfying simultaneously 3.1 and 4.1 is
dominated. Thus from now on we consider only partial schedules satisfying Properties 3.1
and 4.1. Given a partial schedule o, O(0) will denote the schedule obtained by appending
to o the optimal partial schedule of the remaining jobs while keeping Properties 3.1 and
4.1 satisfied.

Before stating other dominance properties let us give, as in the periodic version, a lower

bound for T},,x(O(0)). For that purpose we establish first a minoration for C;(O(0)) (J; ¢

13



J(0)). Let o be a partial schedule, J; the last job in ¢ and s := S"D" ¢ (o) + (m(i) — 1)t

m=1

be the starting date of batch B,,;). To simplify, we set ¢ = gn)(0).

Lemma 4.1. Let J; ¢ J(o). If p; > A —q or d; < d;, then
Cij(O(0)) > max{s+ A+t —p;+1; s+q+t}+p;. (1)

Proof. We are going to prove that J; starts in O(c) after max{s+A+t—p;+1; s+qg+t}.
Keep in mind that the processing times and due dates are integers. Two cases must be
examined.

Case 1: If A —q < p;, i.e. max{s+ A+t —p;+1; s+qg+t} =s+qg+t. Itis not possible
to place job J; in the batch B,,; and it is necessary to insert at least one maintenance
period before processing J;. So J; starts after s + ¢ +¢.

Case 2: If A — ¢ > p; and d; < d;, in which case max{s + A+t —p;+1; s+q+t} =
s+ A+t —p; + 1. Assume for the sake of contradiction that J; starts before the latter
date. Then Property 3.1 implies that m(j) > m(i), i.e. between jobs J; and J; there is at
least one maintenance period. Let A be the set of jobs which are sequenced after J; and

before J;. We have

SHq+ Y pett+p <(s+A+t—p+1)—1+p=s+A+t
JEA

Consequently ¢ + ZJkeA pr + pj < A; which contradicts the validity of Property 4.1. O

Now we propose two lower bounds for T},,(O(0)). The first one is based on the relax-
ation of the "ready time" (1) and the second is based on the relaxation of the constraint

on the maintenance.

Lower Bound 1: We consider the problem Pj(0): we fix maintenance as late as possible

14



i.e. at dates s + A, s +2A 4+ ¢, s + 3A + 2t,... and for each J; not scheduled in o we

associate a ready time:

s+A—p;+1 ifd; <d,
rj = (2)

C(o) otherwise.
Moreover, we allow the preemption. This problem is solved optimally by D-PEDD, we
denote by LB (o) the resulting optimal value. We have LB (0) < Tyax(O(0)). Indeed, let
us construct from O(o) a feasible schedule for P (o).
- In each interval [s+m(A+1t); s+ (m+1)(A+t)] (m > 0) we keep only one maintenance
period (in fact there is at least one) and we place it at the date s +m(A +t) + A possibly
by interchanging it with jobs situated between it and s+ m(A+t)+ A+¢. This is possible
since each job having a due date lower than d; starts after s+ A +¢—p; +1in O(0) (see
Lemma 4.1) and advancing it by ¢ will not alter the constraint (2).
- We advance jobs while respecting the ready time.
Clearly the obtained schedule 7 is better than O(c) and is feasible for P(c). Thus,

LB1(0) < Tiax(T) < Thax(O(0)). O

Lower Bound 2: We consider the problem P»(c), where we fix maintenance at dates
s+ 2A +t, s+ 3A + 2t,... (note that unlike the preceding case, the machine is not

maintained between s and s + 2A 4 ¢) and we associate to every .J; a ready time r;

max{s + A+t—p;+1;, s+q+t} ifp;>A—qord; <d,

C(o) otherwise.

Again, we solve the resulting problem by allowing the preemption of jobs and by using the

D-PEDD rule. We let LBs(o) the optimal value corresponding to Ps(o).

15



Let us prove LB(0) < Thax(O(0)). As above, we are going to construct from O(c) another
better schedule 7 as follows:
- We delete maintenance periods situated in the interval [s;s + A + ]
- In each interval [s + m(A +t);s + (m + 1)(A +¢)] (m > 1) we keep only one (in fact
there is at least one) maintenance period and we insert it at the date s +m(A +1¢) + A
(possibly by interchanging it with jobs situated between it and s+m(A+t)+ A+t¢, which
is possible thanks to the inequality r; < s+ A 4 t.
- We advance jobs while respecting the ready time.
Clearly 7 is better than O(c) and is feasible for Py(0). So, LB(0) < Thax(T) < Thax(O(0)).
U

We put LB(0) = max{LB;(0); LBs(c)}.

Property 4.2. For any partial schedule o and any j not scheduled in o, schedule O(c o j)
1s dominated in both following cases:

1. There is a batch By, where k < m(j,00j), A—qr(c) > p; and Ci(o)+p; —d; < LB(0)
for all jobs J; in o scheduled after By, .

2. There is a batch By where k < m(j,007), A—qr(c) > ps and C;(coj)+ps—d; < LB(o0oy)
for all jobs J; in o o j scheduled after By, where Jg is the job with the smallest due date

among jobs not in J(o o j) i.e. dy =min{d;; J; ¢ J(coj)}.

Proof. 1. Let A be the set of jobs which is sequenced after batch B and before job J;
in O(o o j). A new feasible schedule 7 can be obtained from O(o o j) by placing job J; at
the end of batch B, and not increasing the completion times of jobs except jobs in A. The
completion time of each job in A will increase by p;, so Ci(7) — d; = C;(O(0)) + p; — d;
for i € A. Therefore, T;(7) < LB(0) < Timax(O(0 0 7)), and Tiax(7) < Tiax(O(0 0 7)).

2. Let A be the set of jobs which is sequenced after batch By and before job Js in O(c o j).

A new feasible schedule 7 can be obtained by placing job .J; at the end of batch By and

16



not increasing the completion times of jobs except jobs in A. If J; is in A and is scheduled

in 0 o j, then

e
3
I

max{C;(m) — d;; 0}

IN

max{C;(O(0)) + ps — d; 0}

IN

LB(o o j)

IN

Tax(O(0 © 7).

If J; is in A but not scheduled in ¢ o j, then

T;(r) = max{C;(m) —d;; 0}

= max{C;(O(c0j))+ps—d; 0}

IN

max{Cs(O(c 0j)) —ds; 0}

IN

Ts(O(o 0 j)).

Finally, we get Tax(7) < Thax(O(0 0 7)). -

Property 4.3. For any partial schedule o and any job j not scheduled in o, schedule
O(o o j) is dominated if there is a job i scheduled in o such that m(i,o) < m(j,o o j),
P <0y <0+ (A = gy (0)), C(005) — d; < LB(0) and Cuf0) + (p; — ) — d, < LB(o)

for all jobs J, in o scheduled after B, .

Proof. Let A be the set of jobs which is sequenced after batch B, (i) in 0. A new
feasible schedule m can be obtained by replacing job J; by J; and inserting J; at the end
of batch B,,;). Only job J; and jobs in A are completed later in 7. We have Cy(7) —d, =
Cy(O(o o))+ (pj —pi) — dy, for J, € A. So, T,,(m) < LB(0) < Tiax(O(0 0 j)). Moreover,
Ti(m) ={C(c0j) —d;; 0} < LB(0). Therefore, Tiax(m) < Trnax(O(0 0 7)). O
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Property 4.4. Let o be a partial schedule. Let j be a job not scheduled in o which does not
fit into the last batch of o. We denote by i the last job in o. Then O(o o j) is dominated
if pi < ps < pi+ (A = Gmp(0)), di > ds and C(o 0 j) + (ps — pi) — d;j < LB(0 o j),
where Js 1s the job having the smallest due date among jobs not scheduled in o o j, i.e.

ds = min{d,; J, & J(cdoj)}.

Proof. Let A be the set of jobs which is sequenced after job J; and before job J; in
O(o o j). A new feasible schedule m can be obtained by interchanging J; and J,. This
will not increase the completion times of jobs except jobs J; and J;, and jobs in A. We
have Cj() — d; = (o0 j) + (p, — pi) — djy 50 Ty(m) < LB(0 0 ) < Tax(O(0 0 7).
On the other hand, for J, € A, we have Cy,(7) —d, = C,(O(c 0 7)) + (ps — pi) — dy <
Cs(O(o 0 j)) —dy, < Cs(O(0 03)) —ds, so Ty(m) < Ts(O(o o 7)). Moreover, T;(m) =
max{C;(m) — d;; 0} < max{Cy(O(c o j)) —ds; 0} = T4(O(c o j)). Thus we have the

required result that Tj..(m) < Thax(O(0)). O

4.2 Heuristic algorithm

To approximate the solution of the problem we propose the following heuristic which

is an adaptation of Heuristic H1 in light of the new properties.

Heuristic H2
Step 1. Sort jobs in EDD order with ties broken by non-increasing order of p;: Jy, Jo,...,J,.

Step 2. Calculate a lower bound T,,,, for the problem by putting maintenance as late as

possible i.e. at the dates A, 2A 4+ ¢, 3A + 2¢..., and scheduling jobs according PEDD rule.
Step 3. Leti=1,7j=1,B;=0,¢ =0, (J,p,d) = (J;,pj,d;), C =0 and Ty = 0.

Step 4. Is there at least one batch B, such that A — ¢, > p; and 7} < max{Ti.x —
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Pj; Tmax —Dpj; 0}, VI € By, k > m. If so, among them choose the Batch with the smallest
index, say k, put job J; at the end of batch By, ¢ = qx + p;, C = C + p;, up date Tax,
and moreover (J,p,d) = (J;,p;,d;) if k =14, goto Step 8.

Step 5. If ¢; —p+p; > A or p; < p, goto Step 6. Otherwise, go to Step 7.

Step 6. Let ¢ = i + 1, insert a maintenance task and let job J; be the first job in the new
batch B;, ¢; = pj, C = C+p; +t, Thnax = max{Tyax; C —d;}, (J,p,d) = (J;,p;,d;), go to
Step 8.

Step 7. I C +t+p; —d < max{C +t + p; — dj; Tmax; Tmax}> Bi = (B\{J}) U {J;},
¢i = ¢ —p+pj, i =i+ 1, insert a maintenance task and let job J be the first job the new
batch B;, ¢; = p, C = C 4+t + p;, Thnax = max{Ti.x; C —d; C —p—1t—d;}. Otherwise,

goto Step 6.

Step 8. If j = n, stop. Otherwise, j = j + 1, return to Step 4.

4.3 Branch and Bound algorithm

The algorithm is similar to that developed in Section 3.3. Note however, for this case

we do not have a Lemma analogous to that of Lemma 3.2.

5 Computational results

In this section, we report computational results to evaluate the effectiveness of the
heuristics algorithms and the computation time of the B&B. The computational experi-
ments, are done using Visual C++ compiler and on a duo T5600 processor with 1Go of
memory. We generate the parameter values as in [11] : processing times were selected

from a discrete uniform distribution (DU) over [1,10]. The due dates were selected from
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another DU over [(1-C —Q/2)> " pi, (1 —C+Q/2)> ", pi], where Q € {0.2,0.6} and

C € {0.2;0.6} denote the due date range and tardiness factor, respectively.

Ezperiment 1. Comparison between H1 and Heuristic in [11] for the periodic version. For
each combination of n, C', @, A and t, 50 problems are randomly generated. Each problem
is solved by H1 and the heuristic proposed in [11] which we denote here by HCL. Table
7, corresponding to A = 18 and ¢t = 4, shows in column ’better’ the number of problems
(#HCL) for which Heuristic H1 is better than HCL, and the number of problems ( #H1) for
which Heuristic HCL is better than H1. In column DH1 Max (respectively Mean) denotes
the maximum (respectively the average) deviation of the heuristic HCL solution from the
solution obtained by H1 for problems where H1 is better than HCL. Accordingly, in column
DHCL Max (respectively Mean) denotes the maximum (respectively the average) devia-
tion of the heuristic H1 solution from the solution obtained by HCL for problems where
HCL is better than H1. Table 8 is similar to Table 7 with A = 10 and ¢t = 2. We can see
that for all combinations of C, @), A and t our heuristic outperforms HCL especially for
large n. In fact there cases where our heuristic is 100% better. Moreover, the deviation is
more important for the case where H1 is better. This is because HCL is very dependent in
the manner that jobs are initially ordered (no initial order of jobs is assumed in Heuristic
HCL).

From the computational point of view, H1 is better than HCL: H1 spends much less com-

putation time than HCL.

Experiment 2. The relative error of the heuristic algorithms and the average computation
time of B&B (in milliseconds).
For different combinations of C, @), A and ¢ 25 problems are randomly generated and

solved by heuristic and branch and bound algorithms subject to both periodic and flexible
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periodic constraint. Table 9 gives the relative error of our heuristic algorithms i.e.

Tonax (Hi) — Tax(B&B)
Tonax (B&B)

(i=1or2) (3)

and the computation time (in milliseconds) of the branch and bound algorithms. For
our choice of C' and @, namely (C,Q) = (0.2,0.2) and (C,Q) = (0.6,0.6), we are sure
that the maximum tardiness is superior to 0.13°7 | p; and 0.3> 7, p;, respectively. To
see this, consider the last job, say J;, in an optimal schedule whose completion time is
clearly C; > 7% p;. If (C,Q) = (0.2,0.2) then d; < 0.9>7" p;, and consequently
Tax > Ci —di > (3251 p5) — (09377 p;j) = 0137 p;. If (C,Q) = (0.6,0.6) the same
argument gives Ty, > 0.3 Z?:1 p;. So the error relative (3) is well defined. We can see
that the B&B is not an efficient algorithm with large problems especially for the flexible
periodic version. Of course, we have not reported a computation time of B&B in the last
case for n = 20 because we have fixed the maximum computational time to be ten minutes
and many problems exceed 10 minutes. As we can see in Table 9, the main interesting
results is the effectiveness of both heuristics H1 and H2. The error for all treated problem
does not exceed the average value of 17% for H1 and 3% for H2. Moreover, the heuristics
always find at least once the best solution for all problem sizes (this represents at least 1

problem over 20). This is true for both fixed and flexible maintenance cases.

6 Conclusion

The importance of maintenance has been gradually accepted by the decision maker.
Therefore, it has become a common practice to schedule maintenance periodically in many
manufacturing systems. Unfortunately, most papers discussing maintenance assume there

is only one maintenance period. In this paper, we have addressed the single machine
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maximum tardiness problem subject to periodic maintenance and nonresumable jobs. We
have considered two versions which are both NP-hard. The first one corresponds to a
periodic maintenance. It consists of several maintenance periods where each maintenance
is required after a periodic time interval. In the second situation, the maintenance is not
fixed but the maximum allowed continuously working time of machine is fixed. We have
proposed for each of them a heuristic and a branch and bound algorithm. Computational
experiments have been done to evaluate the effectiveness of the algorithms. Moreover, for
the first version an extensive empirical comparison of the proposed heuristic with Liao and
Chen [11] heuristic shows the superiority of the former. One future research direction is
to extend these scheduling problems from the single machine case to the parallel machine

case and flow-shop problem.
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Table 7 Comparison between H1 and Heuristic in [11] for the periodic version
(A =18 and t = 4)

Better DH1 DHCL Comp. time (ms)

Cc @ n | #H1 #HCL | Max Mean | Max Mean | HI1 HCL
02 02 10 15 15 15 5.80 13 4.53 | 0.32 0.60
20 22 11 25  7.55 22 5.00 | 0.00 1.86

30 28 10 19 761 5 2.30 | 1.26 2.18

40 28 8 22 8.04 15 5.25 | 1.26 3.76

50 34 12 24 9.32 19 7.67 | 1.26 5.30

80 34 8 44 13.82 24 8.25 | 1.56 11.26

110 42 4 42 1417 17 8.25 | 3.14 18.42

150 47 3 67 19.60 13 6.00 | 5.98 32.12

170 44 3 76 21.82 20 13.67 | 7.74 37.56

200 40 7 54  21.23 17 8.14 | 9.36 46.90

02 06 10 15 6 17 747 7 3.50 | 0.00 0.94
20 33 6 35 8.33 16 7.17 | 0.32 2.50

30 35 8 36 12.43 17 6.13 | 0.32 4.38

40 41 4 45 15.15 8 4.50 | 1.24 6.90

50 42 2 41 16.64 7 4.00 | 1.24 10.00

80 47 3 55  26.34 12 6.67 | 2.54 27.14

110 49 1 70 40.08 15 15.00 | 3.12 49.06

150 50 0| 103 54.74 0 0.00 | 3.12 99.06

170 50 0| 104 59.06 0 0.00 | 5.36 139.32

200 50 0] 129 79.44 0 0.00 | 8.40 190.34

06 0.2 10 19 12 10 3.79 14 4.33 1 0.00 0.64
20 28 10 22 7.18 18 5.30 | 0.00 2.18

30 24 12 18 7.04 22 6.58 | 0.32 3.14

40 38 7 31 10.05 16 7.71 | 1.56 3.12

50 25 12 36 8.84 17 5.50 | 0.94 5.96

80 36 10 37 1231 8 3.90 | 1.24 12.52

110 40 6 46 12.55 22 1217 | 440 17.78

150 41 8 40 17.15 12 5.88 | 6.54 33.16

170 40 9 61 22.60 22 6.78 | 5.34 39.02

200 45 3 54 2224 18 11. 00 | 8.80 51.82

0.6 06 10 19 5 13 4.68 8 4.60 | 0.00 0.94
20 35 2 23 9.46 16 8.50 | 0.00 2.18

30 37 4 35 11.38 22 10.50 | 0.62 3.74

40 41 3 61 18.15 7 3.33 | 1.26 6.26

50 41 6 44 16.27 11 4.83 | 0.62 10.94

80 47 1 51 24.85 3 3.00 | 3.12 23.10

110 50 0| 104 39.24 0 0.00 | 5.60 48.16

150 50 0 91 56.74 0 0.00 | 6.88 94.34

170 50 0| 102 63.38 0 0.00 | 5.66 124.64

200 50 0| 118 81.62 0 0.00 | 8.78 166.86
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Table 8 Comparison between H1 and Heuristic in [11] for the periodic version
(A =10 and t = 2)

Better DH1 DHCL Comp. time (ms)

Cc Q n | #H1 #HCL | Max Mean | Max Mean H1 HCL
02 02 10 14 6 11 3.00 9 533 0.32 0.92
20 25 6 12 6.32 12 750 | 0.00 1.86

30 23 9 16 7.43 11 6.78 | 0.92 2.20

40 27 9 17 8.81 12 6.11 1.56 3.76

50 36 4 24 10.50 11 7.00 | 1.88 4.68

80 40 6 24 11.85 12 8.67 | 2.18 12.20

110 41 7 37 15.56 13 9.71 | 6.00 17.44

150 46 2 44 20.07 6 4.50 9.38 28.44

170 48 1 49  22.10 1 1.00 | 11.32 36.54

200 47 2 48 2594 10 9.00 | 13.86 47.08

02 0.6 10 18 2 12 6.78 12 12.00 0.32 0.62
20 20 5 14 6.85 12 5.60 | 0.00 2.18

30 33 4 32 11.12 12 5.25 0.64 2.48

40 34 8 26 13.29 12 8.75 1.24 3.44

50 30 5 42 1497 12 940 | 0.92 6.58

80 35 0 48 17.43 0 0.00| 250 11.26

110 39 2 49 21.23 12 10.00 | 3.72 19.40

150 43 3 48 21.95 12 8.00 | 852 30.54

170 42 4 45 21.76 17 11.50 | 11.62 33.68

200 47 3 77 27.87 12 8.00 | 13.80 47.80

06 0.2 10 21 6 12 4.81 12 5.50 0.00 0.62
20 21 5 12 590 8 6.60 | 0.60 1.58

30 25 6 18  8.56 12 9.00 | 0.32 3.74

40 28 4 19  8.50 12 875 | 0.96 3.44

50 28 6 24 9.96 23 10.33 | 1.54 5.00

80 36 7 27 13.44 20 11.57 | 2.20 11.56

110 38 4 36 18.11 24 10.75 | 4.08 18.70

150 42 3 41  20.21 24 13.67 | 8.94 30.10

170 43 2 48 2347 12 8.50 | 11.30 37.14

200 45 3 54 26.24 12 10.00 | 13.66 51.34

06 06 10 15 4 18  7.07 12 825 | 0.32 0.94
20 23 3 22 10.00 6 533 0.96 1.54

30 29 1 22 9.69 12 12.00 0.62 2.52

40 30 2 24 11.27 6 3.50 | 1.28 4.04

50 37 4 35 11.30 12 6.00 | 2.20 5.30

80 34 5 42 18.03 12 480 | 4.68 10.62

110 43 1 39 19.21 9 9.00 5.02 18.72

150 44 1 54 22.20 12 12.00 | 9.72 28.10

170 48 1 50  21.67 12 12.00 8.96 38.22

200 47 1 63 30.83 2 2.00 | 14.12 49.32
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Table 9 The relative error of the heuristic algorithms and the average computation time
of B&B (in milliseconds)

Fixed periodic maintenance

Flexible periodic maintenance

Comp. Relative error Comp. Relative error
C @ n A t| time (ms) Min Max  Mean || time (ms) Min Max  Mean
02 02 10 10 2 58 | 0.0000 0.1538 0.0145 238 | 0.0000 0.3333 0.0267
4 65 | 0.0000 0.3600 0.0180 217 | 0.0000 0.2353 0.0258
15 2 58 | 0.0000 0.6471 0.0798 170 | 0.0000 0.3750 0.0407
4 57 | 0.0000 0.8667 0.0565 166 | 0.0000 0.2667 0.0245
20 2 50 | 0.0000 1.1429 0.1669 142 | 0.0000 0.5714 0.0463
4 66 | 0.0000 0.5294 0.1341 111 | 0.0000 0.2941 0.0178
15 10 2 1243 | 0.0000 0.0000 0.0000 21732 | 0.0000 0.0000 0.0000
4 2058 | 0.0000 0.0000 0.0000 46532 | 0.0000 0.0909 0.0067
15 2 2471 | 0.0000 0.0000 0.0000 12517 | 0.0000 0.1176 0.0174
4 2891 | 0.0000 0.6154 0.0370 21265 | 0.0000 0.1379 0.0217
20 2 2944 | 0.0000 0.3529 0.0689 6189 | 0.0000 0.1176 0.0129
4 5246 | 0.0000 0.2593 0.0536 6481 | 0.0000 0.1538 0.0098
20 10 2 22507 | 0.0000 0.0000 0.0000
4 33888 | 0.0000 0.0000 0.0000
15 2 42522 | 0.0000 0.0000 0.0000
4 59153 | 0.0000 0.0000 0.0000
20 2 99231 | 0.0000 0.7083 0.0959
4 153958 | 0.0000 0.5000 0.0396
06 06 10 10 2 39 | 0.0000 0.0000 0.0000 143 | 0.0000 0.0000 0.0000
4 42 1 0.0000 0.3784 0.0501 138 | 0.0000 0.1081 0.0065
15 2 28 | 0.0000 0.5200 0.0483 91 | 0.0000 0.2800 0.0140
4 25 | 0.0000 0.4242 0.0630 100 | 0.0000 0.1429 0.0157
20 2 18 | 0.0000 0.3043 0.0328 57 | 0.0000 0.0435 0.0022
4 16 | 0.0000 0.5806 0.0565 47 | 0.0000 0.1290 0.0144
15 10 2 929 | 0.0000 0.0652 0.0033 12065 | 0.0000 0.1026 0.0094
4 1575 | 0.0000 0.1633 0.0161 13713 | 0.0000 0.1628 0.0162
15 2 691 | 0.0000 0.3269 0.0572 4696 | 0.0000 0.0968 0.0065
4 893 | 0.0000 0.3171 0.0450 7253 | 0.0000 0.1026 0.0196
20 2 640 | 0.0000 0.2000 0.0245 2143 | 0.0000 0.0571 0.0059
4 621 | 0.0000 0.2708 0.0303 1781 | 0.0000 0.0638 0.0073
20 10 2 20907 | 0.0000 0.0000 0.0000
4 22515 | 0.0000 0.0000 0.0000
15 2 25207 | 0.0000 0.3182 0.0356
4 27043 | 0.0000 0.0167 0.0008
20 2 21600 | 0.0000 0.2200 0.0659
4 18181 | 0.0000 0.2059 0.0500
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