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Abstract

This paper presents a reexamination of a multiscale computational strategy with
homogenization in space and time for the resolution of highly heterogeneous struc-
tural problems, focusing on its suitability for parallel computing. Spatially, this
strategy can be viewed as a mixed, multilevel domain decomposition method (or,
more accurately, as a “structure decomposition” method). Regarding time, a “paral-
lel” property is also described. We also draw bridges between this and other current
approaches.
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1 Introduction

In the structural mechanics field, one can observe a surge of interest in the mul-
tiscale analysis of structures with complex microstructural geometry and/or
complex behavior. When accurate solutions are required, calculations must be
performed on a finely discretized model of the structure (defined on what is
called the “micro” level) consistent with short lengths of variation, both in
space and in time. A major application is the analysis of composite structures
described on the microscale or on the mesoscale [1]; there are also other appli-
cations, such as in [2,3]. These types of situations lead to problems with very
large numbers of degrees of freedom and computation costs which are pro-
hibitive if one uses classical finite element codes. One of the main objectives
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of the last few decades has been to develop efficient and robust computational
strategies suitable for these types of problems. One of these strategies uses
the theory of the homogenization of periodic media [4–6]. Other developments
and the associated computational approaches can be found in [7–14]. Besides
periodicity, these strategies rely on the fundamental assumption that the ra-
tio between the two scales is small. Thus, the boundary zones require specific
treatment because in these zones the microstructure cannot be homogenized.
Here, we follow a recently introduced multiscale computational strategy for
nonlinear evolution problems. This strategy involves an automatic homoge-
nization technique in space as well as in time [15,16] which is an extension of
previous works limited to space alone [17,18]. This strategy, developed in a
general framework, makes no a priori assumption regarding the form of the
solution and, therefore, does not suffer from the limitations of standard ho-
mogenization techniques; moreover, it relies on an iterative algorithm. Until
now, this strategy has been developed in the framework of small displacements
of (visco)plastic structures under possible contact with or without friction.

This paper is a reconsideration of this computational strategy in order to
assess its adaptability to parallel computing. Therefore, we examine its three
main characteristics. The first characteristic is that it can be viewed as a
mixed, multilevel domain decomposition method or, more precisely as will
explained further on, as a “structure decomposition” method. Indeed, the
structure is partitioned into substructures and “material” interfaces which,
themselves, are particular substructures. Each of these entities has its own
variables and equations. The two-scale description takes place only at the
interfaces, where forces and displacements are split into “macro” contributions
and “micro” complements. The macro quantities are some mean values over
space and time of the forces and displacements, such that the macroforces
verify the macroequilibrium at the interfaces a priori. Other interpretations,
such as distributed Lagrange multipliers, are given and open possible bridges
to other approaches. The second main characteristic of this strategy is the
use of the LATIN method as the “engine” to handle the reformulation of the
problem through micro and macro quantities, substructures, and interfaces.
The LATIN method [19] is an iterative resolution technique which takes into
account the whole time interval being studied. At each iteration, one must
solve a homogenized macroproblem defined over the whole time-space domain
and a set of independent microproblems which are linear evolution problems
defined within each substructure or at the boundaries between substructures,
and over the time interval being studied. In addition, a local resolution of the
constitutive relations is carried out at the interfaces and in the substructures.
All of these calculations are very suitable for parallel computing. The third
characteristic, and not the least, is the need to solve a set of similar and,
generally, numerous microproblems over the time-space domain. A time-radial
approximation, leading to the construction of a reduced basis of the space
which is updated at each iteration, was introduced in [19,16,20]. Here, in
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order to favor a parallel computational strategy, we propose to group the
substructures into several families in such a way that at each iteration the
same reduced basis can be used for all members of a given family.

This paper covers only the basic aspects. It begins with the single-scale version.
The final, multiscale computational strategy is considered as an extension.

2 The reference problem

With the assumption of small perturbations, let us consider the quasi-static
and isothermal evolution of a structure defined over the time-space domain
[0, T ] × Ω. This structure is subjected to prescribed body forces f

d
, traction

forces F d over a part ∂2Ω of the boundary, and displacements Ud over the
complementary part ∂1Ω (see Figure 1).

∂1Ω

∂2Ω

Ω

Fd

Ud

fd

Fig. 1. The reference problem

The state of the structure is defined by the set of the fields s = (ε̇p, Ẋ,σ,Y)
(where the dot notation �̇ denotes the time derivative), in which:

• εp designates the inelastic part of the strain field ε which corresponds to
the displacement field U , uncoupled into an elastic part εe and an inelastic
part εp = ε − εe; X designates the remaining internal variables;

• σ designates the Cauchy stress field and Y the set of variables conjugate of
X.

All these quantities are defined over the time-space domain [0, T ] × Ω and
assumed to be sufficiently regular. For the sake of simplicity, the displacement
U alone is assumed to have a nonzero initial value, denoted U 0.
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Introducing the following notations for the primal fields:

ep =






εp

−X




 , e =






ε

0




 and ee =






εe

X




 so that ep = e − ee (1)

and for the dual fields:

f =






σ

Y




 (2)

the mechanical dissipation rate for the entire structure Ω is:

∫

Ω

(ε̇p : σ − Ẋ ·Y)dΩ =
∫

Ω

(ėp ◦ f)dΩ (3)

where · denotes the contraction adapted to the tensorial nature of X and
Y, and ◦ denotes the corresponding operator. Let us introduce the following
fundamental bilinear “dissipation” form:

〈s, s′〉 =
∫

[0,T ]×Ω

(1 − t

T
)(ėp ◦ f ′ + ė′

p ◦ f)dΩdt (4)

along with E and F, the spaces of the fields ėp and f which are compatible
with (4). These spaces enable us to define S = E× F, the space in which the
state s = (ėp, f) of the structure is being sought.

Following [19], a normal formulation with internal state variables is used to
represent the behavior of the material. If ρ denotes the mass density of the ma-
terial, from the free energy ρΨ(εe,X) with the usual uncoupling assumptions,
the state law yields:

σ = ρ
∂ψ

∂εe
= Kεe

Y = ρ
∂ψ

∂X
= ΛX

(5)

where the Hooke’s tensor K and the constant, symmetric and positive definite
tensor Λ are material characteristics. These equations can be rewritten in the
form:

f = Aee with A =






K 0

0 Λ




 (6)

where the operator A is constant, symmetric and positive definite. Note that
such an approach is available for most material models.

The constitutive equation is given by the positive differential operator B,
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which is considered to be derived from the dissipation pseudo-potential φ∗(σ,Y):

ėp =






∂σφ
∗

∂Yφ
∗




 = B(f) with ep|t=0 = 0 (7)

One should note that for the sake of simplicity we are restricting this presen-
tation to the case of a sufficiently smooth pseudo-potential. If this is not the
case, (7) must be modified: ∂�φ

∗ is considered to be a subdifferential and the
first equality must be replaced by an inclusion.

For example, if we consider standard viscoplastic behavior with isotropic (de-
scribed by the scalar p) and kinematic (described by the second-order tensor
α) strain hardening, and if the scalar R and the tensor β are the conjugate
variables of p and α respectively, we have:

ρψ =
1

2
εe : K : εe +

1

2
c ‖α‖2 +

1

2
λp2

φ∗ =
k

n+ 1
〈‖σD − β‖ +

a

2c
‖β‖2 − ℓ(R) −R0〉n+1

+

(8)

where ‖β‖ =
√

β : β, σD is the deviatoric part of the tensor σ and 〈�〉+
extracts the positive part of the argument. The scalars k, n, c, λ, a, R0 and
the function ℓ are material characteristics.

In order to formulate the reference problem, let us introduce the following
functional subspaces of S (�⋆ denoting vector spaces associated with affine
spaces):

• the space U of the kinematically admissible fields U :

U ∈ U ⇐⇒ U |∂1Ω = Ud, U |t=0 = U0 (9)

• the space S of the statically admissible fields f :

f =






σ

Y




 ∈ S ⇐⇒







σ is symmetric

∀U ⋆ ∈ U⋆, −
∫

[0,T ]×Ω

σ : ε(U̇
⋆
)dΩdt

+
∫

[0,T ]×Ω

f
d
· U̇⋆

dΩdt+
∫

[0,T ]×∂2Ω

F d · U̇
⋆
dSdt = 0

(10)
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• the space E of the kinematically admissible fields ė:

ė =






ε̇

0




 ∈ E ⇐⇒ ∃U ∈ U , ε̇ = ε(U̇)

⇐⇒







ε̇ is symmetric

∀f⋆ ∈ S⋆, −
∫

[0,T ]×Ω

σ⋆ : ε̇dΩdt+
∫

[0,T ]×∂1Ω

σ⋆n · U̇ddSdt = 0
(11)

• the space Ad of the admissible fields s:

s = (ėp, f) ∈ Ad ⇐⇒







f ∈ S
(A−1ḟ + ėp) ∈ E
ep|t=0 = 0

(12)

In other words, the strain tensor is kinematically admissible if it is the
symmetric part of the gradient of a displacement field which verifies the
boundary and initial conditions; the stress tensor is statically admissible if it
verifies the mechanical equilibrium of the structure; moreover, the kinematic
and static admissibility of variable s implies the verification of the state laws
arising from the free energy. Note that Ad is a set of solutions of global and
linear equations.

• the space Γ of the fields s which verify the dissipation relations (7):

s = (ėp, f) ∈ Γ ⇐⇒ ėp = B(f) (13)

Γ is a set of solutions of (possibly nonlinear) equations which are local in
time and in the space variables.

The solution sref of the problem over the time-space domain [0, T ]×Ω can be
viewed as the intersection of Ad and Γ. Then, the reference problem becomes:

Find sref ∈ Ad ∩ Γ (14)

If B is monotonic, it is possible, using the fact that A is symmetric and positive
definite, to derive the following anti-monotony and monotony properties which
are useful to prove the convergence of the computational strategy presented
in the following sections (see [19] for demonstration):

∀(s, s′) ∈ A2
d
, 〈s− s′, s− s′〉 6 0

∀(s, s′) ∈ Γ2, 〈s− s′, s− s′〉 > 0
(15)
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3 Reformulation through structure decomposition

Here, the basic idea is to describe the structure as an assembly of simple
components, i.e. substructures and interfaces, each with their own variables
and equations (admissibility, equilibrium and behavior) [19] (see Figure 2).

ΩE

ΩE'

ΦEE'

FE'

ΦEE'

FE

WE'

WE

Fig. 2. Decomposition of the structure into substructures and interfaces

Each substructure ΩE of Ω is defined by the set of variables (ε̇pE , ẊE,σE ,YE)
and subjected, through its boundary ∂ΩE , to the action of its environment
(the neighboring interfaces) defined by a displacement distribution WE and a
force distribution FE. Subscript �E will be used to denote the restriction of
variables and operators to subdomain ΩE .

It is obvious that, from the point of view of substructure ΩE , WE and FE play
the role of prescribed boundary conditions; if these are assumed to be known
and compatible, the problem defined in subdomain ΩE consists in finding a so-
lution of an equation similar to (14) in which WE participates in the definition
of kinematic admissibility and FE in the definition of static admissibility.

Then, the interface concept can be easily extended to the boundary of Ω,
∂Ω, where either the displacements or the forces are prescribed data of the
problem. It suffices to set:

• for a prescribed displacement on ΦE1 = ∂ΩE ∩ ∂1Ω: WE = Ud;
• for a prescribed force on ΦE2 = ∂ΩE ∩ ∂2Ω: FE = F d.

Let sE = (ε̇pE, ẊE, ẆE,σE ,YE, FE) denote the set of the variables describing
the state of substructure ΩE and its boundary ∂ΩE .

The mechanical dissipation rate on substructure ΩE is:

∫

ΩE

(ėpE ◦ fE)dΩ −
∫

∂ΩE

ẆE · FEdS (16)
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and we introduce the following fundamental bilinear “dissipation” form:

〈sE , s
′
E〉E =

∫

[0,T ]×ΩE

(ėpE ◦ f ′E + ė′
pE ◦ fE)dΩdt

−
∫

[0,T ]×∂ΩE

(ẆE · F ′
E + Ẇ

′

E · FE)dSdt (17)

along with EE, WE , FE and FE, the spaces of the fields ėpE , ẆE , fE and
FE which are compatible with (17). These spaces enable us to introduce SE =
EE × WE × FE × FE, the space in which sE = (ėpE, ẆE , fE, FE) is being
sought.

Let us then define the following subspaces and associated vector spaces:

• the space UE of the kinematically admissible fields (UE ,WE):

(UE ,WE) ∈ UE ⇐⇒ UE |∂ΩE
= WE , UE |t=0 = UE0 (18)

• the space SE of the statically admissible fields (fE , FE):

(fE, FE) ∈ SE ⇐⇒






σE is symmetric

∀(U ⋆
E ,W

⋆
E) ∈ U⋆

E , −
∫

[0,T ]×ΩE

σE : ε(U̇
⋆

E)dΩdt

+
∫

[0,T ]×ΩE

f
d
· U̇ ⋆

EdΩdt+
∫

[0,T ]×∂ΩE

FE · Ẇ ⋆

EdSdt = 0

(19)

• the space EE of the kinematically admissible fields (ėE , ẆE):

(ėE, ẆE) ∈ EE ⇐⇒ ∃(UE ,WE) ∈ UE, ε̇E = ε(U̇E)

⇐⇒






ε̇E is symmetric

∀(f⋆
E , F

⋆
E) ∈ S⋆

E , −
∫

[0,T ]×ΩE

σ⋆
E : ε̇EdΩdt+

∫

[0,T ]∂ΩE

F ⋆
E · ẆEdSdt = 0

(20)
• the space AdE of the E-admissible fields:

sE = (ėpE , ẆE , fE, FE) ∈ AdE ⇐⇒







(fE , FE) ∈ SE ,

(A−1ḟE + ėpE, ẆE) ∈ EE

epE |t=0 = 0

(21)
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• the space Ad of the admissible fields, which is now redefined:

Ad =
⊗

ΩE⊂Ω

AdE (22)

If we go back to the reference problem stated initially ((14)), the question is
obviously to find the set s = (sE)ΩE⊂Ω in the space S =

⊗

ΩE⊂Ω SE . Let E,
W , F and F denote the extensions of the previous spaces EE, WE , FE and
FE to the entire problem. We will use, for the sake of simplicity, the notation
(ėp, Ẇ , f , F ) ∈ E × W × F × F to designate a set (ėpE, ẆE , fE, FE)ΩE⊂Ω ∈
EE × WE × FE × FE .

A fundamental bilinear “dissipation” form is defined on S2:

〈s, s′〉 =
∑

ΩE⊂Ω

〈sE , s
′
E〉E (23)

In order for the problems defined on the substructure level, which consist in
seeking admissible fields verifying the dissipation relation (7), to be equivalent
to the reference problem (14) defined on the entire domain Ω, these problems
must be complemented with compatibility conditions at the interfaces. Let ΩE

denote the set of the neighboring substructures of ΩE and ΦEE′ the interface
between ΩE and ΩE′ ∈ ΩE. This interface is characterized by the restrictions
to ΦEE′ of both the displacement field (WE ,WE′) and the force field (FE, FE′),
denoted (WEE′,WE′E) and (FEE′, FE′E) respectively. On interface ΦEE′, the
action-reaction principle:

FEE′ + FE′E = 0 (24)

holds, along with a constitutive relation of the form:

FEE′|t = bEE′

([

ẆEE′ − ẆE′E

]

|τ
, τ 6 t

)

(25)

where bEE′ is an operator characterizing the behavior of the interface. For
instance, one can have:

• for perfect connection:

WEE′ = WE′E (26)

which can be interpreted as bEE′ being a linear stiffness operator with an
infinite norm;

• for unilateral contact without friction:






ΠEE′ FEE′ = 0

nEE′ · (WEE′ −WE′E − g
EE′

) > 0, nEE′ · FEE′ 6 0
(

nEE′ · (WEE′ −WE′E − g
EE′

)
)

(nEE′ · FEE′) = 0

(27)
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where nEE′ designates the vector normal to interface ΦEE′ and going from
subdomain ΩE to ΩE′ , ΠEE′ the corresponding orthogonal projector, and
g

EE′
the initial gap between the substructures.

In the case of problems with multiple contacts, it is obvious that the philosophy
of the method consists in fitting these contact interfaces between substructures
to the material interfaces between the different components of the assembly
[19,21–23]. Each individual component can also be partitioned artificially using
a perfect connection interface.

Finally, we also redefine the space of the fields which verify the dissipation
and interface relations Γ:

s = (sE)ΩE⊂Ω ∈ Γ ⇐⇒ ∀ΩE ⊂ Ω,






ėpE = B(fE)

∀ΩE′ ∈ ΩE , FEE′ + FE′E = 0 and

FEE′|t = bEE′

([

ẆEE′ − ẆE′E

]

|τ
, τ 6 t

)
(28)

The decomposed problem becomes:

Find sref = (sE)ΩE⊂Ω ∈ Ad ∩ Γ (29)

Note that Ad is a set of solutions of global and linear equations defined in-
dependently over each subdomain, whereas Γ is a set of solutions of (possibly
nonlinear) equations which are local in space. This choice in partitioning the
equations leads to fundamental parallel properties which are the basis of the
computational strategy presented in the following sections. One should note
that improvements to the formulation by introducing ad hoc state variables
should enable one to make Γ a space of solutions of equations which are local
in time as well as in space.

First analysis of the decomposed problem

Partitioning a structure into non-overlapping subdomains is a rather classical
idea in mechanics. The originality of the method presented here resides in the
choice of the fields which characterize the interface between two subdomains.

Many popular methods characterize this interface by only one set of primal or
dual variables (one displacement field or one interface force field) [24–26]. Such
methods are suitable mainly for perfect interfaces because contact conditions
are difficult to describe with so little information.
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Other methods use one primal field and two dual fields [27,28], which enables
one to deal with much more complex types of interface behavior. However,
imperfect connections require the behavior to be artificially split between each
subdomain-interface pair. A first option consists in favoring one subdomain
(the “master” subdomain, perfectly connected to the interface) at the expense
of the other (the “slave” subdomain, which carries the interface’s behavior).
A second option is to split the behavior evenly and turn the interface into
an artificial reference (which often ends up representing average boundary
displacements).

In the method presented here, the interface is described by two pairs of primal-
dual fields, each characterizing one subdomain. The interface law is established
between the primal and dual interface fields from each subdomain, which
respects the symmetry of the law bEE′(�) = −bE′E(−�) and requires no
artificial splitting.

Another interpretation is to consider the interface variables, or at least some
of them, as Lagrange multipliers. With this approach, the variables introduced
here can be viewed as distributed Lagrange multipliers of both the displace-
ment and force types. One can observe that at each interface point one has
three displacement-force pairs: one for each substructure at the interface and
one for the interface itself.

One can also note that our description provides a natural framework to deal
with different discretizations in each subdomain (non-matching grids), since
the interfaces and subdomains can all be meshed independently.

4 Single-scale structure decomposition method

Let us apply the LATIN method to the above formulation of the problem to be
solved [19]. This method is a general, mechanics-based computational strategy
for the resolution of time-dependent nonlinear problems, which operates over
the entire time-space domain. It has been successfully applied to a variety of
problems: quasi-static and dynamic analysis, post-buckling analysis, analysis
of highly heterogeneous systems [23,22,17,15,18] and multiphysics problems
[29].

The LATIN method, illustrated in Figure 3, is based on the idea of dealing with
the difficulties separately by first splitting the equations into two independent
subspaces: the space Γ of the local nonlinear equations (defined on the point
level) and the space Ad of the global linear equations (defined on the structure
level). The solution of the problem is obtained through an iterative scheme.
One iteration consists of two stages, called the “local stage” and the “linear

11



+

−

^
sn+1/2

sn+1

sn

sref

Γ

Ad

E

E

Fig. 3. One iteration of the LATIN method

stage”. As shown in Figure 4, these stages consist in building fields of Γ and
Ad alternatively, an iterative process which, under certain conditions which
will described later, converges towards the solution sref of the problem. These
stages will be detailed in the following subsections.

· · · −→ sn ∈ Ad

local stage−−−−−−→ ŝn+1/2 ∈ Γ
linear stage−−−−−−→

︸ ︷︷ ︸

iteration n + 1

sn+1 ∈ Ad −→ ŝn+3/2 −→ · · ·

Fig. 4. The local and linear stages of the LATIN method

4.1 The local stage at iteration n+ 1

This stage consists in building ŝn+1/2 ∈ Γ knowing sn ∈ Ad and using an
“ascent” search direction E+, followed by ŝn+1/2 − sn = ∆s (see Figure 3).
This search direction is defined by:

∆s = {∆sE}ΩE⊂Ω ∈ E+ ⇐⇒ ∀ΩE ⊂ Ω,







∆ėpE + H+
E∆fE = 0

∆ẆE − h+
E∆FE = 0

(30)

where H+
E and h+

E are symmetric, positive definite operators which are param-
eters of the method.

One can easily show that seeking ŝn+1/2 common to Γ and E+ leads to the
resolution of a set of problems which are local in the space variable (and, very
often, also in the time variable), and, therefore, lend themselves to the highest
degree of parallelism. This property justifies the term “local” to describe this
stage.

In a later section, we will see that it is interesting to rewrite (30) using a weak
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formulation:

∆s = {∆sE}ΩE⊂Ω ∈ E+ ⇐⇒
∀(f⋆, F ⋆) ∈ F × F ,

∑

ΩE⊂Ω

∫

[0,T ]×ΩE

(∆ėpE + H+
E∆fE) ◦ f⋆

EdΩdt

+
∫

[0,T ]×∂ΩE

(∆ẆE − h+
E∆FE) · F ⋆

EdSdt = 0 (31)

This formulation is also equivalent to the following minimization problem:

∆s = {∆sE}ΩE⊂Ω ∈ E+ ⇐⇒ ∆s = Arg min
∆s∈S

J+(∆s) (32)

where:

J+(∆s) =
∑

ΩE⊂Ω

∥
∥
∥∆ėE + H+

E∆fE

∥
∥
∥

2

H
+
E

+
∥
∥
∥∆ẆE − h+

E∆FE

∥
∥
∥

2

h
+
E

(33)

with:

‖�‖2
H

+
E

=
∫

[0,T ]×ΩE

(1 − t

T
)� ◦ H+

E
−1

�dΩdt (34)

and:

‖�‖2
h

+
E

=
∫

[0,T ]×∂ΩE

(1 − t

T
)� · h+

E
−1

�dSdt (35)

4.2 The linear stage at iteration n+ 1

This stage consists in building sn+1 ∈ Ad knowing ŝn+1/2 ∈ Γ and using a
“descent” search direction E−, followed by sn+1 − ŝn+1/2 = ∆s (see Figure 3).
This search direction is defined by:

∆s = {∆sE}ΩE⊂Ω ∈ E− ⇐⇒ ∀ΩE ⊂ Ω,







∆ėpE − H−
E∆fE = 0

∆ẆE + h−
E∆FE = 0

(36)

where H−
E and h−

E are symmetric, positive definite operators which are param-
eters of the method.

In a later section, we will see that it is interesting to rewrite (36) using a weak

13



formulation:

∆s = {∆sE}ΩE⊂Ω ∈ E− ⇐⇒
∀(f⋆, F ⋆) ∈ F × F ,

∑

ΩE⊂Ω

∫

[0,T ]×ΩE

(∆ėpE − H−
E∆fE) ◦ f⋆

EdΩdt

+
∫

[0,T ]×∂ΩE

(∆ẆE + h−
E∆FE) · F ⋆

EdSdt = 0 (37)

which is also equivalent to the resolution of the following minimization prob-
lem:

∆s = {∆sE}ΩE⊂Ω ∈ E− ⇐⇒ ∆s = Arg min
∆s∈S

J−(∆s) (38)

where:

J−(∆s) =
∑

ΩE⊂Ω

∥
∥
∥∆ėE − H−

E∆fE

∥
∥
∥

2

H
−

E

+
∥
∥
∥∆ẆE + h−

E∆FE

∥
∥
∥

2

h
−

E

(39)

with:

‖�‖2
H

−

E

=
∫

[0,T ]×ΩE

(1 − t

T
)� ◦ H−

E
−1

�dΩdt (40)

and:

‖�‖2
h
−

E

=
∫

[0,T ]×∂ΩE

(1 − t

T
)� · h−

E
−1

�dSdt (41)

4.3 Convergence properties and criterion

Of course, the choice of the parameters (H+
E,h

+
E) and (H−

E,h
−
E) influences only

the convergence of the algorithm, but does not affect the solution. In practice,
these parameters are chosen in the form:

∀ΩE ⊂ Ω, H+
E = H−

E = H and h+
E = h−

E = hI (42)

where H is a symmetric, positive definite operator, h is a positive scalar and I

designates the identity operator; H and h can vary throughout the iterations.
Then, the search direction E+, defined by (30), can be rewritten as:






∆ε̇pE

−∆ẊE




 + H






∆σE

∆YE




 = 0

∆ẆE − h∆FE = 0

(43)
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and the search direction E−, defined by (36), as:






∆ε̇pE

−∆ẊE




 − H






∆σE

∆YE




 = 0

∆ẆE + h∆FE = 0

(44)

In that case, following the proof given in [19] which uses anti-monotony and
monotony properties (15), one can prove that the quantity 1

2
(sn+1 + sn) con-

verges towards sref , the solution of Problem (29).

To ensure the convergence of sn and, more generally, to ensure convergence
for many types of material behavior, a relaxation technique may be needed.
Renaming s̄n+1 the quantity previously denoted sn+1, we redefine sn+1, the
approximation generated by the linear stage n+ 1, as:

sn+1 = µs̄n+1 + (1 − µ)sn (45)

where µ is a relaxation parameter usually equal to 0.8.

In the case of linear behavior, one can choose, for example, H = B and h = L
ET

,
where E is the Young’s modulus of the material, L a characteristic length of
the interfaces and T the duration of the phenomenon being studied. Other
possible choices, especially in the nonlinear case, are discussed in [19].

Since the reference solution sref is the intersection of Γ and Ad, the distance
between ŝn+1/2 and sn is a good error indicator to verify the convergence of
the algorithm [30]. The simplest measure of this distance is:

η =
‖ŝn+1/2 − sn‖
1
2
‖ŝn+1/2 + sn‖

(46)

with:

‖s‖2 =
1

2

∑

ΩE⊂Ω

∫

[0,T ]×ΩE

(ėpE ◦ H−1ėpE + fE ◦ HfE)dΩdt (47)

4.4 Relation with Newton-Schur domain decomposition methods

In order to draw a parallel between other resolution methods and the LATIN
strategy, one must first discuss briefly the way the latter handles time depen-
dency and nonlinearities.

Usually, time dependency is handled using a finite difference algorithm and,
at each time step, nonlinearities are treated using a Newton-like algorithm,

15



leading to the resolution of a sequence of linear global systems. In simple
terms, unless one introduces the radial approximation technique (see Section
5.2), the LATIN method can be viewed as a swapping process between these
two loops: the iterative scheme enables one to deal with the nonlinearities,
and each stage requires the resolution of an evolution problem, so that each
approximation to the solution is defined over the entire time-space domain.

With regard to nonlinearities, in the non-decomposed framework, the popular
Newton-Raphson algorithm is a particular ascent/descent algorithm with a
minimalist local step (H+ = 0) and a complex linear step using the tangent
matrix as the descent operator (H− being calculated from the linearized B

operator). In the decomposed framework, the analysis is slightly different: the
local step remains trivial (H+

E = 0, h+
E = 0), but the linear step is very

often modified because the equilibrium of the interface is transferred to the
set of linear equations Ad (H−

E and h−
E being calculated from linearized B and

bEE′ operators respectively). In addition, this leads to important differences
concerning the parallelization of the methods: in the LATIN context, the linear
step can be handled in full parallel mode (i.e. without communication among
subdomains), which is not the case of most other methods.

From the point of view of interface ΦEE′, using (28) and (30), the local stage of
the LATIN method at iteration n+ 1 consists in finding (ẆE, ẆE′, FE, FE′)
such that (dropping the iteration subscript n + 1/2):







FEE′ + FE′E = 0

FEE′ = bEE′

(

ẆEE′ − ẆE′E

)

ẆE − h+
EFE =

(

ẆE − h+
EFE

)

n

ẆE′ − h+
E′FE′ =

(

ẆE′ − h+
E′FE′

)

n

(48)

Assuming that the interface ascent directions h+
�

are uncoupled among neigh-
bors (which, in other words, means that Operator h+

�
is block-diagonal), this

system reduces to the following nonlinear equation:

FEE′ = bEE′

(

(h+
EE′ + h+

E′E)FEE′ + θn

)

(49)

where the term θn = ((ẆEE′ −ẆE′E)− (h+
EE′ +h+

E′E)FEE′)n is known at this
stage. Such an equation requires communication in order to calculate θn and
apply the ascent directions of neighboring interfaces. However, if the amount
of data necessary to store the operators h+

EE′ and h+
E′E is small (which is

obviously the case if they are defined by scalars), exchanging these operators
prior to the resolution enables complete parallelization.

The linear stage at iteration n+1 takes into account the interactions between
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one substructure and its interface. Indeed, at this stage, the interface data
must be the traces of internal data (or, in other words, E-admissibility implies
the verification of the boundary conditions). Introducing the descent direction
(36) into the equilibrium equation (21), the primal field UE is, at each time
step, the solution of a variational system of the classical form (dropping the
iteration subscript n+ 1):

∀(U ⋆
E ,W

⋆
E) ∈ U⋆

E, aH
−

E (U̇E , U̇
⋆

E) = ℓE(U̇
⋆

E) + 〈FE , Ẇ
⋆

E〉 (50)

where 〈�,�〉 stands for the L2(∂ΩE) inner product. Introducing the fact that
WE must be equal to the trace of UE , (50) can be condensed onto the interface
of subdomain ΩE :

∀Ẇ ⋆

E ∈ W
⋆
E , 〈SH−

E ẆE , Ẇ
⋆

E〉 = 〈f̃
E

+ FE, Ẇ
⋆

E〉 (51)

where SH−

E is the Steklov-Poincaré operator and f̃
E

the condensed right-hand
side [31]. Then, in a weak sense, the linear stage reduced to the interface
becomes:

Find
(

ẆE, FE

)

so that







SH
−

E ẆE = f̃
E

+ FE

ẆE + h−
EFE =

(

ẆE + h−
EFE

)

n+1/2

(52)

which leads to:

(

SH
−

E + h−
E
−1

)

ẆE = f̃
E

+
(

h−
E
−1
ẆE + FE

)

n+1/2
(53)

Hence, the interface descent search direction can be interpreted as an increase
of the interface stiffness across subdomains. It can also be interpreted as a
regularization of the interface’s displacement problem (51): a proper choice of
h−

E ensures that this problem is well-posed.

Then, the linear stage (53) consists in solving a series of independent problems
defined on the level of each subdomain; the solution of this stage does not verify
any interface conditions. An interesting idea for the definition of the interface
descent direction h−

E is to inject information from the rest of the structure.
More precisely, an “ideal” descent direction would be h−

E = SH−

Ē , where SH−

Ē

is the Steklov-Poincaré operator of the rest of the structure at the boundary
of subdomain ΩE . Indeed, with slight modifications of the right-hand side,
the solution of the linear stage would verify the interface conditions, since
it would have been calculated from a description of the complete structure
condensed onto the interface of substructure ΩE . Of course, this idea is not
computationally realistic, but it provides a very promising framework for the
definition of “optimum” interface descent directions.
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Based on this analysis, it is possible to derive rough connections with other
domain decomposition methods [32]. For the sake of simplicity, we assume that
the structure is decomposed into only two subdomains (which means that no
injection operator ∂ΩE → ∪Ω

E′⊂Ω∂ΩE′ is necessary), and that the interface is
perfect. In this situation, the choice of the subspaces leads one to seek, at each
Newton linear stage, fields which are solutions of both the internal equations
and the interface conditions.

In [33], only one interface displacement fieldW = WEE′ = WE′E is introduced.
(In contact formulations, W = UE |∂ΩE

is no longer true and W is defined as

the displacement of the “contact frame” [34].) Assuming that h−
E = ∞ and

that SH−

E is invertible, the interface forces and displacements are the solutions
of:

SH
−

E

−1
FE = W − SH

−

E

−1
f̃

E

SH
−

E′

−1
FE′ = W − SH

−

E′

−1
f̃

E′

FE + FE′ = 0

(54)

Operator SH−

E may not be invertible when subdomain ΩE violates Dirichlet’s
conditions. Then, one introduces a coarse model to eliminate the rigid body
motions, which leads to multiscale methods which will be brought up in the
next section. If the last equation (i.e. the action-reaction principle) is veri-
fied, the introduction of the interface force field F = FE = −FE and the
elimination of the displacement W from the first two equations yield:

(

SH
−

E

−1
+ SH

−

E′

−1
)

F = SH
−

E′

−1
f̃

E′
− SH

−

E

−1
f̃

E
(55)

which is the basis of the classical dual formulation, leading to the FETI method
[24]. Under the same assumptions, but eliminating the forces, the interface
displacement is the solution of:

(

SH
−

E + SH
−

E′

)

W = f̃
E′

+ f̃
E

(56)

which is the basis of the classical primal formulation, leading to the Neumann-
Neumann method [25]. Assuming h−

E 6= ∞, introducing the new unknown

F̃E = FE − h−
E
−1
W and rewriting the interface conditions as (FE + FE′) +

h−
E
−1

(WE −WE′), the unknown F̃E is the solution of:

F̃E +
(

I−
(

h−
E
−1

+ h−
E′

−1
) (

SH−

E′ + h−
E
−1

)−1
)

F̃E′ =
(

h−
E
−1

+ h−
E′

−1
) (

SH−

E′ + h−
E′

−1
)−1

f̃
E

(57)

which is the basis of the two-field FETI approach [35].
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5 Multiscale extension in time and in space

5.1 Description of quantities on the macroscale and on the microscale in the

time-space domain [0, T ] × Ω

The following idea was initially introduced for multiscale problems in space,
then extended to multiscale problems in both time and space in [16]. Only
the basic aspects will be recalled here. The approach consists in introducing a
two-scale description of the unknowns at the interfaces. These two scales are
denoted “macro” and “micro” and concern both space and time.

For substructure ΩE , the unknowns (ẆE, FE) ∈ WE × FE are split into:

ẆE = Ẇ
M

E + Ẇ
m

E and FE = FM
E +Wm

E (58)

where Superscripts �M and �m designate the macro parts and the micro
complements of the fields respectively. The spaces corresponding to the macro
parts are W

M
E and F

M
E , and the spaces corresponding to the to the micro

parts are W
m
E and F

m
E . The extensions of these spaces to the entire set of

interfaces are W
M , F

M , W
m and F

m.

Spaces W
M
E and F

M
E can be chosen arbitrarily, provided that they are com-

patible with (17) and that W
M
E includes the trace of the rigid body modes on

∂ΩE (which implies that F
M contains the self-balanced forces). Once these

spaces have been chosen, the macro part Ẇ
M

E of Field ẆE ∈ WE is defined
by:

∀F ⋆ ∈ F
M
E ,

∫

[0,T ]×∂ΩE

(Ẇ
M

E − ẆE) · F ⋆dSdt = 0 (59)

and the macro part FM
E of Field FE ∈ FE by:

∀W ⋆ ∈ W
M
E ,

∫

[0,T ]×∂ΩE

(FM
E − FE) · Ẇ ⋆

dSdt = 0 (60)

Consequently, the micro parts are Ẇ
m

E = ẆE − Ẇ
M

E and Fm
E = FE − FM

E ,
and the scales are uncoupled as follows:

∫

[0,T ]×∂ΩE

ẆE · FEdSdt =
∫

[0,T ]×∂ΩE

(Ẇ
M

E · FM
E + Ẇ

m

E · Fm
E )dSdt (61)

For space, the macroscale is defined by the characteristic length of the inter-
faces, which is a priori much larger than the scale of the spatial discretization.
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For example, the macro parts are defined as affine functions on each interface
ΦEE′.

For time, the macroscale is associated with a coarse partition T M
h = {0 =

tM0 , . . . , t
M
nM = T} of the time interval [0, T ] being studied. Its characteristic

time (i.e. the maximum length of a time step) is chosen much larger than the
characteristic time of the initial time discretization Th = {0 = t0, . . . , tn = T}.
For example, the macro parts are defined as polynomials of degree p in each
macrointerval IM

k =]tMk , t
M
k+1[. Let us note that the choice of functions which

are possibly discontinuous implies that one should consider all the equations
in the time-discontinuous Galerkin scheme sense [36].

The choices adopted for the definition of the macro quantities are physically
sound: these quantities are mean values in time and in space. Fields WM

E and
FM

E are written at each ΦEE′ × IM
k in the form

∑

i,j αije
M
i (M)fM

j (t), for which
a choice of basis functions eM

i and fM
j is represented in Figures 5 and 6 in the

case of a two-dimensional interface.

e
1
M e

4
Me

2
M e

3
M

Fig. 5. Space level: affine basis functions {eM
i }i∈{1,...,4} for an interface ΦEE′

f
1
M f

2
M f

3
M

Fig. 6. Time level: quadratic basis functions (p = 2) {fM
j }j∈{1,...,3} in Interval IM

k

An important feature of the multiscale computational strategy presented here
is that the transmission conditions at the interfaces are partially verified a

priori. The set of the macro forces FM = (FM
E )ΩE⊂Ω is required to verify the

transmission conditions systematically, including the boundary conditions:

FM
EE′ + FM

E′E = 0 on ΦEE′

FM
E2 + FM

d = 0 on ΦE2

(62)

The corresponding subspace of F
M is designated by F

M
ad

. We also introduce
W

M
ad

, the subspace of W
M whose elements are continuous at the interfaces

and equal to the prescribed velocity U̇d on ∂1Ω. The subspaces of W and F

20



whose elements have their macro parts in W
M
ad

and F
M
ad

are designated by
Wad and Fad. For a set of macroforces F ∈ Fad, the following relation holds:

∀ẆM⋆ ∈ W
M⋆
ad
,

∑

ΩE⊂Ω

∫

[0,T ]×∂ΩE

Ẇ
M⋆

E · FEdSdt−
∫

[0,T ]×ΦE2

Ẇ
M⋆

E · F ddSdt = 0 (63)

In order to guarantee the verification of the transmission conditions (62), the
space Ad of the admissible fields is redefined as follows:

s = (sE)ΩE⊂Ω ∈ Ad ⇐⇒







∀ΩE ⊂ Ω, sE ∈ AdE (a)

(FE)ΩE⊂Ω ∈ Fad (b)
(64)

while the space of the fields verifying the dissipation and interface relations Γ

remains unchanged:

s = (sE)ΩE⊂Ω ∈ Γ ⇐⇒ ∀ΩE ⊂ Ω,






ėpE = B(fE)

∀ΩE′ ∈ ΩE , FEE′ + FE′E = 0 and

FEE′|t = bEE′

([

ẆEE′ − ẆE′E

]

|τ
, τ 6 t

)
(65)

The problem is still:

Find sref = (sE)ΩE⊂Ω ∈ Ad ∩ Γ (66)

and if the same strategy as that described in Section 4 is used, the local stage
remains unchanged, but the adjunction of this transmission condition into
the definition of Ad leads to a reformulation of the linear stage. Indeed, for
such a condition to be taken into account, the descent search direction can no
longer be written as (36), but must be expressed in the weak form (37), with
a test function F ⋆ which no longer belongs to F , but to Fad instead. The
substructure part of (37) remains unchanged:

∀f⋆ ∈ F,
∑

ΩE⊂Ω

∫

[0,T ]×ΩE

(∆ėpE −H−
E∆fE) ◦ f⋆

EdΩdt = 0 (67)

while the interface part becomes:

∀F ⋆ ∈ Fad,
∑

ΩE⊂Ω

∫

[0,T ]×∂ΩE

(∆ẆE + h−
E∆FE) · F ⋆

EdSdt = 0 (68)
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This equation is reformulated with the introduction of a Lagrange multiplier
˙̃WM ( ˙̃WM = ( ˙̃WM

E )ΩE⊂Ω ∈ W
M⋆
ad

):

∀F ⋆ ∈ F ,
∑

ΩE⊂Ω

∫

[0,T ]×∂ΩE

(∆ẆE + h−
E∆FE) · F ⋆

EdSdt

−
∫

[0,T ]×∂ΩE

˙̃WM
E · F ⋆

EdSdt = 0 (69)

We use Steklov’s notation to reformulate the internal admissibility (64a), the
internal search direction (67) and the interface search direction (69). This leads
to a problem similar to (52), but in which the admissibility of the macroforces
(64b) is enforced. This problem (dropping the iteration subscript n + 1 and
taking the equations in a weak sense) becomes:

Find (Ẇ , F , ˙̃WM) ∈ W × Fad × W
M⋆
ad

such that ∀ΩE ⊂ Ω,






SH−

E ẆE = f̃
E

+ FE

ẆE + h−
EFE − ˙̃WM

E =
(

ẆE + h−
EFE

)

n+1/2

(70)

The resolution of this system is carried out in a four-step procedure whose
complete details can be found in [16]. Only the key points are recalled here.

• Preliminary homogenization: the purpose of this operation, which is
done once and for all at the beginning, is to define homogenized operators
with respect to the macro space for each substructure explicitly. The principle

is that macrovelocities ˙̃WM
E are prescribed on each substructure, the remainder

of the loading being set to zero; then, the resulting interface displacements and
forces are identified.







(

SH
−

E + h−
E
−1

)

ẆE = h−
E
−1 ˙̃WM

E

ẆE = Ẇ
M

E + Ẇ
m

E

Ẇ
M

E + h−
EF

M
E − ˙̃WM

E = 0

=⇒







Ẇ
M

E = LW
E

˙̃WM
E

FM
E = LF

E
˙̃WM

E

LF
E = h−

E
−1

(LW
E + I)

(71)

where h−
E is assumed to be chosen such that (h−

EFE)M = h−
EF

M
E . Since the

dimension of the macro space is relatively small, the construction of linear
homogenized operators LW

E and LF
E is relatively inexpensive.

Now, assuming that the remainder of the loading is nonzero, we have for
linearity reasons:

Ẇ
M

E = LW
E

˙̃WM
E + ˆ̇WM

E,d

FM
E = LF

E
˙̃WM

E + F̂
M

E,d

(72)
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where ˆ̇WE,d and F̂E,d are due to the additional loading and to the previous
approximation to the solution.

Then, the following operations are carried out at each linear stage. The basic

idea is to split the interface velocity into two contributions: ẆE = Ẇ
(1)

E +

Ẇ
(2)

E , where Ẇ
(2)

E depends only on ˙̃WM
E whereas Ẇ

(1)

E depends on the given
conditions and the previous approximation ŝ. Injecting this decomposition into
(70), the linear stage becomes:

(

SH
−

E + h−
E
−1

) (

Ẇ
(1)

E + Ẇ
(2)

E

)

= f̃
E

+
(

h−
E
−1
ẆE + FE

)

n+1/2
+ h−

E
−1 ˙̃WM

E

(73)

• First set of microproblems (defined on the substructure level and inde-

pendent of one another): Ẇ
(1)

E is the solution of:

(

SH−

E + h−
E
−1

)

Ẇ
(1)

E = f̃
E

+
(

h−
E
−1
ẆE + FE

)

n+1/2
(74)

Using the interface descent direction (70), we deduce:

FE =
(

(FE − h−
E
−1
ẆE)n+1/2 − h−

E
−1
Ẇ

(1)

E

)

︸ ︷︷ ︸

F
(1)
E

+h−
E
−1

(

−Ẇ (2)

E − ˙̃WM
E

)

︸ ︷︷ ︸

F
(2)
E

(75)

Since F
(2)
E depends only on ˙̃WM

E , taking the macro part of the last equation

and identifying it with (72) leads to F
(2)
E

M
= LF

E
˙̃WM

E and F
(1)
E

M
= F̂

M

E,d.

These first microproblems enable one to calculate F̂
M

E,d, which is injected into
the following macroproblem.

• Macro-problem (defined over the entire time-space domain [0, T ] × Ω):

this consists in building the Lagrange multiplier ˙̃WM belonging to W
M⋆
ad

such
that (FE)ΩE⊂Ω belongs to Fad. Introducing (72) inside the macroequilibrium
equation (63) and using the micro/macro uncoupling property (61), one has:

∀ẆM⋆ ∈ W
M⋆
ad
,

∑

ΩE⊂Ω

∫

[0,T ]×∂ΩE

Ẇ
M⋆

E ·
(

LF
E

˙̃WM
E + F̂

M

E,d

)

dSdt−
∫

[0,T ]×ΦE2

Ẇ
M⋆

E · F ddSdt = 0

(76)

which corresponds to the resolution of a homogenized problem over the whole
structure. If the number of time-space macrodomains [0, T ] × ΩE is large, an
approximation technique based on the introduction of a third scale can be
used [16].
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• Second set of microproblems (independent of the substructures): once
˙̃WE is known, Ẇ

(2)

E can be calculated as the solution of:

(

SH−

E + h−
E
−1

)

Ẇ
(2)

E = h−
E
−1 ˙̃WM

E (77)

Because the macromesh is defined in time and in space, the microproblems
are independent not only from one substructure to another, but also from one
macro time interval to another. One should note that the macro quantities are
defined at the interfaces only. By treating the medium as a Cosserat material,
one can define macrostresses, macrostrains... inside a substructure ΩE . Each
cell is assumed to be homogeneous on the macroscale. Thus, macro quan-
tities and conjugate quantities could be derived from the generalized forces
and displacements at the interfaces, which would lead to a nonconventional
Cosserat-like material.

5.2 Radial loading approximation

During the linear stage, we need to solve for each substructure a set of mi-
croproblems which represent the equations defined in the time-space domains
[0, T ]×ΩE . The cost of solving these problems with standard methods can be
prohibitive, especially if the search direction H associated with the linearized
behavior is time-dependent. In this section, we introduce an approximation
technique for the resolution of these problems. This technique, which is com-
monly used in the LATIN method [19], consists in defining an approximation
based on generalized radial functions. It has been shown in previous works
[19,37,29] that under small-displacement assumptions this approach reduces
the computational cost drastically. All the details can be found in [16].

The basic idea is to approximate a function f defined over the time-space
domain by a finite sum of products of time functions by space functions:

∀(t,M) ∈ [0, T ] × ΩE , f(t,M) =
m∑

i=1

λi(t)Λi(M) (78)

This is not a spectral decomposition because neither the λi nor the Λi are
known a priori. The best approximation with respect to the L2-norm is the
result of an eigenvalue problem whose eigenfunctions are the λi.

We choose to rewrite the linear stage at iteration n + 1 as an incremental
correction δs to the previous approximation sn, so that the new approximation
to the solution is sn+1 = sn + δs. If the initial solution s0 (for example, the
solution of a linear elastic calculation) belongs to Ad, then all the corrections
are sought in A⋆

d
, the space corresponding to Ad with homogeneous conditions.
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In this case, during the linear stage, the problem consists in finding δs ∈ A⋆
d

in
the descent search direction as a combination of radial loading functions such
as (78). These three conditions are too restrictive, and one must approximate
the descent search direction by rewriting it in the form of the minimization
problem (38), i.e.:

∆s = Arg min
∆s∈S

J−(∆s) (79)

with, in this case:

∆s = sn+1 − ŝn+1/2 = δs− (ŝn+1/2 − sn) (80)

where (ŝn+1/2 − sn) is, at this stage, a known quantity. Finally, the problem is
to find δs, constituted of radial loading functions, such that:

δs = Arg min
δs∈A⋆

d

J−(δs− (ŝn+1/2 − sn)) (81)

The procedure consists in minimizing J− alternatively with respect to the time
functions and to the space functions constituting δs. In practice, starting from
the time functions derived from the error indicator (46), two subiterations are
performed.

After iteration n, one has a reduced basis defined in terms of the space func-
tions already built during the previous iterations. Thus, a preliminary step
of iteration n + 1 consists in using this existing reduced basis and determin-
ing the corresponding best time functions which minimize the J− functional.
Moreover, in the case of composite structures, this basis of space functions is
shared by a large number of identical substructures. Therefore, the prelimi-
nary step of a microproblem on a particular substructure can reuse the space
functions defined for other substructures during the previous iterations, or
even the current iteration.

Let us note that after some iterations the reduced basis may be sufficient. In
order to avoid the generation of unnecessary space functions (the costly part of
the algorithm), a criterion based on the efficiency of the preliminary step can
be used. If the preliminary step reduces the error from the previous iteration
significantly, one can expect that adding a new space function is unnecessary.

5.3 Comparison with other multiscale strategies

The introduction of a macroscale into the interface problem is a classical idea
in domain decomposition methods. Because of the strong connection with
multigrid methods, the macroscale is often identified with a “coarse” mesh.
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In classical primal and dual domain decomposition methods [38,24], the macrospace
is introduced in order to deal with the non-invertibility of the Steklov-Poincaré
operator of floating subdomains. In the resolution of substructure problems
with prescribed Neumann conditions (which corresponds to the definition of a
dual operator and a primal preconditioner), the interface forces and displace-
ments are split into a rigid contribution and a deforming contribution. Then,
an augmented Krylov algorithm is used to solve linear systems: the unbalanced
part of the loading is eliminated in the initialization step, and the remaining
part is sought iteratively through a projected algorithm which ensures that
the micro part remains orthogonal to the rigid modes. (For the dual approach,
the macrodisplacements are post-processed after convergence.) A very simi-
lar idea is used in [33], where the separation between the rigid and deformed
motions is performed a priori and handled through specific pseudo-inverses.

For second-order problems (most often in three-dimensional elasticity), these
rigid-body-mode-based coarse problems are sufficient to ensure theoretical
scalability. Many numerical verifications have confirmed that property. For
fourth-order problems (plates and shells), displacement continuity at the “cor-
ners” of the substructures must be enforced in the macrospace in order to
maintain scalability [39,40]. Since the coarse problem at the corner is suffi-
cient to ensure the invertibility of the Steklov operators, strategies such as
the FETI-DP [26] and the BDDC [41,42] enable one to remove the rigid-body
modes from the macrospace. These two strategies can also be used in three-
dimensional problems by replacing the continuity at the corners by an average
continuity at the interfaces [43].

For methods involving a regularized Steklov operator [35], which do not require
a priori a coarse problem, the introduction of a second scale, most often
defined by fictitious rigid body motions, improves convergence drastically.

The construction of the macroproblem is always a rather expensive operation,
as it requires inter-subdomain communication and, when a direct solver is be-
ing used, the factorization of the same matrix for all subdomains. Therefore,
the macro basis has to be chosen carefully in order to provide as much in-
formation as possible in the smallest possible number of vectors. Rigid body
modes are defined for each subdomain, while in the LATIN method the macro
functions are defined at each interface. Since interfaces are much more numer-
ous than subdomains, the macrospace is larger in the LATIN method. More-
over, the LATIN method uses not only “interface rigid-body motions”, but
also “extension” modes, thus leading to an even larger macrospace. However,
the LATIN macrospace provides meaningful information on the homogenized
behavior of the subdomains. According to Saint-Venant’s principle, this infor-
mation is sufficient to express the influence of sufficiently distant subdomains.
Scalability results for the multiscale LATIN method in space can be found in
[18].
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In a nonlinear context with Newton linearization and primal or dual domain
decomposition methods, a macroproblem based on the approximation of the
eigenvectors of a preconditioned Steklov operator was proposed in [44]. The
interest of such a macrospace is that it is defined over the combined interface
of all pairs of subdomains. It is not limited to localized information (from one
interface or one substructure) but applies to the complete structure. From
the point of view of the augmented Krylov solver, this macrospace provides a
satisfactory approximation of an optimum macroproblem.

The use of recursive domain decomposition methods (or, in other words, the
introduction of a “super” macroscale in order to solve the macroproblem)
is becoming a necessary strategy because the number of subdomains (and,
therefore, the size of the coarse problems) tends to increase very quickly: the
more recent parallel computational architectures are made out of thousands
to millions of processors. Besides, the macroproblems have the same structure
as the original problems (i.e. substructures can be considered as “super” finite
elements.)

In the LATIN method, because of the definition of the coarse problem in terms
of the interfaces, the macroproblem is an assembly of quantities calculated
strictly independently of the subdomains, which gives the macroproblem a
structure very similar to that of the condensed problem in the primal domain
decomposition method. Therefore, the resolution of the LATIN macroproblem
can be carried out efficiently using such a method. In other words, the LATIN
macroproblem is a primal domain decomposition problem with a homogenized
operator in place of the Steklov operator: if the macrospace contained the
whole search space, the LATIN macroproblem would be exactly the same as
in the primal domain decomposition method.

Concerning the parallelism for time, all methods are somewhat limited by the
causality principle. In the LATIN method, there are two “local in time” as-
pects: in the local stage, with an appropriate formulation, the equations are
defined strictly independently at each time step, i.e. there is no time deriva-
tion; in the linear stage, the microproblems in each time macrointerval are
defined independently of one another. Therefore, only the macroproblem and
the microproblems inside each macrointerval require that their operations be
performed in chronological order. In the Parareal [45] or PITA [46] algorithms,
such a parallelism-in-time property is also achieved. In these iterative meth-
ods, a time macromesh and a time micromesh, each equipped with a time
integrator (most often based on an implicit Euler scheme), are defined. Each
macroresolution provides initial values for the microresolutions. The macroin-
tegrator is defined in such a way that it tends to eliminate the discontinuities
between the microsolution at the end of a macrointerval and the macrovalue
(obtained from the previous iteration) which initializes the next macrointer-
val. In the LATIN method, since a discontinuous Galerkin scheme is used in
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place of an Euler scheme, the time functions provided by the macroproblem
are solution averages, i.e. they provide physically meaningful information to
initialize the microproblems.

6 Illustration

The results presented here were published in [20] and concern the two-dimensional
plane strain problem of a composite structure containing cracks (unilateral
contact with Coulomb friction characterized by Parameter f = 0.2). The ge-
ometry of the problem is shown in Figure 7. The in-plane dimensions are
120 mm×120 mm. The structure consists of two types of cells: nA = 288 type-
A cells and nB = 180 type-B cells, made of viscoelastic materials with Young’s
modulus Ei, Poisson’s ratio νi and viscosity ηi. Their constitutive relations are
such that Bi = 1

ηi

K−1
i . The structure is fixed on the bottom and subjected to

forces F 1 and F 2 (Figure 8).

type-A cells

type-B cells
Cracks:

unilateral contact

with friction (f=0.2)

F2

F1

Fig. 7. Description of the problem

Each cell is a substructure of the partitioned problem. The type-A cell is
homogeneous and made of a type-1 material whose characteristics are E1 =
50 Pa, ν1 = 0.3 and η1 = 10 s. It was discretized in space using the finite
element method with 138 TRI3 elements (3-node triangles). The type-B cell
consists of a matrix of type-1 material with inclusions of type-2 material,
whose characteristics are E2 = 250 Pa, ν2 = 0.2 and η2 = 1, 000 s. It was
meshed with 262 TRI3 elements. Each interface was meshed with 8 elements.
The macrospace functions considered are described in Figure 5.

The time interval studied was [0, T ] with T = 10 s, uniformly discretized
into n = 60 time steps. The micro time functions considered were assumed
to be discontinuous and constant over each time step. The macroscale was
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associated with a coarse partition of [0, T ] into nM = 3 intervals ({IM
k }k∈{1,2,3}

as shown in Figure 8). The macro time functions considered are described in
Figure 6.

Since the constitutive relation is linear, the search directions in the substruc-
tures were set to H = B. The characteristic length of the cells is LM = 4 mm.
At the interfaces, we chose the same scalar search direction: h = 1

2
( 1

η1
+ 1

T
)LM

E1
.

Figure 9 shows the evolution of the error indicator η, with and without the
radial approximation technique, against the number of iterations. One can see
that the LATIN method converged rapidly: the error indicator η was less than
1% after 15 iterations. The convergence rate was not affected by the radial
approximation.
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Fig. 9. Error η vs iteration number with and without radial approximation

In terms of computational cost, in the absence of radial approximation, two
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microproblems must be solved per substructure and per iteration. Using an
incremental approach, this led to the resolution of 2× (nA +nB)×n = 56, 160
“space” problems per iteration.

It has been observed in [20] that if the radial approximation technique is used
with a well-chosen criterion in order to avoid the generation of unnecessary
space functions, only about twenty new space functions are required per itera-
tion. Since the reduced basis is shared among substructures and the number of
subiterations performed during the minimization of the J− functional is set to
two, only 20×2 = 40 “space” problems need to be solved per iteration. Thus,
the use of the radial approximation technique results in a drastic reduction of
the computational cost.

7 Conclusion

The multiscale computational strategy with homogenization in space and time
studied in this paper is currently being applied to several small-displacement
multiscale problems under quasi-static conditions. The parallel properties of
the method in both space and time have been highlighted in this presenta-
tion. Additional improvements can be introduced. For composite structures
described on the microscale or the mesoscale, a “super” macroscale could be
introduced, as in [16,20]. In relation to the construction of the reduced basis,
the control tools developed in [30] could be used.
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et Analyse Numérique 19 (1985) 611–643.
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