Landslide susceptibility assessment by bivariate methods at large scales: Application to a complex mountainous environment

Yannick Thiery, Jean-Philippe Malet, Simone Sterlacchini, Anne Puissant, Olivier Maquaire

To cite this version:

HAL Id: hal-00276804
https://hal.archives-ouvertes.fr/hal-00276804

Submitted on 2 May 2008

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Abstract: Statistical assessment of landslide susceptibility has become a major topic of research in the last decade. Most progress has been accomplished on producing susceptibility maps at meso-scales (1:50,000-1:25,000). At 1:10,000 scale, which is the scale of production of most regulatory landslide hazard and risk maps in Europe, few tests on the performance of these methods have been performed. This paper presents a procedure to identify the best variables for landslide susceptibility assessment through a bivariate technique (weights of evidence, WOE) and discusses the best way to minimize conditional independence (CI) between the predictive variables. Indeed, violating CI can severely bias the simulated maps by over- or under-estimating landslide probabilities. The proposed strategy includes four steps: (i) identification of the best response variable (RV) to represent landslide events, (ii) identification of the best combination of
predictive variables (PVs) and neo-predictive variables (nPVs) to increase the performance of the statistical model, (iii) evaluation of the performance of the simulations by appropriate tests, and (iv) evaluation of the statistical model by expert judgment. The study site is the north-facing hillslope of the Barcelonnette Basin (France), affected by several types of landslides and characterized by a complex morphology. Results indicate that bivariate methods are powerful to assess landslide susceptibility at 1:10,000 scale. However, the method is limited from a geomorphological viewpoint when RVs and PVs are complex or poorly informative. It is demonstrated that expert knowledge has still to be introduced in statistical models to produce reliable landslide susceptibility maps.
Landslide susceptibility assessment by bivariate methods at large scales: application to a complex mountainous environment.

Y. Thiery a,*, J.-P. Malet a, S. Sterlacchini b, A. Puissant c, O. Maquaire a

a UMR 6554 CNRS, LETG-Geophen, University of Caen-Basse Normandie, Esplanade de la Paix, BP 5183, F-14032 Caen Cedex, France
b National Research Council, Institute for the Dynamic of Environmental Processes, Piazza della Scienza, 1, I-20126 Milano, Italy
c UMR 2795 CNRS, IDEES-GeoSyscom, University of Caen-Basse Normandie, Esplanade de la Paix, F-14032 Caen Cedex, France

Abstract

Statistical assessment of landslide susceptibility has become a major topic of research in the last decade. Most progress has been accomplished on producing susceptibility maps at meso-scales (1:50,000-1:25,000). At 1:10,000 scale, which is the scale of production of most regulatory landslide hazard and risk maps in Europe, few tests on the performance of these methods have been performed. This paper presents a procedure to identify the best variables for landslide susceptibility assessment through a bivariate technique (weights of evidence, WOE) and discusses the best way to minimize conditional independence (CI) between the predictive variables. Indeed, violating CI can severely bias the simulated maps by over- or under-estimating landslide probabilities. The proposed strategy includes four steps: (i) identification of the best response variable (RV) to represent landslide events, (ii) identification of the best combination of predictive variables (PVs) and neo-predictive variables (nPVs) to increase the performance of the statistical model, (iii) evaluation of the performance of the
The study site is the north-facing hillslope of the Barcelonette Basin (France), affected by several types of landslides and characterized by a complex morphology. Results indicate that bivariate methods are powerful to assess landslide susceptibility at 1:10,000 scale. However, the method is limited from a geomorphological viewpoint when RVs and PVs are complex or poorly informative. It is demonstrated that expert knowledge has still to be introduced in statistical models to produce reliable landslide susceptibility maps.

Keywords: Landslide, Susceptibility assessment, GIS, Statistical modeling, Weights of evidence, Expert knowledge, French Alps

* Corresponding author. Tel.: +33(0)3 90 24 09 28
E-mail address: thiery@equinoxe.u-strasbg.fr

1. **Introduction**

Assessing landslide hazard and risk with a minimum set of data, a reproducible methodology and GIS techniques, is a challenge for earth-scientists, government authorities and resource managers (Glade and Crozier, 2005). Landslide hazard assessment (LHA) estimates the probability of occurrence of landslides in a territory within a reference period (Varnes, 1984; Fell, 1994; van Westen et al., 2006). It is deduced from information on (i) landslide susceptibility expressed as the spatial correlation between predisposing terrain factors (slope, land use, superficial deposits, etc.) and the distribution of observed landslides in a territory (Brabb, 1984; Crozier and Glade, 2005) and, (ii) the temporal dimension of landslides related to the occurrence of triggering events (rainfalls, earthquakes, etc.). In most cases, landslide frequencies are difficult to obtain due to the absence of historical landslide records. Therefore, LHA is most of the time restricted to landslide susceptibility assessment (LSA) which is considered as a ‘relative hazard assessment’, and does not refer to the time dimension of landslides (Sorriso Valvo, 2002). Landslide susceptibility maps can be obtained by two
categories of methods: (i) direct approaches based on expert knowledge of the target area, and (ii) indirect approaches based on statistical algorithms.

The direct approaches are based on expert knowledge about the relation between the occurrences of landslides and their hypothesized predisposing factors. The approach necessitates the definition of expert rules leading to different susceptibility degrees (Soeters and van Westen, 1996). In France, the official methodology to assess landslide susceptibility and hazard is based on direct approaches. The methodology, called ‘Plans de Prévention des Risques’ (MATE/MATL, 1999) has been applied at 1:10,000 scale.

The main concept of the indirect approaches is that the controlling factors of future landslides are the same as those observed in the past (Carrara et al., 1995). Indirect approaches are based on statistical conditional analyses and on the comparisons of landslide inventories and predisposing terrain factors. The methods are applied at the scale of the terrain unit (TU) corresponding to a portion of hillslope possessing a set of predisposing factors, which differs from that of the adjacent units with definable boundaries (Hansen, 1984; Carrara et al., 1995).

Indirect approaches predict landslide distribution (the response variable, RV) through a set of a priori independent terrain factors (the predictive variables, PVs).

Several bivariate (certainty factors and weights of evidence) or multivariate (logistic regression and discriminant analysis) approaches were developed for landslide susceptibility mapping. A synthesis of the available methods, their applicability and drawbacks, can be found in Yin and Yan (1988), Carrara et al. (1995), Chung et al. (1995), Soeters and van Westen (1996), Atkinson and Massari (1998), Aleotti and Chowdury (1999), Guzetti et al. (1999), Clerici et al. (2002), Dai et al. (2002), van Westen (2004) and van Westen et al. (2006). In the scientific community it is commonly admitted that statistical analyses are more appropriate for susceptibility zoning at meso-scales (1:50,000 to 1:25,000) because of their
potential to minimize expert subjectivity (Soeters and van Westen, 1996; van Westen et al., 2006).

Although the bivariate approaches are considered as more robust and flexible (van Westen et al., 2003; Süzen and Doruyan, 2004), they present some limitations:

(i) The tendency to over-simplify the (input) thematic data (e.g. predisposing factors) that condition landslides, by taking only what can be relatively easily mapped or derived from a DTM (van Westen et al., 2003, 2006).

(ii) The large sensitivity to the quality and accuracy of the thematic data, e.g., imprecision and incompleteness of landslide information, and limited spatial accuracy of information on the predisposing factors (Guzzetti et al., 2006). Application of the methods is relatively limited at large scales because most of thematic data are available only at meso-scales (1:50,000 to 1:25,000). Especially for most mountain areas a discrepancy remains between the scale of available data and the scale of landslide occurrence. For instance, geological maps and land-use maps are available only at scales from 1:50,000 to 1:25,000 for most parts of the French Territory; also, only digital terrain models with a planimetric resolution of 50 m and a vertical accuracy of 2 to 3 m are available. These input data are not adapted to the analysis of landslide susceptibility at 1:10,000 scale (Thiery et al., 2003, 2004).

(iii) The singularity of predisposing factors for each landslide type, which forces us to analyse them individually in order to have distinct susceptibility maps (Atkinson and Massari, 1998; Kojima et al., 2000; van Westen et al., 2006).

(iv) The number of landslide events to incorporate in the statistical model in relation to the size of the study area (Bonham-Carter, 1994; Begueria and Lorente, 1999; van den Eeckaut et al., 2006).
The use of statistically independent predictive variables in the application of bivariate methods. When the influence of a combination of predictive variables on the response variable is evident, the weight associated to each thematic factor is calculated independently and combined in a unique equation (Agterberg et al., 1993; Bonham-Carter, 1994). The probabilities computed with this equation may be different from those calculated directly from the input data. Therefore, applying the method requires to assume conditional independence (CI) of the dataset (Bonham-Carter et al., 1989; Agterberg et al., 1993; van Westen, 1993; Agterberg and Cheng, 2002; Thiart et al., 2003).

The absence of expert opinions if the method is applied by GIS experts and not by earth-scientist. In other words, the model should give satisfactory results in term of degree of fit, but should also correspond to the ‘real world’ (van Westen et al., 2003, 2006).

Some procedures were proposed to overcome these limitations and increase the robustness of landslide susceptibility assessments with indirect approaches through: (i) proper validation and reduction of simulation uncertainty (Chung and Fabbri, 2003; Chung, 2006; Guzzetti et al., 2006; van den Eeckaut et al., 2006), (ii) reduction of the costs of data acquisition (Greco et al., 2007), and (iii) introduction of expert knowledge to the statistical models used (van Westen et al., 2003).

Hence, the aim of this work is to ascertain a reproducible procedure to estimate landslide susceptibility with a bivariate approach at 1:10,000 scale in a complex mountainous environment, while limiting the collection of landslide and thematic data. The procedure adopted for this research includes four steps:

(i) Identification of the best way to calculate landslide probabilities based on the characteristics of the landslide inventory.
Identification of the most relevant combination of predisposing terrain factors avoiding conditional dependence.

Evaluation of the degree of model fit by statistical tests and comparisons with the landslide inventory.

Evaluation of the best indirect susceptibility map in comparison with a direct susceptibility map.

The procedure was applied to the north-facing hillslope of the Barcelonnette Basin (South French Alps) affected by several landslide types (Maquaire et al., 2003; Thiery et al., 2005; Malet et al., 2005).

2. Geomorphological settings

2.1. Geomorphology of the Barcelonnette Basin

The Barcelonnette Basin is representative of climatic, lithological, geomorphological and land-use conditions observed in the South French Alps, and is highly affected by landslide hazards (Flageollet et al., 1999). It is situated in the dry intra-Alpine zone, characterized by a mountain climate with a Mediterranean influence. Highly variable rainfall amounts (400 to 1300 mm yr\(^{-1}\)) occur with intense storms during summer and autumn. However, as pointed out by Flageollet et al. (1999), landslides there are not controlled only by climatic conditions; slope instability can occur after relatively dry periods whether or not preceded by heavy rainfalls.

The test site extends over an area of about 100 km\(^2\). Located on the north-facing hillslope (Fig. 1), it is characterized by a large variety of active landslides and is representative of the environmental conditions observed in the Barcelonnette Basin. The Ubaye River depicts the northern boundary, while the Sauze torrent delimits the western boundary; the southern and
eastern boundaries are represented by high crests of limestones and sandstones. The test site can be subdivided into two geomorphological units separated by a major fault in a north/south direction. The eastern unit is dominated by allochthonous sandstones outcrops, while the western unit is composed of autochthonous Callovo-Oxfordian marls (BRGM, 1974; Flageollet et al., 1999; Maquaire et al., 2003).

The eastern unit (ca. 40 km²) is drained by the Abriès torrent which cuts an asymmetric valley in highly fractured sandstones. The gentle slopes there (10-30°) are covered by moraine deposits of 2 to 15 m thick and by coniferous forests or grasslands (Fig. 2); these slopes are affected by shallow rotational or translational slides triggered by the undercutting of torrents. In contrast, the steep slopes (30-70°) are characterized by bare soils and affected by rockfalls on sandstones.

The western unit (ca. 60 km²), drained by four main torrents, presents an irregular topography of alternating steep convex slopes, planar slopes and hummocky slopes. The steepest convex slopes (>35°) are carved in black marl outcrops, and are very commonly gullied into badlands, or affected by rock-block or complex slides (Malet et al., 2005). The planar slopes (5-30°) composed of thick moraine deposits (from 6 to 20 m), are very often cultivated and affected by rotational or translational slides. The hummocky slopes are generally covered by forests and/or natural grasslands (Fig. 2), and affected by large relict landslides and/or surficial soil creep. Most landslides within the western unit are located along streams or on gentle slopes, where the contact of moraine deposits and black marls creates a hydrological discontinuity favourable for slope movements.

2.2. Landslide data
A landslide inventory was compiled at 1:10,000 scale through air photo-interpretation, field surveys and analysis of literature in years 2002 and 2003 by a geomorphologist (Thiery et al., 2003, 2004). Air-photo interpretation was carried out on 1:25,000-scale photographs (year 2000) issued from the French Geographical Institute. Fieldwork was carried out between July 2002 and July 2003 to complete the photo-interpretation. To reduce uncertainty linked to an expert in charge of mapping (Ardizzone et al., 2002; Wills and Mc Crinck, 2002), two degrees of confidence were defined for the photo-interpretation and information of available literature (landslide recognition or not), while three degrees of confidence (high, medium and low) were distinguished for the field survey. A mapping confidence index (MCI) in three classes (high, medium and low) was derived. Three hundred fourteen landslides were recognized, with 66% classified with a high MCI, 27% with a medium MCI and 7% with a low MCI. Among the 207 landslides with a high MCI, 10% are considered as relict, 8% are considered as latent, and 82% are considered as active. The active landslides can be grouped in three types (Table 1) according to the typology of Dikau et al. (1996).

Figs. 3 and 4 present the morphology and morphometric/environmental characteristics of the landslides. Shallow translational slides are relatively small and mainly located on steep slopes along streams. They occur on the weathered bedrock or in moraine deposits. Rotational slides are located along streams but more on gentle slopes than the shallow translational slides. They occur principally in moraine deposits or at the contact with the bedrock. Translational slides are located more on gentle slopes at the contact with the bedrock, and their sizes are very variable (Table 1).

The boundaries of active landslides were classified into two zones and digitized: (i) the landslide triggering zone (LTZ) and (ii) the landslide accumulation zone (LAZ, Fig. 3). The geometrical (perimeter, area, and maximal length) and geomorphological characteristics (typology and state of activity) were stored in a GIS database.
As the aim of this study is to locate areas prone to failures, only the LTZ of active landslides were introduced in the analysis (Atkinson and Massari, 1998; van den Eeckhaut et al., 2006).

In statistical models, the total area of landslides (van Westen et al., 2003) or only the triggering area can be used to compute probabilities of landsliding (Chung and Fabbri, 2003; Remondo et al., 2003). According to the characteristics of the landslides, especially their runout distances, a severe bias can occur when the landslide accumulation zone is taken into account in the model. Indeed, several classes of input data may be included in the probability calculation process, while in reality they were not the most important controlling factors. Therefore, Atkinson and Massari (1998), Sterlacchini et al. (2004), and van den Eeckhaut et al. (2006) proposed to use only one cell at the centre of the triggering zone. This procedure offers some advantages because it does not take into account the landslide boundaries and it does not attribute a too large influence to the largest landslides which exhibit more diversity in predisposing factors. However, if the results based on one cell at the centre of the triggering zone can be satisfactory, the final probabilities are not necessarily representative of the predisposing conditions at the onset of the landslide. Defining the most appropriate part of the landslide to compute the probabilities is therefore a prerequisite to understand how it influences the model results.

2.3. Landslide predisposing factors

The statistical analysis of the landslide inventory has outlined the main predisposing factors (predictive variable) to introduce in the statistical model. The thematic data (Table 2) are derived from (i) available national databases, (ii) air-photo interpretation analyses, (iii) satellite imagery analyses, and (iv) field surveys. The DTM (10-m resolution) was constructed by the kriging interpolation applied to a network of triplets, obtained from the digitisation of
contour lines in 1:25,000-scale topographic maps which were enlarged by the French Geographical Institute into 1:10,000 scale. Its accuracy is of about ±1 m for the horizontal component, and ±2 to 10 m for the vertical component, depending on relief.

The slope gradient map and the slope curvature map were derived from the DTM. The lithological map is based on the main lithological units described in a geological map produced by the French Geological Survey (BRGM, 1974) at 1:50,000 scale, and was completed by fieldwork. The surficial formation map was obtained by the segmentation of the landscape into homogeneous macro-areas closely associated with sediment facies (van Westen, 1993). The surficial formation thickness map was derived from direct observations of outcrops along streams and steep slopes. The land-use map was produced by the analysis of a Landsat ETM+ image (year 2000) fused with a SPOT-P image (year 1994); the boundaries of homogeneous land-use units were corrected by air-photo interpretation.

2.4. Direct landslide susceptibility map

The direct landslide susceptibility map was elaborated with the French legal procedure for landslide hazard and risk at 1:10,000 scale (MATE/MATL, 1999; Leroi, 2005). This methodology requires a global overview of the area to identify sectors with homogeneous environmental characteristics for each landslide type. The methodology advises us to take into account the possibilities of landslide development for the forthcoming one hundred years. Four degrees of susceptibility were defined. The expert rules used to define the direct susceptibility classes are detailed in Table 3.

3. Methodology and strategy
3.1. Weights-of-evidence (WOE): background

3.1.1. WOE method

Weights-of-evidence (WOE) is a quantitative ‘data-driven’ method used to combine datasets. The method, first applied in medicine (Spiegelhater and Kill-Jones, 1984) and geology (Bonham-Carter, 1994), uses the log-linear form of the Bayesian probability model to estimate the relative importance of evidence by statistical means. This method was first applied to the identification of mineral potential (Bonham-Carter et al., 1990) and then to landslide susceptibility mapping (van Westen, 1993; van Westen et al., 2003; Süzen and Doruyan, 2004).

Prior probabilities (PriorP) and posterior probabilities (PostP) are the most important concepts in the Bayesian approach. PriorP is the probability that a TU (terrain unit) contains the RV (response variable) before taking PVs (predictive variables) into account, and its estimation is based on the RV density for the study area. This initial estimate can be modified by the introduction of other evidences. PostP is then estimated according to the RV density for each class of the PV. The model is based on the calculation of positive W^+ and negative W^- weights, whose magnitude depends on the observed association between the RV and the PV.

\[
W^+ = \ln \frac{P(B \mid RV)}{P(B \mid RV)}
\]
(1)

\[
W^- = \ln \frac{P(B \mid RV)}{P(B \mid RV)}
\]
(2)
In Eqs. (1) and (2), B is a class of the PV and the overbar sign ‘–’ represents the absence of the class and/or RV. The ratio of the probability of RV presence to that of RV absence is called odds (Bonham-Carter, 1994). The WOE for all PVs is combined using the natural logarithm of the odds (logit), in order to estimate the conditional probability of landslide occurrence. When several PVs are combined, areas with high or low weights correspond to high or low probabilities of presence of the RV.

3.1.2. Hypothesis of the WOE method

As mentioned by Bonham-Carter (1994), the results of the WOE method are strongly dependent on the number of events introduced in the model (e.g. on the estimation of probabilities) and on the quality of the landslide inventory map. Therefore, probabilities are very low if the area is characterized by rare events, and the results have to be interpreted cautiously. Nevertheless, if the study area is covered by reasonable samples of events, the estimated weights can be stable and realistic.

The WOE method requires the assumption that input maps are conditionally independent. To meet this need, many statistical tests may be used (e.g., χ^2-test, omnibus test, and new omnibus test). A detailed review of the performance of these tests can be found in Agterberg and Cheng (2002) and Thiart et al. (2003). In case of violation of conditional independence, PVs which are dependent can be combined into a neo-variable (nPV) which is then used in the WOE method (Thiart et al., 2003). The weighted-logistic-regression method (WLR) may also be used to bypass the violation of conditional independence. However, if the density of the RV is low, this method severely underestimates PostP, and a number of the RV smaller than the observed value can be predicted (Thiart et al., 2003). Consequently, specific
procedures have to be used on large areas characterized by a low density of the RV (Begueria and Lorente, 1999; van den Eeckhaut et al., 2006).

3.2. Employed methodology

The employed methodology uses the main steps described by van Westen et al. (2003) and Guzzetti et al. (2006), i.e.: (i) aptitude of thematic data to construct a model, (ii) evaluation of the uncertainty level of probabilities, (iii) determination of the degree of model fit (performance) to an indirect landslide susceptibility map, and (iv) evaluation of the indirect landslide susceptibility map in comparison with a direct susceptibility map.

The first three steps were tested on a ‘sampling area’ of the study site (north-facing hillslope of the Barcelonnette Basin) characterized by the occurrence of the three types of landslides (Fig. 1). This test area extends over about 11 km² and is representative of the western and eastern terrain units described previously. The upper parts of the hillslopes were not included in the ‘sampling area’ because the environmental conditions are not representative of the landslides introduced in the analysis.

The probabilities of future landslide occurrence are calculated for each landslide type (only LTZs are introduced in the analysis) and a susceptibility map is created after the classification of PostP. Susceptibility classes were compared to the observed LTZs in the ‘sampling area’. If results were satisfactory, the statistical model was applied to the whole area with the same procedure (Fig. 5). Then, the final indirect landslide susceptibility map was assessed with the direct landslide susceptibility map with a confusing matrix and several statistical accuracy tests. Thus, a careful confrontation with a reference map was performed at each step. The statistical model was implemented in ArcView 3.2® through the ArcSDM extension (Kemp et al., 2001), and the size of the calculation cell was 10 m.
3.2.1. Identification of the response variable (RV)

Bayesian models are very sensitive to the number and quality of the RV. Over large areas characterized by complex thematic data, it can be very difficult to identify LTZs with high confidence. To deal with these limitations, the first two steps of the procedure are: (i) to identify the minimum number of cells representing the variability of the predisposing factors within LTZs, and (ii) to identify the best spatial location of cells to represent the variability of the predisposing factors within LTZs. For each landslide type, the same number of cells was introduced at each calibration phase. The initial number of cells in the LTZs examined in this study is 460.

The minimal number of cells to introduce in the model was estimated by a random sampling (10 to 100%) of the LTZ cells of each landslide type. The best spatial location of cells was estimated by selecting several cells’ locations within the LTZs (Table 4). The computations were performed with a set of four a priori ‘constant’ thematic maps of PVs (slope gradient, surficial deposits, lithology, and land use). A landslide susceptibility map was then produced for each combination. The PostP distribution was analysed by expert judgment to define susceptibility classes. In former studies, the number of classes varied from two (e.g. stable and unstable; Begueria and Lorente, 1999) to six (null, very low, low, moderate, high, and very high susceptibility; Chacón et al., 2006). In this study, landslide susceptibility was classified into four (null, low, moderate, and high) for comparison to the direct landslide susceptibility map with the four classes. The relative error ξ was computed to evaluate the performance of the simulations:

$$\xi = \frac{O_L - P_L}{O_L}$$ \hspace{1cm} (3)
where O_L is the number of the observed landslide cells representing the LTZ of active landslides, and P_L is the number of the predicted landslide cells with the high susceptibility class. If the relative error decreases with the introduction of a RV, this RV is retained for the next simulation step (Fig. 5).

3.2.2. Identification of the predictive variables (PVs)

The performance of the PVs introduced successively in the statistical model was evaluated in terms of CI violation and distribution of PostP for each landslide type. Computations were performed with the best RV dataset identified previously. The procedure is as follows:

1. **Selection of the best PV dataset by expert judgement which takes into account the predisposing factors and classes associated with each landslide type;**
2. **Analysis of CI violation between each PV and the RV. As the χ^2-test is very sensitive to the density of the RV introduced in the model (Thiart et al., 2003) and may increase the measure of the dependence between two PVs by 25 to 30% (Pistocchi et al., 2002; Dumolard et al., 2003), the Cramer’s V coefficient (Kendall and Stuart, 1979) is calculated. The Cramer's V is considered as the more robust association test because of its possibility to assess large and complex contingency tables (Howell, 1997). The coefficient provides a standardized measure in the range [0-1]; the closer $V \rightarrow 1$, the stronger is the association between two PVs.**
3. **Exploration of the structure of the association between PV classes and the RV by a multiple correspondence analysis (MCA), and definition of the most significant classes of a PV to represent landslide occurrences.**
4. **Introduction of a neo-variable (nPV) with geomorphological meaning (van Westen et al., 2003) in the statistical model by combining PVs causing CI violations.**
Finally, the performance of each PV and nPV is assessed by introducing the variables iteratively in the statistical model. If the relative error does not decrease despite the addition of a PV or an nPV, the simulation is rejected; whereas, if the relative error decreases, the simulation is accepted.

3.2.3. Evaluation of performance of the indirect susceptibility maps

The performance of the indirect susceptibility maps was assessed for the total study area with the best combination of PVs and nPVs (Figs. 1 and 5). Both statistical and expert evaluations were performed successively.

First, the weights obtained for the classes of the best PVs and nPVs are applied to the total study area (Figs. 1 and 5) and the susceptibility classes were defined with the same thresholds in the cumulative curves. The degree of model fit was evaluated by analysing the ξ value for all the LTZs observed in the total study area. If ξ is low (<0.3), the statistical model is considered as robust. Then, the confidence of PostP was evaluated by the Student-t test. This test uses the variance of PostP to create a normalized value to estimate the certainty of the calculation with the null hypothesis H_0: PostP = 0. The normalized value has to be equal or larger than 1.64 to have a certainty calculation of 95% (Bonham-Carter, 1994; Davis, 2002).

Second, the indirect susceptibility map was compared with the direct susceptibility map. Because the direct susceptibility map had been produced by the French Official Method of Landslide Risk Zoning (MATE/METL, 1999) independently of the landslide types, a unified indirect susceptibility map was produced by combining the indirect susceptibility maps obtained for the three landslide types. The four classes of the indirect susceptibility maps were merged, and for each cell, more weight was systematically given to the higher susceptibility class (Fig. 8). Confusion matrices were calculated and several statistical tests
were performed for the direct and unified indirect susceptibility maps (Tables 5 and 6). The Kappa (κ) coefficient was used to assess the improvement of the model predictions over chance (Table 6). A κ value of 1 is equivalent to a perfect agreement between the model and the reference map. κ values higher than 0.4 signify a good statistical agreement between maps (Fielding and Bell, 1997).

4. Results

4.1. Best response variable

The minimum number of cells representing the variability of the predisposing factors within the LTZs was identified from the 460 cells. The relation between the number of LTZs cells introduced in the model and ξ for each landslide type is presented in Fig. 7. A threshold comparable to 50% of the 460 cells was identified to stabilize ξ for the ‘sampling area’, and the simulations with RV-3 to RV-7 were performed with the 230 cells. Table 4 indicates that the simulations with RV-2 and RV-3 are not acceptable, confirming that using only one or a few cells around the centre of a LTZ mass underestimates PriorP and PostP. Table 4 also indicates the influence of LTZ sizes on the results, and highlights that the best results are obtained with the use of the cells representing the most frequent combination of PVs observed in LTZs (RV-7).

4.2. Best predictive variables

Statistical tests indicate CI violation between the PVs. As an example, the values of the χ^2-test and the Cramer’s V coefficient for the translational slides are detailed in Table 7. The
Cramer’s V coefficient indicates a low association between the variables except for SLO-CUR and SLO-SF. The correlation SLO-CUR is mainly related to the location of RV-7 cells on slopes between 15° and 35°, which cover more or less 50% of the ‘sampling area’ and present planar slopes. Therefore, the information contained in these two PVs is redundant and combining these variables has no geomorphological meaning. Consequently, the PV CUR was not introduced in the statistical model. In contrast, the combination of variables with a geomorphological meaning (for instance SLO and SF) was introduced.

The first four axes of the MCA (multiple correspondence analysis) explain 40.5%, 49.3% and 46.0% of the total variance for the shallow translational slides, rotational slides and translational slides, respectively. Despite the low contribution of each axis (<20%) on the cumulated variance, some useful information is still highlighted by the MCA. For example, the axes F1, F2 and F3 of the translational slides confirm the relation between SLO and the surficial formations (SF and TSF). Thus, the MCA gives some indications on the possible combination of classes for each PV, and allows us to justify the definition of an nPV with both a geomorphological meaning and a low redundancy of information. Table 8 summarizes the results of the MCA for the three landslide types. Fig. 8 details the cumulative curves associated with each WOE simulations and the different thresholds to define the four susceptibility classes for each landslide type. Fig. 9 presents the susceptibility maps obtained for the shallow translational slides. Simple geomorphological information given by the nPV increases the performance of the models. For example, for the shallow translational slides, the best simulation carried out with the non-combined PVs (SLO, FS, LIT, and LAD) is characterized by a ξ value of 0.45 (Table 6), while the best simulation with the introduction of nPV-1 (which combines slope gradient classes and surficial formation types, Table 9) is characterized by a ξ value of 0.14 (Table 9). For the simulations performed in the ‘sampling
\[\xi \] values are 0.18, 0.16, and 0.14 for the shallow translational slides, rotational slides, and translational slides, respectively (Table 9).

4.3. Evaluation of indirect susceptibility maps

Fig. 10 presents the indirect susceptibility maps for each landslide type obtained by applying the PostP of the ‘sampling area’ to the total study area. The maps show a good agreement with the landslide inventory map and are characterized by \(\xi \) values of 0.22, 0.25 and 0.23 for the shallow translational slides, the rotational slides, and the translational slides, respectively (Table 10). The surfaces of high, moderate and low susceptibility are 4.9 km\(^2\), 1.6 km\(^2\) and 1.6 km\(^2\) for the shallow translational slides, 12.3 km\(^2\), 5.1 km\(^2\) and 6.3 km\(^2\) for the translational slides, 3.8 km\(^2\), 2.2 km\(^2\) and 3.2 km\(^2\) for the rotational slides, and 12.3 km\(^2\), 5.1 km\(^2\) and 6.3 km\(^2\) for the translational slides, respectively. The certainty test indicates a percentage of presence of the high susceptibility class in the confidence zone of 70.8%, 88.7% and 87.5% for the shallow translational slides, rotational slides, and translational slides, respectively. Consequently the high susceptibility classes simulated with the statistical models incorporating an nPV are relevant from a statistical viewpoint.

The unified indirect susceptibility map (Fig. 11) was then compared to the direct susceptibility map (Fig. 12). The former map identifies 17.7 km\(^2\), 5.8 km\(^2\) and 6.9 km\(^2\) of the high, medium and low susceptibility classes, respectively (Fig. 11). The confusion matrix (Table 11) indicates a good accuracy between the direct and indirect maps, especially for the high susceptibility class. Fig. 13 presents the observed differences between the two maps concerning the high susceptibility class.
5. Discussion

The proposed methodology to assess landslide susceptibility at 1:10 000 scale is based on a bivariate method calibrated on a ‘sampling area’ and validated on a larger area. To obtain a robust and reproducible procedure, simple and easy-to-obtain thematic data with a high cost-benefit ratio were used. The thematic maps introduced in the statistical model represent slope gradient, slope curvature, surficial formations, thickness of surficial formations, lithology, land use and streams. Our work indicates that introducing only simple PVs in the statistical model does not satisfactorily recognise landslide-prone areas in a complex environment. Therefore, the concept of nPV, the use of the main set of predisposing factors for one landslide type, was employed. In our case this set is essentially represented by the combination of the thematic classes of slope gradients and surficial deposits. An nPV is identified by analysing the structure of the relationships between the landslide types, slope gradients and surficial formations. The nPV significantly increases the performance of the three statistical models, as pointed out by the decrease of the ξ value from 0.45 to 0.14 for the shallow translational slides, 0.43 to 0.16 for the rotational slides, and 0.40 to 0.18 for the translational slides. Evaluation of the statistical model for the total study area shows good agreement among the indirect susceptibility map, the landslide inventory map, and the direct susceptibility map. However, to obtain a good agreement, several considerations have to be pointed out:

(i) Our indirect susceptibility maps represent better the high susceptibility class than the low to moderate susceptibility classes. Tables 10 and 11 confirm the good agreement of the indirect susceptibility map with the landslide inventory map and the direct susceptibility map for the high susceptibility class. The indirect susceptibility maps underestimate the surfaces of the low and moderate susceptibility classes with K values of 0.03 and 0.08, respectively. These disagreements are explained by the methodology
used to produce the direct and indirect susceptibility maps. On the one hand, rules
depending on expert judgments can take into account (i) some subtle changes in specific
areas which modify the degree of susceptibility, and (ii) the possibility of spatial
evolution of landslides. On the other hand, statistical models were developed in our
study to recognize areas favourable for active LTZs. The calculation processes of such
models are based on binary evidences and are optimized to recognize areas with
identical environmental characteristics, and the procedure of calibration/validation of the
models is dependent on the thresholds observed on the simulated cumulative curves
(Begueria, 2006; van den Eeckhaut et al., 2006). If this classification/validation
procedure is employed, some potentially landslide-prone areas may be overestimated or
underestimated (Begueria, 2006), and consequently the low and moderate susceptibility
classes are not very well identified on the cumulative curve.

(ii) Our indirect susceptibility maps may not take some portion of terrain into account. For
instance, in our study, the portions of terrain with slope gradients lower than 15° are
always considered with a low or null susceptibility, although some of such areas are
prone to landsliding. This discrepancy may be explained by the analysis used to select
the best RV (RV-7) which mathematically increases the weights of the PV combination
corresponding to the LTZs, and by the underestimation of PostP for these slope
gradients because only a few LTZs are located on these slopes.

(iii) On a more general viewpoint, the ‘sampling area’ has to be selected carefully. Indeed, if
the ‘sampling area’ is not sufficiently representative of the environmental conditions of
the total study area, calculations of PriorP and PostP are biased. If the study area is
sufficiently large, a sensitivity analysis on several ‘sampling areas’ with different sizes
and shapes is recommended in order to select the more appropriate area which
represents the total study area (Greco et al., 2007). In our case, the study area has a
complex topography with two distinct parts and several landslide types. Therefore, the selection of the ‘sampling area’ was based on geomorphological knowledge of the site.

(iv) Statistical models are very sensitive to the type and number of landslide cells. A conceptual model has therefore been created for each landslide type, because each type is controlled by a specific combination of predisposing factors. Furthermore, the quality of the indirect susceptibility maps depends on the selection of relevant cells representing the variability of the environmental factors (Greco et al., 2007).

(v) Statistical models are also very sensitive to the thematic data of environmental factors, and to their potential conditional dependence. Regarding CI violation, the results of the χ^2-test and the value of the V coefficient have to be interpreted with caution, because a few cells can severely bias the results (Dumolard et al., 2003). These tests are just informative and they cannot be used in rigorous terms (Pistocchi et al., 2002). Therefore, instead of not incorporating the cells posing some problems or decreasing the total number of RV cells, the proposed procedure intends to combine some classes of the PVs which are conditionally dependent. Indeed, decreasing the number of RV cells could modify the stability of the model as demonstrated previously. A robust procedure to follow is to combine an expert judgment with the χ^2-test and the V coefficient in a multiple correspondence analysis, in order to identify the classes of PVs violating CI and select the classes of PVs to be combined with an nPV with a geomorphological meaning. As mentioned by van Westen et al. (2003, 2006), expert judgment is very important in the conception of the statistical model to guide thematic maps towards geomorphological landslide evidences. Regarding the minimum set of thematic maps, the different statistical tests used in our study stress the difficulty to map landslide susceptibility at 1:10,000 scale using only a few variables. Other data sources such as a more detailed soil thickness map or detailed structural maps (fault map and tectonic
map) should be used in order to obtain more accurate results. Nevertheless, at this scale of work and for a large and complex environment, these variables are extremely difficult to measure because of their high spatial variability. Therefore, they have been often neglected in susceptibility assessment.

The proposed procedure follows the guidelines suggested by van Westen et al. (2003) and Guzzetti et al. (2006) for the validation of indirect susceptibility maps. Guzetti et al. (2006) proposed a set of criteria for ranking and comparing the quality of landslide susceptibility assessments, i.e., the quality of the input data and the use of different statistical tests. In terms of these criteria, the susceptibility maps obtained with the procedure used in this study have the highest quality (level 7).

6. Conclusion

This study has demonstrated the necessity of using specific and adapted procedures for indirect landslide susceptibility assessment by bivariate methods, especially at 1:10,000 scale, for complex environments with some uncertainty in collected landslide characteristics. The proposed procedure, based on a reduced number of thematic data and a ‘sampling area’, consists of four steps. First, the best response variable RV (e.g. landslide inventory) to be introduced in the statistical model is defined. This variable may vary according to the landslide type and the environmental characteristics of the study area. Second, the best PVs (e.g. terrain predisposing factors) to be used in the statistical model are identified by minimizing conditional dependence on the basis of statistical tests. The structure of the statistical relation between RV and PV is studied through multiple correspondence analyses to identify the class of PVs influencing the location of landslides. Based on the results, neo-predictive variables (nPVs) with geomorphological meanings are proposed, and introduced in the statistical models. Third, the performance and confidence associated with the simulations
are evaluated by statistical tests and expert knowledge. Fourth, more appropriate thematic
data and weights identified on the ‘sampling area’ are applied to the total study area. The
results are compared to a direct landslide susceptibility map through a confusion matrix.
The procedure was applied successfully to the north-facing hillslope of the Barcelonnette
Basin. The indirect and direct susceptibility maps are quite similar for the high susceptibility
class with a high classification rate and a good Kappa (κ) coefficient.
This study has demonstrated that the use of a ‘sampling area’ correctly representing the
geomorphology of a larger area, combined with the use of neo-predictive variables, is
sufficient to calibrate a bivariate statistical model for landslide susceptibility assessment. This
study reinforces the use of bivariate statistical models based on both expert knowledge and
objective calculations for landslide susceptibility assessment, assuming the use of specific
statistical tests if only a few landslide data are available. The proposed procedure has to be
tested in other types of environment in order to verify its spatial robustness.

Acknowledgements

This research was financially supported by the European Union through the research
programme ALARM (Assessment of Landslide Risk and Mitigation in Mountain Areas),

References

regression for mineral potential mapping. In: Davis, J.C., Herzfeld, U.C. (Eds.), Computer in Geology, 25 Years of

Spiegelhater, D., Kill-Jones, R.P., 1984. Statistical and knowledge approaches to clinical decision-support systems, with an

Sterlacchini S., Maseti M., Poli, S. 2004. Spatial integration of thematic data for predictive landslide mapping: a case study
from Oltrepo Pavese area, Italy. In: Lacerda W.A., Ehrlich M., Fountoura, S.A.B., Sayão, A.S.F. (Eds.), Landslides

improved test. IAMG, International Association for Mathematical Geology, September 7th-12th, 2003, Portsmouth,
United-Kingdom.

of a spatial database to manage landslides with GIS in mountainous environment. In: Proceedings of AGILE 2003: The
Science behind the Infrastructure, 6th AGILE Conference on Geographic Information Science. 24th-26th, April 2003,
Lyon, France, pp. 37-44.

susceptibility zonation by GIS in complex mountainous environments. In: Toppen, F., Prastacos, P. (Eds.), Proceedings of
AGILE 2004: 7th AGILE Conference on Geographic Information Science. 29th April – 1st May 2004, Heraklion, Greece,
pp. 623-634.

Thiery Y., Malet, J-P., Sterlacchini, S., Puissant, A., Maquaire, O., 2005 Analyse spatiale de la susceptibility des versants
aux mouvements de terrain, comparaison de deux approches spatialisées par SIG. Revue internationale de
géomatique/European journal of GIS and spatial analysis 15, 227-245.

landslide susceptibility using rare events logistic regression: a case-study in the Flemish Ardennes (Belgium).
Geomorphology 76, 392-410.

Rotterdam, pp. 39-56.

assessment. Natural Hazards 30, 399-419.

Table 1. Morphometric characteristics of active landslides inventoried with a high mapping confidence index (MCI). \(\mu \) is geometric average; \(\sigma \) is standard deviation.

<table>
<thead>
<tr>
<th>Landslide type</th>
<th>Number</th>
<th>Depth (m)</th>
<th>Width (m)</th>
<th>Length (m)</th>
<th>Slope of LTZ (°)</th>
<th>Landslide size (m(^2))</th>
<th>Size of LTZ (m(^2))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shallow translational slide</td>
<td>50</td>
<td>2</td>
<td>0.6</td>
<td>60</td>
<td>25</td>
<td>77</td>
<td>70</td>
</tr>
<tr>
<td>Rotational slide</td>
<td>54</td>
<td>6</td>
<td>3</td>
<td>140</td>
<td>136</td>
<td>118</td>
<td>114</td>
</tr>
<tr>
<td>Translational slide</td>
<td>88</td>
<td>6.5</td>
<td>4.5</td>
<td>78</td>
<td>70</td>
<td>217</td>
<td>168</td>
</tr>
</tbody>
</table>

Table 2. Thematic data used in the statistical model.

<table>
<thead>
<tr>
<th>Themes</th>
<th>Map</th>
<th>Source of information and methods used</th>
</tr>
</thead>
<tbody>
<tr>
<td>Landslide inventory</td>
<td>Landslide inventory map (LAI)</td>
<td>API (air-photo interpretation), field survey, analysis of available documents</td>
</tr>
<tr>
<td>Relief</td>
<td>Slope gradient map (SLO)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Slope curvature map (CUR)</td>
<td>DTM elaborated by digitization and interpolation of elevation lines extracted from topographical maps (1:10,000)</td>
</tr>
<tr>
<td>Geology</td>
<td>Lithological map (LIT)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Surficial formation map (SF)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Thickness map (TSF)</td>
<td>Analysis of geological and geomorphological maps, field survey</td>
</tr>
<tr>
<td></td>
<td>Bedding map (BED)</td>
<td></td>
</tr>
<tr>
<td>Hydrology</td>
<td>Distance to stream map (HYD)</td>
<td></td>
</tr>
<tr>
<td>Landuse</td>
<td>Landuse map (LAD)</td>
<td>SIA (satellite imagery analysis), API, field survey</td>
</tr>
</tbody>
</table>

Table 3. Expert rules and associated environmental conditions used to define the direct susceptibility map. SLO: slope gradient; LAD: land use; CUR: slope curvature.

<table>
<thead>
<tr>
<th>Susceptibility class</th>
<th>Expert rule</th>
<th>Environmental conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>S0: no susceptibility</td>
<td>Environmental conditions favourable to slope stability. No possibility of landslide developments for the next one hundred years.</td>
<td>SLO: 0-10°, LAD: arable land, permanent crop</td>
</tr>
<tr>
<td>S1: low susceptibility</td>
<td>Environmental conditions are slightly favourable to slope instability. Low possibility of landslide developments for the next one hundred years. Future human and socio-economic developments of the area are possible and subject to specific attention.</td>
<td>SLO: 10-20°, LAD: pasture, grassland, CUR: moderate presence of topographic irregularities</td>
</tr>
<tr>
<td>S2: moderate susceptibility</td>
<td>Environmental conditions are moderately favourable to slope instability. Moderate possibilities of landslide developments for the next one hundred years. Mitigation works are essential for future human and socio-economic developments of the area.</td>
<td>SLO: 20-30°, LAD: pasture, grassland, forests lowly maintained, CUR: high presence of topographic irregularities, hummocky topography</td>
</tr>
<tr>
<td>S3: high susceptibility</td>
<td>Environmental conditions are very favourable to slope instability. High possibility of landslide developments for the next one hundred years. Future human and socio-economic developments of the area are impossible.</td>
<td>SLO: > 30°, LAD: landuse highly deteriorated, bare soils, forests not maintained, CUR: very hummocky topography</td>
</tr>
</tbody>
</table>
Table 4. Characteristics of the response variable (RV) introduced in the statistical model to identify the most relevant spatial locations of cells to represent the variability of predisposing factors within LTZs, and relative error associated with the simulations. The simulations were performed with the predictive variables (PVs) SLO, SF, LIT and LAND (Table 2). STS: shallow translational slides; RS: rotational slides; TS: translational slides.

<table>
<thead>
<tr>
<th>Response variable (RV)</th>
<th>Characteristics of the response variable</th>
<th>Relative error ξ (−)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>STS</td>
</tr>
<tr>
<td>RV-1</td>
<td>Use of all (460) cells of the landslide triggering zones (LTZs)</td>
<td>0.50</td>
</tr>
<tr>
<td>RV-2</td>
<td>Use of the centre of mass of each LTZ (e.g. one cell per LTZ)</td>
<td>0.76</td>
</tr>
<tr>
<td>RV-3</td>
<td>Use of the total number of cells in a radius of 10 m around RV-2 (e.g. 230 cells)</td>
<td>0.57</td>
</tr>
<tr>
<td>RV-4</td>
<td>Use of the total number of cells of small LTZs (mean size: TS: 215 m²; RS: 260 m²; STS: 60 m²)</td>
<td>0.64</td>
</tr>
<tr>
<td>RV-5</td>
<td>Use of the total number of cells of medium-size LTZs (mean size: TS: 400 m²; RS: 450 m²; STS: 65 m²)</td>
<td>0.58</td>
</tr>
<tr>
<td>RV-6</td>
<td>Use of the total number of cells of large LTZs (mean size: TS: 650 m²; RS: 640 m²; STS: 190 m²)</td>
<td>0.53</td>
</tr>
<tr>
<td>RV-7</td>
<td>Use of the cells representing the most frequent combination of PVs observed in each LTZ (e.g. 230 cells)</td>
<td>0.45</td>
</tr>
</tbody>
</table>

Table 5. Confusion matrix. a: true positives; b: false positives; c: false negatives; d: true negatives.

<table>
<thead>
<tr>
<th>Observed</th>
<th>Predicted</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>X'₁</td>
</tr>
<tr>
<td></td>
<td>X'₀</td>
</tr>
</tbody>
</table>

Table 6. Statistics derived from the confusion matrix. N: number of cells in the study area. a: true positives; b: false positives; c: false negatives; d: true negatives.

- Correct classification rate: \((a + d) / N\) - Proportion of correctly classified observations
- Misclassification rate: \((b + c) / N\) - Proportion of incorrectly classified observations
- Sensitivity: \(a / (a + c)\) - Proportion of positive cases correctly predicted
- Specificity: \(d / (b + d)\) - Proportion of negative cases correctly predicted
- Kappa (Κ) coefficient:
 \[\frac{[(a + d) - ((a + c)(a + b) + (b + d)(c + d))] / N)}{[N - ((a + c)(a + b)+(b + d)(c + d)) / N]} \] - Proportion of specific agreement
Table 7. Example of association measures between RV-7 and PVs for the translational slides. The PVs CUR, HYD and BED are not introduced in the model because there is no causal relation between the occurrence of the translational slides and these PVs. The bold font indicates the PV used to build an nPV. χ^2-test: from left to right, calculated χ^2, theoretical χ^2, and degree of freedom. The grey-coloured box represents the conditional dependence between PVs and the null hypothesis H_0 rejected for a level of significance $\alpha = 0.05$. Cramer's V coefficient: the bold font indicates moderate to high association between the variables.

<table>
<thead>
<tr>
<th>PV</th>
<th>LIT</th>
<th>SF</th>
<th>TSF</th>
<th>LAD</th>
<th>CUR</th>
</tr>
</thead>
<tbody>
<tr>
<td>SLO</td>
<td>χ^2</td>
<td>2.6</td>
<td>12.5 (6)</td>
<td>33.1</td>
<td>21 (12)</td>
</tr>
<tr>
<td>LIT</td>
<td>χ^2</td>
<td>-</td>
<td>0.2</td>
<td>5.9 (2)</td>
<td>5.7</td>
</tr>
<tr>
<td>SF</td>
<td>χ^2</td>
<td>-</td>
<td>-</td>
<td>9.6</td>
<td>12.5 (6)</td>
</tr>
<tr>
<td>TSF</td>
<td>χ^2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LAD</td>
<td>χ^2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Table 8. Contribution of PVs on the explained variance of the axes F1 to F4 for three landslide types. The most contributive PVs for each axis are indicated in grey and are used to define nPVs. The classes chosen to build nPVs are detailed in the last column.

<table>
<thead>
<tr>
<th>Shallow translational slides</th>
<th>Explained variance (%)</th>
<th>Structure of nPVs</th>
</tr>
</thead>
<tbody>
<tr>
<td>SLO</td>
<td>25.6</td>
<td>18.6</td>
</tr>
<tr>
<td>LIT</td>
<td>10.3</td>
<td>6.9</td>
</tr>
<tr>
<td>SF</td>
<td>18.4</td>
<td>16.5</td>
</tr>
<tr>
<td>TSF</td>
<td>21.64</td>
<td>3.3</td>
</tr>
</tbody>
</table>

Rotation slides

<table>
<thead>
<tr>
<th>Explained variance (%)</th>
<th>Structure of nPVs</th>
</tr>
</thead>
<tbody>
<tr>
<td>F1</td>
<td>33.1</td>
</tr>
<tr>
<td>F2</td>
<td>24.9</td>
</tr>
<tr>
<td>F3</td>
<td>19.8</td>
</tr>
<tr>
<td>F4</td>
<td>40.9</td>
</tr>
</tbody>
</table>

Translational slides

<table>
<thead>
<tr>
<th>Explained variance (%)</th>
<th>Structure of nPVs</th>
</tr>
</thead>
<tbody>
<tr>
<td>F1</td>
<td>37.1</td>
</tr>
<tr>
<td>F2</td>
<td>36.8</td>
</tr>
<tr>
<td>F3</td>
<td>39.9</td>
</tr>
<tr>
<td>F4</td>
<td>24.3</td>
</tr>
</tbody>
</table>
Table 9. Relative error ξ and CI results for the best combination of PVs and nPVs

<table>
<thead>
<tr>
<th>Landslide type</th>
<th>Combination</th>
<th>ξ</th>
<th>χ^2-test</th>
<th>V-coefficient</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shallow translational slides (STS)</td>
<td>nPV-1 + LAD</td>
<td>0.40</td>
<td>Yes</td>
<td>Low</td>
</tr>
<tr>
<td></td>
<td>nPV-1 + LAD + HYD</td>
<td>0.35</td>
<td>Yes</td>
<td>Low</td>
</tr>
<tr>
<td></td>
<td>nPV-1 + LAD + HYD + CUR</td>
<td>0.21</td>
<td>Yes</td>
<td>Low</td>
</tr>
<tr>
<td></td>
<td>nPV-1 + LAD + HYD + CUR + BED</td>
<td>0.14</td>
<td>Yes</td>
<td>Low</td>
</tr>
<tr>
<td>Rotational slides (RS)</td>
<td>nPV-2 + LAD</td>
<td>0.21</td>
<td>Yes</td>
<td>Low</td>
</tr>
<tr>
<td></td>
<td>nPV-2 + LAD + HYD</td>
<td>0.18</td>
<td>Yes</td>
<td>Low</td>
</tr>
<tr>
<td></td>
<td>nPV-2 + LAD + HYD + CUR</td>
<td>0.16</td>
<td>Yes</td>
<td>Low</td>
</tr>
<tr>
<td>Translational slides (TS)</td>
<td>nPV-3 + LIT</td>
<td>0.35</td>
<td>Yes</td>
<td>Low</td>
</tr>
<tr>
<td></td>
<td>nPV-3 + LIT + LAD</td>
<td>0.18</td>
<td>Yes</td>
<td>Low</td>
</tr>
</tbody>
</table>

Table 10. Relative error ξ of the best simulations for the ‘sampling area’ and the total study area. Results are indicated for the LTZ and the total area of landslide (L). Simulations are computed with RV-7.

<table>
<thead>
<tr>
<th>Landslide type</th>
<th>STS (nPV-1 + LAD + HYD + CUR + BED)</th>
<th>RS (nPV-2 + LAD + HYD + CUR)</th>
<th>TS (nPV-3 + LIT + LAD)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>LTZ L LTZ L LTZ L</td>
<td>LTZ L LTZ L LTZ L</td>
<td></td>
</tr>
<tr>
<td>ξ: ‘sampling area’</td>
<td>0.14 0.09 0.16 0.34 0.18 0.41</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ξ: total study area</td>
<td>0.22 0.26 0.21 0.33 0.23 0.47</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 11. Statistical accuracy tests between the indirect and direct susceptibility maps. ccr is the correct classification rate; mcr is misclassification rate.

<table>
<thead>
<tr>
<th>Susceptibility class</th>
<th>Null</th>
<th>Low</th>
<th>Moderate</th>
<th>High</th>
<th>Global</th>
</tr>
</thead>
<tbody>
<tr>
<td>ccr</td>
<td>0.73</td>
<td>0.81</td>
<td>0.85</td>
<td>0.91</td>
<td>0.61</td>
</tr>
<tr>
<td>mcr</td>
<td>0.27</td>
<td>0.19</td>
<td>0.15</td>
<td>0.09</td>
<td>0.39</td>
</tr>
<tr>
<td>sensitivity</td>
<td>0.87</td>
<td>0.18</td>
<td>0.08</td>
<td>0.80</td>
<td>0.61</td>
</tr>
<tr>
<td>specificity</td>
<td>0.39</td>
<td>0.89</td>
<td>0.95</td>
<td>0.93</td>
<td>0.89</td>
</tr>
<tr>
<td>Kappa K</td>
<td>0.36</td>
<td>0.08</td>
<td>0.03</td>
<td>0.43</td>
<td>0.41</td>
</tr>
</tbody>
</table>
Fig. 1. Shaded relief map of the north-facing hillslope of the Barcelonnette Basin and distribution of landslides.

Fig. 2. Landuse map of the north-facing hillslope of the Barcelonnette Basin.

Fig. 3. Simplified geological map (A) and observed landslide types in the Barcelonnette Basin: (B) shallow translational slide in the Abriès Torrent; (C) rotational slide in the Poche Torrent; and (D) translational slide in the Bois Noir catchment.

Fig. 4. Characteristics of the active landslides observed in the Barcelonnette Basin.

Fig. 5. Strategy for susceptibility assessment with the bivariate WOE model at 1:10,000 scale.

Fig. 6. Distribution of landslides and environmental characteristics of the ‘sampling area’. (A) inventory of active landslides; (B) slope gradient map; (C) surficial formations map; (D) lithological map; (E) landuse map; (F) thickness of surficial formations map; (G) irregularities of terrain map; (H) outcrop and type of dip map.

Fig. 7. Relative error ξ of the simulations for several quantities of RV cells introduced in the statistical model.

Fig. 8. Cumulative curves of the best simulation obtained in the ‘sampling area’. (A) translational slides; (B) rotational slides; (C) shallow translational slides. The susceptibility classes are defined on the basis of the thresholds observed in the cumulative curves of total probabilities. The number of cells in the highest susceptibility class is compared to the distribution of LTZs (relative error ξ).

Fig. 9. Example of WOE simulations for shallow translational slides performed without (A) and with (B) the introduction of an nPV: Statistical simulations with the PVs SLO + SF + LIT + LAD and with the PVs nPV-1 + LAD + CUR + BED, respectively.

Fig. 10. Indirect susceptibility map for the landslide types observed on the north-facing hillslope of the Barcelonnette Basin. (A) shallow translational slides; (B) rotational slides; (C) translational slides.

Fig. 11. Direct susceptibility map produced with the French Official Method of Landslide Risk Zoning.

Fig. 12. Final indirect susceptibility map produced by combining the three indirect landslide susceptibility maps.

Fig. 13. Differences between the direct and final indirect susceptibility maps (example of the high susceptibility class).
Minimum number of cells of the response variable (RV) to introduce in the statistical model.

Figure 7
Click here to download high resolution image