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Generation and Re
ognition of Digital Planeusing Multi-dimensional Continued Fra
tionsThomas FerniqueLIRMM, Univ. Montpellier 2, CNRS161 rue Ada 34392 Montpellier - Fran
e,fernique�lirmm.frAbstra
t. This paper provides a multi-dimensional generalization ofpattern re
ognition te
hni
s for generation or re
ognition of digital lines.More pre
isely, we show how the 
onne
tion between 
hain 
odes of dig-ital lines and 
ontinued fra
tions 
an be generalized by a 
onne
tionbetween tilings and multi-dimensional 
ontinued fra
tions. This leads toa new approa
h for generating and re
ognizing digital hyperplanes.Introdu
tionDis
rete (or digital) geometry deals with dis
rete sets 
onsidered to be digitizedobje
ts of the Eu
lidean spa
e. A 
hallenging problem is to de
ompose a huge
ompli
ated dis
rete set into elementary ones, whi
h 
ould be easily stored andfrom whi
h one 
an easily re
onstru
t the original dis
rete set. Good 
andidatesfor su
h elementary dis
rete sets are digitizations of Eu
lidean hyperplanes, inparti
ular arithmeti
 dis
rete hyperplanes, as de�ned in [7℄. This led to sear
he�
ient algorithms to go from the parameters of an Eu
lidean hyperplane to itsdigitization (generation) and 
onversely (re
ognition).In the parti
ular 
ase of digitizations of lines, among other te
hni
s, so-
alledlinguisti
 te
hni
s provide a ni
e 
onne
tions with words theory and 
ontinuedfra
tions. Let us brie�y detail this. A digital line made of horizontal or verti
alunit segments 
an be 
oded by a two-letter word, 
alled 
hain 
ode. For exam-ple, if a horizontal (resp. verti
al) unit segment is 
oded by 0 (resp. 1), then asegment of slope 1 
an be 
oded by a word of the form 10 . . . 10 = (10)k. Then,basi
 transformations on words 
orrespond to basi
 operations on slopes of thesegments they 
ode. For example, repla
ing ea
h 0 by 01 and ea
h 1 by 0 inthe previous word leads to the word (001)k, whi
h 
odes a segment of slope 1/2.Many algorithms use this approa
h for both re
ognition and generation of digitallines, and 
ontinued fra
tion expansions of slopes of segments turn out to playa 
entral role in this 
ontext (see e.g. [6℄ and referen
es therein).In higher dimensions, there is also various te
hni
s for generation or re
og-nition of digital hyperplane as, for example, linear programming, 
omputationalgeometry or preimage te
hni
s (see e.g. [3℄ and referen
es therein). However,



2none of these approa
hes provides a natural extension of the above 
onne
tionwith words theory and 
ontinued fra
tions. The aim of this paper is to introdu
esu
h an approa
h.The paper is organized as follows. In Se
. 1, we introdu
e stepped planes anddual maps. Stepped planes, that 
an also be seen as tilings, are digitizations ofEu
lidean hyperplane (see [9℄). They play for hyperplanes the role played by
hain 
odes for lines. Dual maps a
t on stepped planes and generalize the basi
transformations on 
hain 
odes mentioned above (see [1, 5℄). Then, in Se
. 2, webrie�y des
ribe the Brun algorithm, whi
h is one of existing multi-dimensional
ontinued fra
tion algorithms (see [8℄). The Brun algorithm 
omputes so-
alledBrun expansions of real ve
tors. Note that the 
hoi
e of this algorithm is ratherarbitrary: many similar algorithms 
ould play the same role in this paper. Wealso introdu
e parti
ular dual maps whi
h allow the Brun algorithm to a
t overstepped planes. This leads, in Se
. 3, to a method for generating a pie
e of astepped plane whi
h su�
es to generate the whole stepped plane (Th. 2). In Se
.4, we des
ribe a method to 
ompute so-
alled Brun expansions of stepped planes,by grabing information from lo
al 
on�gurations of this stepped plane (namelyruns). It turns out that the Brun expansion of a stepped plane is nothing butthe Brun expansion of its normal ve
tor. This method is then extended in Se
.5 to 
ompute Brun expansions of so-
alled binary fun
tions, whi
h generalizestepped planes. In parti
ular, let us stress that the notion of normal ve
torsdoes not make any more sense for binary fun
tions. Thus, it is rather un
learwhether a real ve
tor and a binary fun
tion have identi
al Brun expansions.However, we show in Se
. 6 that Brun expansions of binary fun
tions 
an beused for re
ognizing stepped planes among binary fun
tions. More pre
isely, wegive an algorithm 
omputing the paramaters of Eu
lidean hyperplanes whosedigitizations are stepped planes 
ontaining a given binary fun
tion (Th. 3).1 Stepped planes and dual mapsWe work in the Z-module of fun
tions from Zd×{1, . . . , d} to Z, denoted by Fd.More pre
isely, we are espe
ially interested in the following fun
tions of Fd:De�nition 1. A binary fun
tion is a fun
tion of Fd whi
h takes values in {0, 1}.The size of a binary fun
tion B, denoted by |B|, is the 
ardinal of its support,that is, the subset of Zd × {1, . . . , d} where B takes value one. We denote by Bdthe set of binary fun
tions. For x ∈ Zd and i ∈ {1, . . . , d}, the fa
e of type ilo
ated in x is the binary fun
tion denoted by (x, i∗) whose support is {(x, i)}.Note that any fun
tion of Bd (resp. Fd) 
an be seen as a possibly in�nite sumof fa
es (resp. weighted sum of fa
es). Let us give a geometri
 interpretation ofbinary fun
tions. Let (e1, . . . , ed) denote the 
anoni
al basis of Rd. The geometri
interpretation of a fa
e (x, i∗) is the 
losed subset of Rd de�ned by (see Fig. 1):
{x + ei +

∑

j 6=i

λjej | 0 ≤ λj ≤ 1}.



3This subset is nothing but a hyperfa
e of the unit 
ube of Rd whose lowest vertexis x. Then, the geometri
 interpretation of a binary fun
tion, that is, of a sumof fa
es, is the union of the geometri
al interpretations of these fa
es. Note thatsu
h a geometri
 interpretation 
annot be naturally extended over the whole Fd.Let us now introdu
e stepped planes.
e
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xFig. 1. Geometri
al interpretations of fa
es (x, i∗), for i = 1, 2, 3 (from left to right).De�nition 2. Let α ∈ Rd
+\{0} and ρ ∈ R. The stepped plane of normal ve
tor

α and inter
ept ρ ∈ R, denoted by Pα,ρ, is the binary fun
tion de�ned by :
Pα,ρ(x, i) = 1 ⇔ 〈x|α〉 < ρ ≤ 〈x + ei|α〉,where 〈|〉 is the 
anoni
al dot produ
t. We denote by Pd the set of stepped planes.Fig. 2 depi
ts the geometri
al interpretation of a stepped plane. It is not hardto 
he
k that the verti
es of a stepped plane Pα,ρ, that is, the integers ve
torswhi
h belong to its geometri
al interpretation, form a standard arithmeti
 dis-
rete plane of parameters (α, ρ), as de�ned in [7℄. Moreover, one 
he
ks that theorthogonal proje
tion along e1 + . . .+ed maps the geometri
al representation ofa stepped plane onto a tiling of Rd−1 whose tiles are proje
tions of geometri
alrepresentations of fa
es (see also Fig. 2).Binary fun
tions and, among them, stepped planes, are the obje
ts studied inthis paper. Let us now introdu
e the tools used to study them. First, let us re
allsome basi
 de�nitions and notations. We denote by Fd the free group generatedby the alphabet {1, . . . , d}, with the 
on
atenation as a 
omposition rule andthe empty word as unit. An endomorphism of Fd is a substitution if it maps anyletter to a non-empty 
on
atenation of letters with positive powers. The parikhmapping is the map f from Fd to Zd de�ned on w ∈ Fd by:

f(w) = (|w|1, . . . , |w|d),where |w|i is the sum of the powers of the o

uren
es of the letter i in w. Then,the in
iden
e matrix of an endomorphism σ of Fd, denoted by Mσ, is the d× dinteger matrix whose i-th 
olumn is the ve
tor f(σ(i)). Last, an endomorphismof Fd is said to be unimodular if its in
iden
e matrix has determinant ±1.
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Fig. 2. Geometri
al interpretation of the stepped plane P(24,9,10),0 (highlighted origin).This 
an be seen either as fa
es of unit 
ubes, or as a lozenge tiling of the plane.Example 1. Let σ be the endormorphism of F3 de�ned by σ(1) = 12, σ(2) = 13and σ(3) = 1. Note that σ is a substitution (often 
alled Rauzy substitution).One 
omputes, for example, σ(1−12) = σ(1)−1σ(2) = 2−11−113 = 2−13. Thissubstitution is unimodular sin
e its in
iden
e matrix (below) has determinant 1:
Mσ =





1 1 1
1 0 0
0 1 0



 .We are now in a position to de�ne dual maps :De�nition 3. The dual map of a unimodular endomorphism σ of Fd, denotedby E∗
1 (σ), maps any fun
tion F ∈ Fd to the fun
tion E∗

1 (σ)(F) de�ned by:
E∗

1 (σ)(F) : (x, i) 7→
∑

j|σ(i)=p·j·s

F(Mσx + f(p), j)−
∑

j|σ(i)=p·j-1·sF(Mσx + f(p)− ej , j).Note that the value of E∗
1 (σ)(F) in (x, i) is �nite sin
e it depends only onthe values of F over a �nite subset of Zd × {1, . . . , d}. This yields that E∗

1 (σ) isan endomorphism of Fd.Example 2. The dual map of the substitution σ introdu
ed in Ex. 1 satis�es:
E∗

1 (σ) :







(0, 1∗) 7→ (0, 1∗) + (0, 2∗) + (0, 3∗),
(0, 2∗) 7→ (−e3, 1

∗),
(0, 3∗) 7→ (−e3, 2

∗).The image of any fun
tion of Fd, that is, of a weighted sum of fa
es, 
an thenbe easily 
omputed by linearity. Fig. 3 illustrates this.The following theorem, proved in [2℄, 
onne
ts dual maps and stepped planes:
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Fig. 3. A
tion of the dual map of Ex. 2 on fa
es (left) and on a binary fun
tion (right).Let us stress that the image of a binary fun
tion is not ne
essarily binary (unlike here).Theorem 1 ([2℄). Let σ be a unimodular endomorphism of Fd. Let α ∈ Rd

+\{0}and ρ ∈ R. If M⊤
σ α ∈ Rd

+, then the image of the stepped plane Pα,ρ by the dualmap E∗
1 (σ) is the stepped plane PM⊤

σ α,ρ. Otherwise, this image is not binary.In parti
ular, note that if σ is a substitution, then one has M⊤
σ α ∈ Rd

+for any α ∈ Rd
+\{0}. Thus, the image of a stepped plane by the dual map of asubstitution is always a stepped plane. Let us stress that the the image by E∗

1 (σ)of a fa
e is a weighted sum of fa
es: this is only thanks to 
an
ellations betweenimages of di�erent fa
es that the image by E∗
1 (σ) of a stepped plane turns outto be, �nally, a stepped plane.2 Brun expansions of real ve
torsDe�nition 4. The Brun map T is the map from [0, 1]d\{0} to [0, 1]d de�nedon α = (α1, . . . , αd) by:

T (α1, . . . , αd) =

(

α1

αi
, . . . ,

αi−1

αi
,

1

αi
−

⌊

1

αi

⌋

,
αi+1

αi
, . . . ,

αd

αi

)

,where i = min{j | αj = ||α||∞}. Then, the Brun expansion of a ve
tor α ∈ [0, 1]dis the sequen
e (an, in)n≥0 of N∗ × {1, . . . , d} de�ned, while T n(α) 6= 0, by:
an =

⌊

||T n(α)||−1
∞

⌋ and in = min{j | 〈T n(α)|ej〉 = ||T
n(α)||∞}.Let us stress that, in the d = 1 
ase, the Brun map T is nothing but the
lassi
 Gauss map, and if (an, in)n≥0 is the Brun expansion of α ∈ [0, 1], then

(an)n is the 
ontinued fra
tion expansion of α, while, for all n, in = 1.Example 3. The Brun expansion of (3/8, 5/12) is (2, 2), (1, 1), (2, 2), (4, 1), (1, 2).Let us mention that, as in the 
ase of 
ontinued fra
tions, it turns out that ave
tor has a �nite Brun expansion if and only if it has only rational entries. Letus now give a matrix viewpoint of the Brun map T . For (a, i) ∈ N× {1, . . . , d},one introdu
es the following (d+ 1)× (d+ 1) symmetri
 matrix:
Ba,i =









a 1
Ii−1

1 0
Id−i









, (1)



6where Ip stands for the p× p identity matrix. Note that the determinant of Ba,iis equal to −1. Then, 
onsider a ve
tor α = (α1, . . . , αd) ∈ [0, 1]d\{0}. A simple
omputation shows that, with i = min{j | αj = ||α||∞} and a = ⌊α−1
i ⌋, one has:

(1,α) = ||α||∞Ba,i(1, T (α)), (2)where, for any ve
tor u, (1,u) stands for the ve
tor obtained by adding to ua �rst entry equal to 1. Note that sin
e Ba,i is invertible, one 
an rewrite theprevious equation as follows:
(1, T (α)) = ||α||−1

∞ B−1
a,i (1,α). (3)To 
on
lude this se
tion, let us show that this matrix viewpoint allows to
onne
t Brun expansions with the stepped planes and dual maps introdu
ed inthe previous se
tion. Let us introdu
e Brun substitutions :De�nition 5. Let a ∈ N∗ and i ∈ {1, . . . , d}. The Brun substitution βa,i is theendomorphism of Fd+1 de�ned by:

βa,i(1) = 1a· (i+ 1), βa,i(i+ 1) = 1, βa,i(j /∈ {1, i+ 1}) = j.One 
he
ks that the in
iden
e matrix of βa,i is the matrix Ba,i previously de�ned.Thus, βa,i is unimodular. Note also that βa,i is invertible sin
e one 
omputes:
β−1

a,i (1) = (i+ 1), β−1
a,i (i+ 1) = (i+ 1)−a· 1, β−1

a,i (j /∈ {1, i+ 1}) = j.

Fig. 4. A
tion on fa
es of the dual maps E∗

1 (β4,1) (top) and E∗

1 (β3,2) (bottom).One then 
an 
onsider dual maps of Brun substitutions (see Fig. 4). Onededu
es from Th. 1 that Eq. (2) and (3) respe
tively yield1 :
E∗

1 (βa,i)(P||α||∞(1,T (α)),ρ) = P(1,α),ρ, (4)
P||α||∞(1,T (α)),ρ = E∗

1 (β−1
a,i )(P(1,α),ρ). (5)1 note that B⊤

a,i = Ba,i



73 Generation of stepped planesThis se
tion shows how dual maps and Brun expansions 
an be 
ombined toeasily generate rational stepped planes, that is, stepped planes whose normalve
tors have rational entries. Indeed, one proves:Theorem 2. Let α ∈ [0, 1]d ∩Qd with the �nite Brun expansion (an, in)0≤n≤Nand ρ ∈ R. Let D(1,α),ρ be the binary fun
tion de�ned by:
D(1,α),ρ = E∗

1 (βa0,i0) ◦ . . . ◦ E
∗
1 (βaN ,iN

)(⌊ρ⌋e1, 1
∗),and L(1,α),ρ be the latti
e of rank d of Zd+1 de�ned by:

L(1,α),ρ = B−1
a0,i0

. . . B−1
aN ,iN

d+1
∑

k=2

Zek.Then, the geometri
al interpretation of the stepped plane P(1,α),ρ is the union ofall the translations along L(1,α),ρ of the geometri
al interpretation of D(1,α),ρ.Example 4. Fig. 5 shows the generation of the binary fun
tion D(1,3/8,5/12),0 bythe dual maps of the Brun substitutions asso
iated with the Brun expansion ofthe ve
tor (3/8, 5/12) (re
all Ex. 3). One also 
omputes:
L(1,3/8,5/12),0 = Z(e1 + 4e2 − 6e3) + Z(2e1 − 2e2 − 3e3).Thus, a

ording to Th. 2, the geometri
al interpretation of the rational steppedplane P(1,3/8,5/12),0 = P(24,9,10),0 (see Fig. 2) is the union of all the translationsalong L(1,3/8,5/12),0 of the geometri
al interpretation of D(1,3/8,5/12),0.

Fig. 5.Generation of D(1,3/8,5/12),0 by appli
ations of the dual maps E∗

1(β1,2), E∗

1 (β4,1),
E∗

1 (β2,2), E∗

1 (β1,1) and E∗

1 (β2,2) (from left ro right � highlighted origin). A

ording toTh. 2, the stepped plane P(1,3/8,5/12),0 
an be generated by translating D(1,3/8,5/12),0 .To 
on
lude this se
tion, let us mention that one 
an show that the binaryfun
tion D(1,α),ρ has minimal size among the binary fun
tions whi
h allow togenerate the stepped plane P(1,α),ρ by translations along a latti
e.



84 Brun expansions of stepped planesDe�nition 6. An (i, j)-run of a stepped plane P is a binary fun
tion less orequal to P, maximal, and whi
h 
an be written as follows:
∑

k∈I

(x + kej , i
∗),where x ∈ Zd and I is an interval of Z.In other words, an (i, j)-run of a stepped plane P is a non-empty sequen
e of
ontiguous fa
es of type i, aligned with the dire
tion ej , whose geometri
 inter-pretation is in
luded in the one of P . For example, the stepped plane depi
tedon Fig. 2 has (1, 2)-runs and (1, 3)-runs of size 2 or 3, and (3, 2)-runs of size 1or 2. The in�mum and the supremum of the sizes of the (i, j)-runs of P are re-spe
tively denoted by a−i,j(P) and a+

i,j(P). The following proposition shows thatruns 
ontain information about the normal ve
tor of a stepped plane:Proposition 1. Let α = (α1, . . . , αd) ∈ Rd
+\{0} and ρ ∈ R. Then, for αj 6= 0:

a−i,j(Pα,ρ) = max(⌊αi/αj⌋, 1) and a+
i,j(Pα,ρ) = max(⌈αi/αj⌉, 1),where the �oor and the 
eiling of x ∈ R are respe
tively denoted by ⌊x⌋ and ⌈x⌉.In parti
ular, let us show that runs 
ontain enough information to 
omputeBrun expansions of normal ve
tors of so-
alled expandable stepped planes:De�nition 7. A stepped plane P ∈ Pd+1 is said to be expandable if one has:

max
1≤i≤d

a+
i+1,1(P) = 1 and min

1≤i≤d
a−1,i+1(P) <∞.In this 
ase, we de�ne:

i(P) = min
1≤i≤d

{i | max
1≤j≤d

a+
j+1,i+1(P) ≤ 1} and a(P) = a−1,i(P)+1(P).One dedu
es from Prop. 1 that a stepped plane is expandable if and only ifits normal ve
tor is of the form (1,α), with α ∈ [0, 1]d\{0}. Then, one has:

i(P(1,α),ρ) = min{i | αi = ||α||∞} and a(P(1,α),ρ) = ⌊||α||−1
∞ ⌋. (6)This leads to the following de�nition:De�nition 8. Let T̃ be the map de�ned over expandable stepped planes by:

T̃ (P) = E∗
1 (β−1

a(P),i(P))(P).In parti
ular, T̃ has values in Pd+1. More pre
isely, Eq. (4) yields:
T̃ (P(1,α),ρ) = P(1,T (α)),ρ. (7)Thus, the Brun expansion of a ve
tor α 
an be 
omputed on a stepped plane P ofnormal ve
tor (1,α), sin
e it is nothing but the sequen
e (a(T̃ n(P)), i(T̃ n(P)))n.



95 Brun expansions of binary fun
tionsNote that the notion of runs 
an be naturally extended from stepped planes tobinary fun
tions. More pre
isely (see also Fig. 6):De�nition 9. An (i, j)-run of a binary fun
tion B is a binary fun
tion less orequal to B, maximal, and whi
h 
an be written as follows:
∑

k∈I

(x + kej , i
∗),where x ∈ Zd and I is an interval of Z. Su
h an (i, j)-run is said to be right-
losed if I has a maximum d su
h that B(x + dej , j

∗) = 1, and left-
losed if Ihas a minimum g su
h that B(x + (g − 1)ej + ei, j
∗) = 1.

Fig. 6. This binary fun
tion has every type of (1, 3)-runs: left-
losed, right-
losed,
losed and open (framed runs, from left to right). It is moreover re
ognizable, with
(a, i) = (2, 2) (see de�nition below).One still denotes respe
tively by a−i,j(B) and a+

i,j(B) the in�mum and thesupremum of the sizes of the (i, j)-runs of a binary fun
tion B. Thus, runs 
anbe used over binary fun
tions for grabing information, although interpretingthis information is not so easy, sin
e the notion of normal ve
tor generally doesnot make sense for a binary fun
tion. However, let us show that this allows tonaturally extend the de�nition of T̃ over so-
alled re
ognizable binary fun
tions:De�nition 10. Let B ∈ Bd+1 be a binary fun
tion. Consider the set:
{

i ∈ {1, . . . , d} | a+
1,i+1(B) ≥ 2 and min

1≤j≤d
a+

i+1,j+1(B) ≥ 2

}

.If it is not empty, let us denote by i(B) its minimum. Moreover, let us de�ne
a(B) = a+

1,i(B)+1(B) − 1. If a(B) turns out to be the size of a smallest 
losed
(1, i(B) + 1)-run of B, then B is said to be re
ognizable.It is not hard to dedu
e from Prop. 1 that if a re
ognizable binary fun
tion
B satis�es, for α ∈ Rd

+ and ρ ∈ R, B ≤ P(1,α),ρ, then re
ognizability 
onditionsensure that α ∈ [0, 1]d, i(B) = i(P(1,α),ρ) and a(B) = a(P(1,α),ρ). Thus, theformula de�ning T̃ over stepped planes 
an still be used to de�ne T̃ over re
og-nizable binary fun
tions (re
all Def. 8). This leads to de�ne the Brun expansionof a re
ognizable binary fun
tion B as the sequen
e (a(T̃ n(B)), i(T̃ n(B)))n, for
n su
h that T̃ n(B) is a re
ognizable binary fun
tion.



106 Re
ognition of stepped planesWe are here interested in, given a binary fun
tion B ∈ Bd+1, de
iding whetherthe following subset of Rd+1 is empty or not:
P (B) = {(α, ρ) ∈ [0, 1]d\{0} × R | B ≤ P(1,α),ρ}.Note that it is not hard to 
he
k that this subset is a 
onvex polytope. The ideeis that if the map T̃ previously de�ned would satisfy, for any B ∈ Bd+1:

0 ≤ B ≤ P ⇔ 0 ≤ T̃ (B) ≤ T̃ (P), (8)then, P (B) would be not empty if and only if 
omputing the sequen
e (T̃ n(B))n≥0would lead to a binary fun
tion of the form ∑

x∈X(x, 1∗), with the ve
tors of
X having all the same �rst entries (su
h a binary fun
tion is easily re
ognizable).However, Eq. (8) does not always hold. Indeed, re
all that T̃ is de�ned onlyover stepped planes and re
ognizable binary fun
tions. Note that this problemgenerally appears only for small binary fun
tions, be
ause their runs do not
ontain enough information. The following problem seems more tedious: theimage by T̃ of a re
ognizable binary fun
tion less or equal to a stepped plane Pis nether ne
essarily less or equal to T̃ (P), nor even always a binary fun
tion.Let us �rst 
onsider this problem. We introdu
e three rules a
ting over binaryfun
tions (see Fig. 7, and also Fig. 8, left):De�nition 11. Let a ∈ N∗ and i ∈ {1, . . . , d}. The rule φa,i left-extends anyright-
losed and left-open (1, i+ 1)-run into a run of size a; the rule ψa,i right-
loses any right-open (1, i + 1)-run of size greater than a; the rule χi removesany left-
losed and right-open (1, i+ 1)-run.

χ
2

ψ
2,2

φ
2,2Fig. 7. The rules φ2,2, ψ2,2 and χ2 (dashed edges represent missing fa
es).The following theorem then shows that one 
an repla
e any re
ognizablebinary fun
tion B by a binary fun
tion B̃, whi
h turns out to be suitable underan additional hypothesis (it shall not have open run):Proposition 2. Let B ∈ Bd+1 be a re
ognizable binary fun
tion and B̃ be thebinary fun
tion obtained by su

essively applying φa(B),i(B), ψa(B),i(B) and χi(B).



11Then, for any stepped plane P ∈ Pd+1, one has B ≤ P if and only if B̃ ≤ P.Moreover, if B̃ does not have open (1, i(B) + 1)-run, then one has :
0 ≤ B̃ ≤ P ⇔ 0 ≤ T̃ (B̃) ≤ T̃ (P).

= βE (     )T
~

1 2,2

−1*

Fig. 8. The re
ognizable binary fun
tion B of Fig. 6 is transformed by applying therules of Fig. 7 into a binary fun
tion B̃ (left) su
h that 0 ≤ B ≤ P ⇔ 0 ≤ B̃ ≤ P .Here, sin
e B̃ does not have open (1, 3)-run, its image by T̃ (right) is su
h that, for anystepped plane P , one has: 0 ≤ B̃ ≤ P ⇔ 0 ≤ T̃ (B̃) ≤ P .Thus, it remains two problems: re
ognizability does not always hold, and
B̃ 
an have open runs whi
h make troubles. However, again, let us stress thatunre
ognizable binary fun
tions as well as remaining open runs are often small.Hen
e, it 
ould be worth 
onsidering a hybrid algorithm. Given a re
ognizablebinary fun
tion B, we 
ompute B̃, remove problemati
 open runs and apply themap T̃ . We iterate this up to obtain an unre
ognizable binary fun
tion. Then, weuse an other existing algorithm to re
ognize this binary fun
tion and also, �nally,to re�ne the re
ognition by 
onsidering the previously removed open runs. Morepre
isely, 
onsider the following algorithm, where XRe
o is an algorithm whi
h
omputes the set P (B) and B′

a,i is the (d+ 2)× (d+ 2) blo
k matrix whose �rstblo
k is Ba,i and the se
ond the 1× 1 identity matrix:HybridBrunRe
o(B)1. n ← 0;2. B0 ← B;3. while Bn is re
ognizable do4. (an, in) ← (a(Bn), i(Bn));5. 
ompute B̃n;6. Ln ← open runs of B̃n;7. Bn+1 ← E∗
1 (β−1

an,in
)(B̃n − Ln);8. n ← n+ 1;9. end while;10. Pn ← XRe
o(Bn);11. for k = n− 1 downto k=0 do12. Pk ← B′

ak,ik
Pk+1;13. Pk ← Pk ∩ XRe
o(Lk);14. end for;15. return P0;



12One shows:Theorem 3. The algorithm HybridBrunRe
o with a binary fun
tion B as inputreturns the set P (B) in �nite time.To 
on
lude, let us dis
uss the 
omputational 
ost of the above algorithm.Let us �rst fo
us on the �Brun� stage of the algorithm, that is, on lines 3�9. One
an shows that ea
h step of this stage 
an be performed in time O(|Bn|) and that
|Bn| stri
tly de
reases. Thus, the whole stage 
an be performed in quadrati
 time(in the size of B). However, let us stress that (|Bn|)n generally de
reases with anexponential rate (this is the 
ase, for example, for any stepped plane), so thatthis stage is expe
ted, in pra
ti
e, to be performed in near linear time. Let usnow 
onsider the �
orre
tion� stage of the algorithm, that is, lines 10�14. Notethat the sum of sizes of inputs of XRe
o is less than |B|. Thus, assuming thatXRe
o works in time no more than quadrati
 (su
h algorithms do exist!), thebound given for the �rst stage still holds. We also need to 
ompute interse
tionsof 
onvex polytopes. The 
omplexity of su
h operations is not trivial in highdimensions, but let us stress that the interse
tion of k 
onvex polytopes of R3
an be 
omputed in time O(m ln k), where m stands for the total size of thesepolytopes (see [4℄). Moreover, let us re
all that the �rst unre
ognizable Bn aswell as the sum of sizes of the Lk's are expe
ted to be mu
h smaller than B.In 
on
lusion, theoreti
al time 
omplexity bounds are probably mu
h biggerthan the pra
ti
al e�
ien
y of this algorithm, and further expriments should beperformed to get a better analysis.Referen
es1. P. Arnoux, S. Ito, Pisot substitutions and Rauzy fra
tals, Bull. Bel. Math. So
. SimonStevin 8 (2001), pp. 181�207.2. V. Berthé, Th. Fernique, Brun expansions of stepped surfa
es, preprint (2007).3. V. Brimkov, D. C÷urjolly, Computational aspe
ts of Digital plane and hyperplanere
ognition, in pro
. of IWCIA'06, LNCS 4040 (2006), pp. 543�562.4. B. Chazelle, An optimal algorithm for interse
ting three-dimensional 
onvex polyhe-dra, SIAM J. Comput. 696 (1992), pp. 214�671.5. H. Ei, Some properties of invertible substitutions of rank d and higher dimensionalsubstitutions, Osaka Journal of Mathemati
s 40 (2003), pp. 543�562.6. R. Klette, A. Rosenfeld, Digital straightness�a review, Ele
. Notes in Theoret. Com-put. S
i. 46 (2001).7. J.-P. Reveillès, Cal
ul en nombres entiers et algorithmique, Ph. D Thesis, Univ.Louis Pasteur, Strasbourg (1991).8. F. S
hweiger, Multi-dimensional 
ontinued fra
tions, Oxford S
ien
e Publi
ations,Oxford Univ. Press, Oxford (2000).9. L. Vuillon, "Combinatoire des motifs d'une suite sturmienne bidimensionelle," The-oret. Comput. S
i. 209 (1998) pp. 261�285.



13AppendixProposition 1. Let α = (α1, . . . , αd) ∈ Rd
+\{0} and ρ ∈ R. Then, for αj 6= 0:

a−i,j(Pα,ρ) = max(⌊αi/αj⌋, 1) and a+
i,j(Pα,ρ) = max(⌈αi/αj⌉, 1),where the �oor and the 
eiling of x ∈ R are respe
tively denoted by ⌊x⌋ and ⌈x⌉.Proof. Let x ∈ Zd and I ⊂ Z su
h that the following binary fun
tion is an

(i, j)-run of Pα,ρ:
K =

∑

k∈I

(x + kej , i
∗).Assume that I 
ontains an interval [a, b], of length b− a+ 1. Then, one has:

Pα,ρ(x + aej , i) = 1 ⇒ 〈x|α〉+ aαj < ρ ≤ 〈x|α〉+ aαj + αi,

Pα,ρ(x + bej , i) = 1 ⇒ 〈x|α〉+ bαj < ρ ≤ 〈x|α〉+ bαj + αi.One dedu
es:
(b− a)αj < ρ− 〈x|α〉 ≤ αi,that is, for αj 6= 0:

b− a+ 1 <
αi

αj
+ 1.This thus gives an upper bounds of the length of I. If I is not empty, let us write

I = [a, b]. Then, one has:
Pα,ρ(x + aej , i) = 1 ⇒ 〈x|α〉+ (a− 1)αj < 〈x|α〉+ aαj < ρ,and one dedu
es:
Pα,ρ(x + (a− 1)ej , i) = 0 ⇒ ρ > 〈x|α〉+ (a− 1)αj + αi.Similarly, one shows:

ρ ≤ 〈x|α〉+ (b+ 1)αj + αi.Finally, one has:
(a− 1)αj + αi < ρ− 〈x|α〉 ≤ (b + 1)αj ,that is, for αj 6= 0:

b− a+ 1 >
αi

αj
− 1.This thus gives a lower bounds of the length of I. Moreove, note that if I isempty, then one has:

∀x ∈ Zd, ρ− 〈x|α〉 /∈]0, αi].It is not hard to see that this yields that αj > αi, that is, 
αi/αj − 1 < 0. Theabove lower bound thus still holds. In 
on
lusion, we shown:
αi

αj
− 1 < a−i,j(Pα,ρ) ≤ a

+
i,j(Pα,ρ) <

αi

αj
+ 1.The result follows (re
all that, by de�nition, runs are non-empty). ⊓⊔



14Theorem 2. Let α ∈ [0, 1]d ∩Qd with the �nite Brun expansion (an, in)0≤n≤Nand ρ ∈ R. Let D(1,α),ρ be the binary fun
tion de�ned by:
D(1,α),ρ = E∗

1 (βa0,i0) ◦ . . . ◦ E
∗
1 (βaN ,iN

)(⌊ρ⌋e1, 1
∗),and L(1,α),ρ be the latti
e of rank d of Zd+1 de�ned by:

L(1,α),ρ = B−1
a0,i0

. . . B−1
aN ,iN

d+1
∑

k=2

Zek.Then, the geometri
al interpretation of the stepped plane P(1,α),ρ is the union ofall the translations along L(1,α),ρ of the geometri
al interpretation of D(1,α),ρ.Proof. On the other hand, one easily sees that translations of the geometri
alinterpretation of (⌊ρ⌋e1, e
∗
1) along the latti
e Ze2 + . . . + Zed+1 yield the geo-metri
al interpretation of the stepped plane P(1,0),ρ. On the other hand, if D isa binary fun
tion su
h that the translations along a latti
e L of its geometri
alinterpretation yield the geometri
al interpretation of a stepped plane P , then,for any unimodular substitution σ, Th.1 yields that E∗

1 (σ)(D) is a binary fun
-tion whose geometri
al interpretation, translated along the latti
e M−1
σ L, yieldsthe geometri
al interpretation of the stepped plane E∗

1 (σ)(P). The result followsby 
onsidering the unimodular substitution σ = βaN ,iN
◦ . . . ◦ βa0,i0 . ⊓⊔Proposition 2. Let B be a re
ognizable binary fun
tion of Bd+1 and B̃ thebinary fun
tion obtained by su

essively applying φa(B),i(B), ψa(B),i(B) and χi(B).Then, for any stepped plane P ∈ Pd+1, one has B ≤ P if and only if B̃ ≤ P.Moreover, if B̃ does not have open (1, i(B) + 1)-run, then one has :

0 ≤ B̃ ≤ P ⇔ 0 ≤ T̃ (B̃) ≤ T̃ (P).Proof. Let B be a re
ognizable binary fun
tion. Assume that there is a steppedplane P su
h that B ≤ P . Thus, any left-open and right-
losed (1, i+1)-run of Bis less or equal to a 
losed (1, i+1)-run of P . Sin
e su
h a run has length at least
a(P) = a(B), this yields that φa(B),i(B)(B) is still less or equal to P . Conversely,if φa(B),i(B)(B) is less or equal to P , then B also sin
e B ≤ φa(B),i(B)(B). Thisshows that B ≤ P if and only if φa(B),i(B)(B) ≤ P . One similarly pro
eeds for
ψa,i et χi, so that, �nally, B ≤ P if and only if B̃ ≤ P .Let us now assume that B̃ does not have open (1, i(B)+1)-run. It is not hardto see that B̃ 
an be written as the image by E∗

1 (βa,i) of a binary fun
tion, say
B̃′ (a
tually, this is what led the de�nition of rules φa,i, ψa,i and χi). It is alsoeasily seen that B̃ is, as B, re
ognizable. In parti
ular, T̃ (B̃) = E∗

1 (β−1
a(B),i(B))(B̃)is a binary fun
tion. Now, assume that there is a stepped plane P su
h that

B̃ ≤ P and T̃ (P) ≥ 0. Let us introdu
e the binary fun
tion C = P − B̃. The fa
tthat both P and B̃ are images by E∗
1 (βa,i) of binary fun
tions yields that it is



15also the 
ase for C. So, one has: C = E∗
1 (βa,i)(C

′), for some binary fun
tion C′.Hen
e, by applying T̃ = E∗
1 (β−1

a(P),i(P)) on P , one obtains:
T̃ (P) = T̃ (B̃) + T̃ (C) = T̃ (B̃) + C′ ≥ T̃ (B̃) = B̃′ ≥ 0.Thus, we shown that one has, for any stepped plane P :

0 ≤ B̃ ≤ P ⇒ 0 ≤ T̃ (B̃) ≤ T̃ (P).Conversely, assume that 0 ≤ T̃ (B̃)leqT̃ (P) for some stepped plane P . It is easilyseen that the subset of positive fun
tions of F is stable under dual maps ofsubstitutions. Thus, sin
e βa(P),i(P) is a subsitution, applying E∗
1 (βa(P),i(P))yields 0 ≤ B̃ ≤ P . This 
on
ludes the proof. ⊓⊔Theorem 3. The algorithm HybridBrunRe
o with a binary fun
tion B as inputreturns the set P (B) in �nite time.Proof. Let us �rst shows that the algorithm �nishes, by proving that |Bn+1| isless than |Bn| (so that, eventually, Bn is not a re
ognizable binary fun
tion).Let us respe
tively denote f(Bn), f(B̃n − Ln) and f(Bn+1) by (x1, . . . , xd+1),

(y1, . . . , yd+1) and (z1, . . . , zd+1), where f maps any binary fun
tion of �nite sizeonto the integer ve
tor whose i-th entry 
ounts the number of fa
es of type i inthis binary fun
tion. One 
he
ks that the a
tion of dual maps yields:






z1 = yin+1,
zin+1 = y1 − anyin+1,
zj = yj .We also easily dedu
e from the de�nition of B̃:







y1 = x1 + axin+1 − x
′
1,

yin+1 = xin+1 + 1
an+1x

′′
1 ,

yj = xj ,where x′1 (resp. x′′1 ) is the sum of the sizes of the (1, in + 1)-runs extended by
φan,in

(resp. ψan,in
). One then 
omputes:

|Bn+1| =

d+1
∑

j=1

zj =

d+1
∑

j=1

xj +
1− an

an + 1
x′′1 − x

′
1 = |Bn|+

1− an

an + 1
x′′1 − x

′
1.Sin
e an ≥ 1, one has |Bn+1| ≤ |Bn|, with the inegality being stri
t ex
ept if

x′1 = 0. But x′1 = 0 would mean that there is no right-
losed (1, in +1)-run, andthus that Bn would not be re
ognizable. Thus, x′1 6= 0, and one has |Bn+1| < |Bn|.Let us now prove the 
orre
tion of the algorithm. We pro
eed by indu
tionon the number of steps of the �Brun� stage, that is, lines 3�9. If n = 0, this



16follows from the (assumed) 
orre
tion of XRe
o. Assume that the result holdsfor n. One 
he
ks:
((1,α), ρ) ∈ P (B0)⇔ 0 ≤ B0 ≤ P(1,α),ρ

⇔ 0 ≤ B̃0 ≤ P(1,α),ρ

⇔ 0 ≤ B̃0 − L0 ≤ P(1,α),ρ et 0 ≤ L0 ≤ P(1,α),ρ

⇔ 0 ≤ B1 ≤ PB−1

a0,i0
(1,α),ρ et ((1,α), ρ) ∈ XRe
o(L0)

⇔ (B−1
a0,i0

(1,α), ρ) ∈ P (B1) et ((1,α), ρ) ∈ XRe
o(L0)Note that this is Prop. 2 whi
h ensures that we 
an go from the �rst to these
ond lines and from the third one to the fourth one (by applying E∗
1 (β−1

a0,i0
)).Finally, one has:

P (B0) = B′
a0,i0P (B1) ∩ XRe
o(L0).The 
orre
tion of the algorithm follows by indu
tion. ⊓⊔


