On the behavior at infinity of an integrable function
Emmanuel Lesigne

To cite this version:
ON THE BEHAVIOR AT INFINITY OF AN INTEGRABLE FUNCTION

EMMANUEL LESIGNE

We denote by x a real variable and by n a positive integer variable. The reference measure on the real line \mathbb{R} is the Lebesgue measure. In this note we will use only basic properties of the Lebesgue measure and integral on \mathbb{R}.

It is well known that the fact that a function tends to zero at infinity is a condition neither necessary nor sufficient for this function to be integrable. However, we have the following result.

Theorem 1. Let f be an integrable function on the real line \mathbb{R}. For almost all $x \in \mathbb{R}$, we have

$$(1) \quad \lim_{n \to \infty} f(nx) = 0.$$

Remark 1. It is too much hope in Theorem 1 for a result for all x because we consider an integrable function f, which can take arbitrary values on a set of zero measure. Even if we consider only continuous functions, the result does not hold for all x. Indeed a classical result, using a Baire category argument, tells us that if f is a continuous function on \mathbb{R} such that for all nonzero x, $\lim_{n \to \infty} f(nx) = 0$, then $\lim_{x \to \pm \infty} f(x) = 0$. Thus for a continuous integrable function f which does not tend to zero at infinity, property (1) is true for almost all x and not for all x.

Remark 2. Let f be an integrable and nonnegative function on \mathbb{R}. We have $\int f(nx) \, dx = \frac{1}{n} \int f(x) \, dx$. Hence for any nonnegative real sequence (ε_n) such that $\sum_n \varepsilon_n / n < +\infty$, we have

$$\sum_n \int \varepsilon_n f(nx) \, dx < +\infty,$$

and the monotone convergence theorem (or Fubini’s theorem) ensures that the function $x \mapsto \sum_n \varepsilon_n f(nx)$ is integrable, hence almost everywhere finite. In particular, for almost all x, we have $\lim_{n \to \infty} \varepsilon_n f(nx) = 0$. This argument is not sufficient to prove Theorem 1.

Now we will state that, in a sense, Theorem 1 gives an optimal result. The strength of the following theorem lies in the fact that the sequence (a_n) can tend to infinity arbitrarily slowly.

Theorem 2. Let (a_n) be a real sequence which tends to $+\infty$. There exists a continuous and integrable function f on \mathbb{R} such that, for almost all x,

$$\lim_{n \to \infty} \sup_{n \to \infty} a_n f(nx) = +\infty.$$
Moreover, there exists an integrable function f on \mathbb{R} such that, for all x,
\[
\limsup_{n \to \infty} a_n f(nx) = +\infty.
\]

Question. Under the hypothesis of Theorem 2, does there exist a continuous and integrable f such that, for all x, $\limsup_{n \to \infty} a_n f(nx) = +\infty$? We do not know the answer to this question, and we propose it to the reader. However, the next remark shows that the answer is positive under a slightly more demanding hypothesis.

Remark 3. If the sequence (a_n) is nondecreasing and satisfies $\sum_n \frac{1}{n a_n} < +\infty$, then there exists a continuous and integrable function f on \mathbb{R} such that for all x, $\limsup_{n \to \infty} a_n f(nx) = +\infty$.

Remark 4. In Theorem 2 we cannot replace the hypothesis $\lim_{n \to \infty} a_n = +\infty$ by $\limsup_{n \to \infty} a_n = +\infty$. Indeed, by a simple change of variable we can deduce from Theorem 1 the following result: for all integrable function f on \mathbb{R}, $\lim_{n \to \infty} n f(n^2 x) = 0$ for almost all x.

(Apply Theorem 1 to the function $x \mapsto x f(x^2)$.) Thus the conclusion of Theorem 2 is false for the sequence (a_n) defined by $a_n = \begin{cases} \sqrt{n} & \text{if } n \text{ is a square of integer}, \\ 0 & \text{if not}. \end{cases}$

In the remainder of this note, we give proofs of the two theorems and of Remark 3.

Proof of Theorem 1. The function f is integrable on \mathbb{R}. Let us fix $\varepsilon > 0$ and denote by E the set of points $x > 0$ such that $|f(x)| \geq \varepsilon$. We know that E has finite measure. We are going to show that, for almost all $x \in [0,1]$, we have $n x \in E$ for only finitely many n’s. (If A is a measurable subset of \mathbb{R}, we denote by $|A|$ its Lebesgue measure.)

For each integer $m \geq 1$, let $E_m := E \cap (m - 1, m]$. Let us fix $a \in (0, 1)$. For each integer $n \geq 1$, we consider the set
\[
F_n := \left(\frac{1}{n} E \right) \cap [a, 1) = \left(\frac{1}{n} \bigcup_{m \geq 1} E_m \right) \cap [a, 1) = \frac{1}{n} \bigcup_{m \geq 1} (E_m \cap [na, n)) .
\]

We have
\[
\sum_{n=1}^{+\infty} |F_n| = \sum_{n=1}^{+\infty} \sum_{m=1}^{+\infty} \frac{1}{n} |E_m \cap [na, n)| .
\]

In this doubly indexed sum of positive numbers, we can invert the order of summation. Moreover, noticing that $E_m \cap [na, n) = \emptyset$ if $n > m/a$ or $n \leq m - 1$, we obtain
\[
\sum_{n=1}^{+\infty} |F_n| = \sum_{m=1}^{+\infty} \sum_{n=m}^{+\infty} \frac{1}{n} |E_m \cap [na, n)| \leq \sum_{m=1}^{+\infty} |E_m| \sum_{n=m}^{+\infty} \frac{[m/a]}{n} .
\]
By comparison of the discrete sum with an integral, we see that, for all \(m \geq 1 \),
\[
\sum_{n=m}^{\infty} \frac{1}{n} \leq (1 - \ln a).
\]
Thus we have
\[
\sum_{n=1}^{\infty} |F_n| \leq (1 - \ln a) \sum_{m=1}^{\infty} |E_m| = (1 - \ln a)|E| < +\infty.
\]
This implies that almost every \(x \) belongs to only finitely many sets \(F_n \). (This statement is the Borel-Cantelli lemma, which has a one line proof:
\[
\sum \mathbb{1}_{F_n}(x) \, dx = \sum \mathbb{1}_{F_n}(x) < +\infty.
\]

Returning to the definition of \(F_n \), we conclude that, for almost all \(x \in [a, 1] \), for all large enough \(n \), \(x \notin F_n \), i.e. \(nx \notin E \). Since \(a \) is arbitrary, we have in fact: for almost all \(x \in [0, 1] \), for all large enough \(n \), \(nx \notin E \).
We have proved that, for all \(\varepsilon > 0 \), for almost all \(x \in [0, 1] \), for all large enough \(n \), \(|f(nx)| \leq \varepsilon \). Since we have to consider only countably many \(\varepsilon \)'s, we can invert for all \(\varepsilon > 0 \) and for almost all \(x \in [0, 1] \). We conclude that, for almost all \(x \in [0, 1] \), \(\lim_{n \to \infty} f(nx) = 0 \). It is immediate, by a linear change of variable (for example), that this result extends to almost all \(x \in \mathbb{R} \).

Proof of Theorem 2. We will utilize the following theorem, a fundamental result in the metric theory of Diophantine approximation [4], Theorem 32.

Khinchin’s Theorem. Let \((b_n) \) be a sequence of positive real numbers such that the sequence \((nb_n) \) is nonincreasing and the series \(\sum_n b_n \) diverges. For almost all real numbers \(x \), there are infinitely many integers \(n \) such that \(\text{dist}(nx, \mathbb{Z}) < b_n \).

We will also make use of the following lemma, which will be proved in the sequel.

Lemma 1. Let \((c_n) \) be a sequence of nonnegative real numbers going to zero. There exists a sequence of positive real numbers \((b_n) \) such that the sequence \((nb_n) \) is nonincreasing, \(\sum_n b_n = +\infty \), and \(\sum_n b_n c_n < +\infty \).

Let us prove Theorem 2.

Replacing if necessary \(a_n \) by \(\inf_{k \geq n} a_k \), we can suppose that the sequence \((a_n) \) is nondecreasing. Applying the preceding lemma to the the sequence \(c_n = 1/\sqrt{n} \), we obtain a sequence \((b_n) \) such that the sequence \((nb_n) \) is nonincreasing, \(\sum_n b_n = +\infty \), and \(\sum_n b_n/\sqrt{n} < +\infty \). The sequence \((b_n) \) tends to zero, and we can impose the additional requirement that \(b_n < 1/2 \) for all \(n \).

We consider the function \(f_1 \) defined on \(\mathbb{R} \) by
\[
f_1(x) = \begin{cases} 1/\sqrt{n} & \text{if } |x-n| \leq b_n \text{ for an integer } n \geq 1, \\ 0 & \text{if not.} \end{cases}
\]
This function is integrable, due to the last condition imposed on \((b_n) \).

By Khinchin’s theorem, for almost all \(x > 0 \), there exist pairs of positive integers \((n, k(n)) \), with arbitrarily large \(n \), such that
\[
|nx - k(n)| \leq b_n.
\]
Let us consider one fixed such \(x \) in the interval \((0, 1)\). We have \(\lim_{n \to \infty} k(n) = +\infty \) and, since \(\lim_{n \to +\infty} b_n = 0 \), we have \(k(n) \leq n \) for all large enough \(n \). For such
procedure extends this property to almost all real numbers. We consider the function
example, we can choose an increasing sequence of numbers (\(a_n\)) such that the sequence
\(\sum_{n=0}^{\infty} g_n(x)\). This function \(g\) is nonnegative and integrable on \(\mathbb{R}\). It is locally a step function. For almost all \(x\) between 0 and 1, we have

\[
\limsup_{n \to \infty} a_n f_1(n x) = +\infty.
\]

From this, it is not difficult to construct a continuous and integrable function \(f\) on \(\mathbb{R}\) such that, for all \(m > 0\), there exists \(A_m > 0\) with \(f \geq f_m\) on \([A_m, +\infty)\). For example, we can choose an increasing sequence of numbers \((A_m)\) such that

\[
\int_{A_m}^{+\infty} f_1(x) + f_2(x) + \cdots + f_m(x) \, dx \leq \frac{1}{m^2};
\]

then we define \(g = f_1 + f_2 + \cdots + f_m\) on the interval \([A_m, A_{m+1})\). Since

\[
\sum_{m} \int_{A_m}^{A_{m+1}} f_1(x) + f_2(x) + \cdots + f_m(x) \, dx < \infty,
\]

this function \(g\) is integrable. Then we just have to find a continuous and integrable function \(f\) which dominates \(g\); this can be achieved since the function \(g\) is locally a step function: choose \(f\) to be zero on \((-\infty, 0]\) and continuous on \(\mathbb{R}\) such that \(g \leq f\) and, for all \(m > 0\), \(\int_{-\infty}^{m} f(x) - g(x) \, dx \leq 1/m^2\), so that \(\int_{0}^{+\infty} f(x) - g(x) \, dx < +\infty\).

For almost all \(x \geq 0\), we have \(\limsup_{n \to \infty} a_n f_1(n x) = +\infty\). A symmetrization procedure extends this property to almost all real numbers.

The first part of Theorem 3 is proved. The second part is a direct consequence. We consider the function \(f\) constructed above, and we denote by \(F\) the set of \(x\) such that the sequence \((a_n f_1(n x))\) is bounded. The set \(\{n x \mid x \in F, n \in \mathbb{N}\}\) has zero measure. We modify the function \(f\) on this set, choosing for example the value 1. The new function is integrable and satisfies, for all \(x\), \(\limsup_{n \to \infty} a_n f(n x) = +\infty\). \(\square\)

Proof of Lemma 4. The sequence \((e_n)\) is given, and it goes to zero. We will construct by induction an increasing sequence of integers \((n_k)\) and a nonincreasing sequence of positive numbers \((d_k)\), and we will define \(b_n = d_k / n\) for \(n_{k-1} \leq n < n_k\). The numbers \(d_k\) will be chosen so that \(\sum_{i=n_{k-1}}^{n_k-1} b_i = 1\); thus we require that

\[
d_k := \left(\sum_{i=n_{k-1}}^{n_k-1} \frac{1}{i}\right)^{-1}.
\]
We start from $n_0 = 1$, and then we choose $n_1 > n_0$ such that, for all $n \geq n_1$, $|c_n| \leq 1/2$. In the next step, we choose $n_2 > n_1$ such that $d_2 \leq d_1$ and, for all $n \geq n_2$, $|c_n| \leq 1/4$. More generally, if $n_1, n_2, \ldots, n_{k-1}$ have been constructed, we choose $n_k > n_{k-1}$ such that $d_k \leq d_{k-1}$ and, for all $n \geq n_k$, $|c_n| \leq 2^{-k}$. (Of course, this is possible because $\lim_{n \to +\infty} \left(\sum_{i=n_{k-1}}^{n} \frac{1}{n} \right) = 0$.)

This defines the sequence (b_n) by blocks. The sequence (nb_n) is nonincreasing and, for all $k \geq 1$, we have

$$\sum_{i=n_{k-1}}^{n_k-1} b_i = 1 \quad \text{and} \quad \sum_{i=n_{k-1}}^{n_k-1} b_i c_i \leq 2^{1-k}.$$

This guarantees that $\sum_n b_n = +\infty$ and $\sum_n b_n c_n < +\infty$. The lemma is proved. □

About Remark 3. Dirichlet’s lemma in Diophantine approximation (based on the pigeon-hole principle) concerns the particular case $b_n = 1/n$ in Khinchin’s theorem and it gives a result for all x.

Lemma 2 (Dirichlet’s Lemma). For all real numbers x, there exist infinitely many integers n such that $\text{dist}(nx, \mathbb{Z}) \leq \frac{1}{n}$.

Now, we justify Remark 3. We consider a nondecreasing sequence of positive real numbers (a_n) such that

$$\sum_n \frac{1}{nad_n} < +\infty.$$

We claim that there exists a sequence of positive real numbers (b_n) such that

$$b_n a_n \to +\infty \quad \text{and} \quad \sum_n \frac{b_n}{n} < +\infty.$$

Here is a proof of this claim: for each $k \geq 1$, there exists $n(k)$ such that

$$\sum_{n \geq n(k)} \frac{1}{nad_n} \leq \frac{1}{k^2}.$$

We have

$$\sum_n \text{card}\{k \mid n(k) \leq n\} \frac{1}{nad_n} = \sum_{k \geq 1} \sum_{n \geq n(k)} \frac{1}{nad_n} < +\infty,$$

and we can define $b_n := \text{card}\{k \mid n(k) \leq n\}/a_n$.

Given this sequence (b_n), we consider the function f defined on \mathbb{R} by

$$f(x) = \begin{cases} b_k & \text{if } |x - k| \leq 1/k, \ k \text{ an integer}, \ k \geq 2, \\ 0 & \text{if not}. \end{cases}$$

This function is integrable.

Using Dirichlet’s lemma, we have the following: for each fixed x in $(0, 1)$, there exist pairs of positive integers $(n, k(n))$, with n arbitrarily large, such that $|nx - k(n)| \leq 1/n$. We have $\lim_{n \to +\infty} k(n) = +\infty$ and, for all large enough n, $k(n) \leq n$. Hence there exist infinitely many n’s such that

$$|nx - k(n)| \leq \frac{1}{k(n)}$$

and so $f(nx) = b_{k(n)}$.

For such an \(n \), we have
\[
a_n f(nx) = a_n b_{k(n)} \geq a_{k(n)} b_{k(n)}.
\]
(We used here the fact that the sequence \((a_n) \) is nondecreasing.) This proves that
\[
\limsup_{n \to \infty} a_n f(nx) = +\infty.
\]
This result obtained for all numbers \(x \) between 0 and 1 extends to all real numbers by the same argument as the one used in the proof of Theorem 2. We can also replace the local step function by a continuous one as we did before.

Theorem 1 answers a question asked by Aris Danilidis.

References

Laboratoire de Mathématiques et Physique Théorique,
Université François-Rabelais Tours, Fédération Denis Poisson - CNRS,
Parc de Grandmont, 37200 Tours, France
emmanuel.lesigne@lmpt.univ-tours.fr