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Generation and Recognition of Digital Plane
using Multi-dimensional Continued Fractions

Thomas Fernique

LIRMM, Univ. Montpellier 2, CNRS
161 rue Ada 34392 Montpellier - France,
fernique@lirmm.fr

Abstract. This paper provides a multi-dimensional generalization of
pattern recognition technics for generation or recognition of digital lines.
More precisely, we show how the connection between chain codes of dig-
ital lines and continued fractions can be generalized by a connection
between tilings and multi-dimensional continued fractions. This leads to
a new approach for generating and recognizing digital hyperplanes.

Introduction

Discrete (or digital) geometry deals with discrete sets considered to be digitized
objects of the Euclidean space. A challenging problem is to decompose a huge
complicated discrete set into elementary ones, which could be easily stored and
from which one can easily reconstruct the original discrete set. Good candidates
for such elementary discrete sets are digitizations of Euclidean hyperplanes, in
particular arithmetic discrete hyperplanes, as defined in [7]. This led to search
efficient algorithms to go from the parameters of an Euclidean hyperplane to its
digitization (generation) and conversely (recognition).

In the particular case of digitizations of lines, among other technics, so-called
linguistic technics provide a nice connections with words theory and continued
fractions. Let us briefly detail this. A digital line made of horizontal or vertical
unit segments can be coded by a two-letter word, called chain code. For exam-
ple, if a horizontal (resp. vertical) unit segment is coded by 0 (resp. 1), then a
segment of slope 1 can be coded by a word of the form 10...10 = (10)*. Then,
basic transformations on words correspond to basic operations on slopes of the
segments they code. For example, replacing each 0 by 01 and each 1 by 0 in
the previous word leads to the word (001)*, which codes a segment of slope 1/2.
Many algorithms use this approach for both recognition and generation of digital
lines, and continued fraction expansions of slopes of segments turn out to play
a central role in this context (see e.g. [6] and references therein).

In higher dimensions, there is also various technics for generation or recog-
nition of digital hyperplane as, for example, linear programming, computational
geometry or preimage technics (see e.g. [3] and references therein). However,



none of these approaches provides a natural extension of the above connection
with words theory and continued fractions. The aim of this paper is to introduce
such an approach.

The paper is organized as follows. In Sec. 1, we introduce stepped planes and
dual maps. Stepped planes, that can also be seen as tilings, are digitizations of
Euclidean hyperplane (see [9]). They play for hyperplanes the role played by
chain codes for lines. Dual maps act on stepped planes and generalize the basic
transformations on chain codes mentioned above (see [1, 5]). Then, in Sec. 2, we
briefly describe the Brun algorithm, which is one of existing multi-dimensional
continued fraction algorithms (see [8]). The Brun algorithm computes so-called
Brun expansions of real vectors. Note that the choice of this algorithm is rather
arbitrary: many similar algorithms could play the same role in this paper. We
also introduce particular dual maps which allow the Brun algorithm to act over
stepped planes. This leads, in Sec. 3, to a method for generating a piece of a
stepped plane which suffices to generate the whole stepped plane (Th. 2). In Sec.
4, we describe a method to compute so-called Brun expansions of stepped planes,
by grabing information from local configurations of this stepped plane (namely
runs). It turns out that the Brun expansion of a stepped plane is nothing but
the Brun expansion of its normal vector. This method is then extended in Sec.
5 to compute Brun expansions of so-called binary functions, which generalize
stepped planes. In particular, let us stress that the notion of normal vectors
does not make any more sense for binary functions. Thus, it is rather unclear
whether a real vector and a binary function have identical Brun expansions.
However, we show in Sec. 6 that Brun expansions of binary functions can be
used for recognizing stepped planes among binary functions. More precisely, we
give an algorithm computing the paramaters of Euclidean hyperplanes whose
digitizations are stepped planes containing a given binary function (Th. 3).

1 Stepped planes and dual maps

We work in the Z-module of functions from Z? x {1,...,d} to Z, denoted by 4.
More precisely, we are especially interested in the following functions of §g4:

Definition 1. A binary function is a function of §4 which takes values in {0,1}.
The size of a binary function B, denoted by |B|, is the cardinal of its support,
that is, the subset of Z¢ x {1,...,d} where B takes value one. We denote by B,
the set of binary functions. For € € Z¢ and i € {1,...,d}, the face of type i
located in x is the binary function denoted by (x,i*) whose support is {(x,1)}.

Note that any function of B4 (resp. F4) can be seen as a possibly infinite sum
of faces (resp. weighted sum of faces). Let us give a geometric interpretation of
binary functions. Let (ey, ..., eq) denote the canonical basis of R?. The geometric
interpretation of a face (x,i*) is the closed subset of R? defined by (see Fig. 1):

{z+ei+> Nej [0< )\ <1},
J#i



This subset is nothing but a hyperface of the unit cube of R? whose lowest vertex
is . Then, the geometric interpretation of a binary function, that is, of a sum
of faces, is the union of the geometrical interpretations of these faces. Note that
such a geometric interpretation cannot be naturally extended over the whole .
Let us now introduce stepped planes.

Fig. 1. Geometrical interpretations of faces (x,i*), for i = 1,2,3 (from left to right).

Definition 2. Let a € R1\{0} and p € R. The stepped plane of normal vector
o and intercept p € R, denoted by Pq ,, is the binary function defined by :

Paplx,i) =1 & (z|la) < p < (x+ e|a),
where (|) is the canonical dot product. We denote by Bg the set of stepped planes.

Fig. 2 depicts the geometrical interpretation of a stepped plane. It is not hard
to check that the vertices of a stepped plane Pq ,, that is, the integers vectors
which belong to its geometrical interpretation, form a standard arithmetic dis-
crete plane of parameters (o, p), as defined in [7]. Moreover, one checks that the
orthogonal projection along e; +. ..+ ey maps the geometrical representation of
a stepped plane onto a tiling of R?~! whose tiles are projections of geometrical
representations of faces (see also Fig. 2).

Binary functions and, among them, stepped planes, are the objects studied in
this paper. Let us now introduce the tools used to study them. First, let us recall
some basic definitions and notations. We denote by Fy the free group generated
by the alphabet {1,...,d}, with the concatenation as a composition rule and
the empty word as unit. An endomorphism of Fj is a substitution if it maps any
letter to a non-empty concatenation of letters with positive powers. The parikh
mapping is the map f from F,; to Z¢ defined on w € Fy by:

f(w) = (|w|17 EERE) |w|d)a

where |w|; is the sum of the powers of the occurences of the letter ¢ in w. Then,
the incidence matriz of an endomorphism o of Fy, denoted by M,, is the d x d
integer matrix whose i-th column is the vector f(o()). Last, an endomorphism
of Fy is said to be unimodular if its incidence matrix has determinant +1.
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Fig. 2. Geometrical interpretation of the stepped plane P(24,9,10),0 (highlighted origin).
This can be seen either as faces of unit cubes, or as a lozenge tiling of the plane.

Ezample 1. Let o be the endormorphism of F3 defined by o(1) = 12, ¢(2) = 13
and o(3) = 1. Note that o is a substitution (often called Rauzy substitution).
One computes, for example, o(1712) = o(1)710(2) = 27117113 = 2713, This
substitution is unimodular since its incidence matrix (below) has determinant 1:

111
M,=1100
010

We are now in a position to define dual maps:

Definition 3. The dual map of a unimodular endomorphism o of Fy, denoted
by E5 (o), maps any function F € Fq to the function E5(0)(F) defined by:

Ef(o)(F) : (@,i) — Z F(Mox + f(p),j) — Z F(Myz + f(p) — €5, 7).
Jlo(i)=p-j-s jlo(@)=p-j-s

Note that the value of Ef(0)(F) in («,4) is finite since it depends only on
the values of F over a finite subset of Z? x {1,...,d}. This yields that Ef (o) is
an endomorphism of Fg4.

Ezample 2. The dual map of the substitution ¢ introduced in Ex. 1 satisfies:

(0,1%) — (0,1%) +(0,2%) + (0,3%),
Ef(o) © q(0,27) — (—es,1%),
(0,3*) — (—es,2%).

The image of any function of §4, that is, of a weighted sum of faces, can then
be easily computed by linearity. Fig. 3 illustrates this.

The following theorem, proved in [2], connects dual maps and stepped planes:



Fig. 3. Action of the dual map of Ex. 2 on faces (left) and on a binary function (right).
Let us stress that the image of a binary function is not necessarily binary (unlike here).

Theorem 1 (|2]). Let o be a unimodular endomorphism of Fy. Let o € R%\{0}
and peR. If Mo € R‘i, then the image of the stepped plane Pq,, by the dual
map E7 (o) is the stepped plane PurTa,p- Otherwise, this image is not binary.

In particular, note that if o is a substitution, then one has MUTa S Ri
for any a € Ri\{O}. Thus, the image of a stepped plane by the dual map of a
substitution is always a stepped plane. Let us stress that the the image by Ef (o)
of a face is a weighted sum of faces: this is only thanks to cancellations between
images of different faces that the image by E; (o) of a stepped plane turns out
to be, finally, a stepped plane.

2 Brun expansions of real vectors

Definition 4. The Brun map T is the map from [0,1]%\{0} to [0,1]¢ defined
on o= (a,...,aq) by:

i-1 1 1 i
T(al,...,ad>:(ﬂ...,a 1,__H,@,...,%),

o’ QG Qg Qg Q;
where i = min{j | a; = ||a||x}. Then, the Brun expansion of a vector v € [0,1]%
is the sequence (an,in)n>0 of N* x {1,...,d} defined, while T"(cx) # 0, by:
an = [[[T"()|IX]  and in = min{j | (T"(a)le;) = [|T" ()|}
Let us stress that, in the d = 1 case, the Brun map T is nothing but the

classic Gauss map, and if (an,in)n>0 is the Brun expansion of e € [0,1], then
(an)n is the continued fraction expansion of «, while, for all n, i, = 1.

Ezample 3. The Brun expansion of (3/8,5/12) is (2,2),(1,1),(2,2), (4,1),(1, 2).

Let us mention that, as in the case of continued fractions, it turns out that a
vector has a finite Brun expansion if and only if it has only rational entries. Let

us now give a matrix viewpoint of the Brun map T For (a,7) € N x {1,...,d},
one introduces the following (d 4+ 1) x (d + 1) symmetric matrix:
a 1
_ Ii4
Ba,l - 1 O b (1)



where I, stands for the p x p identity matrix. Note that the determinant of B, ;

is equal to —1. Then, consider a vector a = (az,...,aq) € [0,1]4\{0}. A simple
computation shows that, with i = min{j | a; = ||@||~} and a = [a; '], one has:
(1La) = ||a||OOBa>i(17T(a))v (2)

where, for any vector u, (1,u) stands for the vector obtained by adding to u
a first entry equal to 1. Note that since B, ; is invertible, one can rewrite the
previous equation as follows:

—1p-1
(1, T(@)) = llal|2 B, (1 a). (3)
To conclude this section, let us show that this matrix viewpoint allows to
connect Brun expansions with the stepped planes and dual maps introduced in

the previous section. Let us introduce Brun substitutions:

Definition 5. Let a € N* and i € {1,...,d}. The Brun substitution G, ; is the
endomorphism of Fyi1 defined by:

6{1,1’(1) = 1a'(i+1)7 ﬁa,i(i+1) = 17 ﬁa,i(j¢ {17Z+1}):.7

One checks that the incidence matriz of B, is the matriz B, ; previously defined.
Thus, Bq,; is unimodular. Note also that (3, ; is invertible since one computes:

BaiW)=(+1), Fi(i+1)=(+1)""1, B ;(G¢{Li+1})=7

Q% I—q o—-<

mﬂg g <0

Fig. 4. Action on faces of the dual maps Ej (34,1) (top) and E7(8s,2) (bottom).

One then can consider dual maps of Brun substitutions (see Fig. 4). One
deduces from Th. 1 that Eq. (2) and (3) respectively yield® :

E7 (Ba,i) (Plla| o (1,7(0)),0) = P(1,0),5 (4)
Plladle (1,70 = B (82.0) (P,a),p)- (5)

! note that BL = Ba,i



3 Generation of stepped planes

This section shows how dual maps and Brun expansions can be combined to
easily generate rational stepped planes, that is, stepped planes whose normal
vectors have rational entries. Indeed, one proves:

Theorem 2. Let o € [0,1]¢ N Q? with the finite Brun expansion (an,in)o<n<N
and p € R. Let Dy o), be the binary function defined by:

D(l,a),p = Er(ﬁaoﬂ'o) ©...0 Er(ﬁaNyiN)(\_pJelv 1*)7
and L o), be the lattice of rank d of 741 defined by:
d+1
-1 -1
L(La)vp = Bao,io - 'BaNﬁiN ZZek.
k=2
Then, the geometrical interpretation of the stepped plane P(1 «),, i the union of
all the translations along L1 o), of the geometrical interpretation of D1 ), p-

Ezample 4. Fig. 5 shows the generation of the binary function D(; 3/85/12),0 by
the dual maps of the Brun substitutions associated with the Brun expansion of
the vector (3/8,5/12) (recall Ex. 3). One also computes:

L(1,3/8,5/12),0 = Z(e1 + 4ex — 6e3) + Z(2e1 — 2e; — 3es).

Thus, according to Th. 2, the geometrical interpretation of the rational stepped
plane P(; 3/55/12),0 = P(24,9,10),0 (see Fig. 2) is the union of all the translations
along L1 3/85/12),0 of the geometrical interpretation of D(; 3/8 5/12),0-

uﬂ@ﬂ%ﬂ%ﬂt@mﬂg

Fig. 5. Generation of D 3/5 5/12),0 by applications of the dual maps EY(51,2), E7(84,1),
E7(B2,2), EY (B1,1) and ET(B2,2) (from left ro right highlighted origin). According to
Th. 2, the stepped plane P(1,3/55/12),0 can be generated by translating D(; 3/55/12),0-

To conclude this section, let us mention that one can show that the binary
function D(; q),, has minimal size among the binary functions which allow to
generate the stepped plane P(; o), , by translations along a lattice.



4 Brun expansions of stepped planes

Definition 6. An (i,j)-run of a stepped plane P is a binary function less or
equal to P, mazimal, and which can be written as follows:

Z(m—i—kej,i*),

kel
where x € Z% and I is an interval of 7.

In other words, an (4, j)-run of a stepped plane P is a non-empty sequence of
contiguous faces of type i, aligned with the direction e;, whose geometric inter-
pretation is included in the one of P. For example, the stepped plane depicted
on Fig. 2 has (1,2)-runs and (1, 3)-runs of size 2 or 3, and (3, 2)-runs of size 1
or 2. The infimum and the supremum of the sizes of the (i, j)-runs of P are re-
spectively denoted by a; ;(P) and a:j(P). The following proposition shows that
runs contain information about the normal vector of a stepped plane:

Proposition 1. Let o = (..., aq) € RI\{0} and p € R. Then, for a;j # 0:

a; j(Pa,p) = max(la;/a;],1)  and  af;(Pa,p) = max([a;/a;], 1),
where the floor and the ceiling of x € R are respectively denoted by |x| and [z].

In particular, let us show that runs contain enough information to compute
Brun expansions of normal vectors of so-called ezpandable stepped planes:

Definition 7. A stepped plane P € Pyt is said to be expandable if one has:

+ _ . —
112?‘§)(dai+1,1(7)) =1 and =2, ay ;41(P) < 00

In this case, we define:

i(P) = éliigd{i | 122 a1 (P) <1} and a(P) = ayicpy1(P)-

One deduces from Prop. 1 that a stepped plane is expandable if and only if
its normal vector is of the form (1, ), with a € [0,1]4\{0}. Then, one has:

i(Pa,ay,p) = minfi | a; = [lall} and  a(Pg,ay,) = lllallS']. (6)
This leads to the following definition:

Definition 8. Let T be the map defined over expandable stepped planes by:

T(P) = ET (ﬁ;(%))ﬂ'(p))(tp)'

In particular, T has values in PBqy1. More precisely, Eq. (4) yields:

T(Pa,a).0) = Pa,r(a)),p- (7)

Thus, the Brun expansion of a vector a can be computed on a stepped plane P of
normal vector (1, ), since it is nothing but the sequence (a(T™(P)),i(T™(P)))n.



5 Brun expansions of binary functions

Note that the notion of runs can be naturally extended from stepped planes to
binary functions. More precisely (see also Fig. 6):

Definition 9. An (i,j)-run of a binary function B is a binary function less or
equal to B, maximal, and which can be written as follows:

Z(m—i—kej,i*),
kel

where € 7% and I is an interval of Z. Such an (i, j)-run is said to be right-
closed if I has a mazimum d such that B(x + de;,j*) = 1, and left-closed if I
has a minimum g such that B(x + (g9 — 1)e; +e;,5*) = 1.

Fig. 6. This binary function has every type of (1,3)-runs: left-closed, right-closed,
closed and open (framed runs, from left to right). It is moreover recognizable, with
(a,) = (2,2) (see definition below).

One still denotes respectively by a; ;(B) and a:j(B) the infimum and the
supremum of the sizes of the (¢, j)-runs of a binary function B. Thus, runs can
be used over binary functions for grabing information, although interpreting
this information is not so easy, since the notion of normal vector generally does
not make sense for a binary function. However, let us show that this allows to
naturally extend the definition of T over so-called recognizable binary functions:

Definition 10. Let B € B441 be a binary function. Consider the set:

{i e{l,...,d} | aii_ﬂ(B) > 2 and 1r§11J_i£1daLl7j+l(B) > 2}.

If it is not empty, let us denote by i(B) its minimum. Moreover, let us define
a(B) = afi(B)Jrl(B) — 1. If a(B) turns out to be the size of a smallest closed

(1,i(B) + 1)-run of B, then B is said to be recognizable.

It is not hard to deduce from Prop. 1 that if a recognizable binary function
B satisfies, for a € R‘i and p € R, B < P(1 q),,, then recognizability conditions
ensure that o € [0,1]%, i(B) = i(P(1,a),p) and a(B) = a(P(1,«),). Thus, the
formula defining T over stepped planes can still be used to define T over recog-
nizable binary functions (recall Def. 8). This leads to define the Brun expansion
of a recognizable binary function B as the sequence (a(T"(B)),i(T"(B)))y, for
n such that T"(B) is a recognizable binary function.
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6 Recognition of stepped planes

We are here interested in, given a binary function B € 84,1, deciding whether
the following subset of R4+! is empty or not:

P(B) = {(e, p) € [0,1]\{0} x R | B < P(1a9,}-

Note that it is not hard to check that this subset is a convex polytope. The idee
is that if the map T previously defined would satisfy, for any B € B4,1:

0<B<P & 0<T(B)<T(P), (8)

then, P(B) would be not empty if and only if computing the sequence (T"(B))n>0
would lead to a binary function of the form . (x,1%), with the vectors of
X having all the same first entries (such a binary function is easily recognizable).

However, Eq. (8) does not always hold. Indeed, recall that T is defined only
over stepped planes and recognizable binary functions. Note that this problem
generally appears only for small binary functions, because their runs do not
contain enough information. The following problem seems more tedious: the
image by T of a recognizable binary function less or equal to a stepped plane P
is nether necessarily less or equal to T(P), nor even always a binary function.
Let us first consider this problem. We introduce three rules acting over binary
functions (see Fig. 7, and also Fig. 8, left):

Definition 11. Let a € N* and i € {1,...,d}. The rule ¢, left-extends any
right-closed and left-open (1,7 + 1)-run into a run of size a; the rule 1, ; right-
closes any right-open (1,1 + 1)-run of size greater than a; the rule x; removes
any left-closed and right-open (1,7 + 1)-run.

TESEIN Y e

Fig. 7. The rules ¢2 2, 12,2 and x2 (dashed edges represent missing faces).

The following theorem then shows that one can replace any recognizable
binary function B by a binary function B, which turns out to be suitable under
an additional hypothesis (it shall not have open run):

Proposition 2. Let B € By1 be a recognizable binary function and B be the
binary function obtained by successively applying ¢o(B).i(B), VaB),i(B) 41d Xi(B)-
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Then, for any stepped plane P € Pai1, one has B < P if and only if B<P.
Moreover, if B does not have open (1,i(B) + 1)-run, then one has :

0<B<P & 0<T(B)<T(P).

Fig. 8. The recognizable binary function B of Fig. 6 is transformed by applying the
rules of Fig. 7 into a binary function B (left) such that 0 < B < P < 0 < B < P.
Here, since B does not have open (1, 3)-run, its image by T (right) is such that, for any
stepped plane P, one has: 0 < B< P < 0 < T(B) <P.

Thus, it remains two problems: recognizability does not always hold, and
B can have open runs which make troubles. However, again, let us stress that
unrecognizable binary functions as well as remaining open runs are often small.
Hence, it could be worth considering a hybrid algorithm. Given a recognizable
binary function B, we compute B, remove problematic open runs and apply the
map T. We iterate this up to obtain an unrecognizable binary function. Then, we
use an other existing algorithm to recognize this binary function and also, finally,
to refine the recognition by considering the previously removed open runs. More
precisely, consider the following algorithm, where XReco is an algorithm which
computes the set P(B) and By, ; is the (d + 2) x (d + 2) block matrix whose first
block is B, ; and the second the 1 x 1 identity matrix:

HybridBrunReco(B)

.n «— 0O

. By « B;

. while B, is recognizable do
(an,in) < (a(Br),i(Bn));
compute By,;

L, « open runs of By;
Bot1 «— Ei(8,))(Ba — Ln);
n «— n-+1;

. end while;

. P, — XReco(B,);

. for k =n —1 downto k=0 do
P, « By, i, Pri;

P, — P, N XReco(Ly);
. end for;

. return Fy;

O 00 N O O b W N =

e e e
g W N = O
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One shows:

Theorem 3. The algorithm HybridBrunReco with a binary function B as input
returns the set P(B) in finite time.

To conclude, let us discuss the computational cost of the above algorithm.
Let us first focus on the “Brun” stage of the algorithm, that is, on lines 3 9. One
can shows that each step of this stage can be performed in time O(|B,|) and that
|B,,| strictly decreases. Thus, the whole stage can be performed in quadratic time
(in the size of B). However, let us stress that (|B,|), generally decreases with an
exponential rate (this is the case, for example, for any stepped plane), so that
this stage is expected, in practice, to be performed in near linear time. Let us
now consider the “correction” stage of the algorithm, that is, lines 10 14. Note
that the sum of sizes of inputs of XReco is less than |B|. Thus, assuming that
XReco works in time no more than quadratic (such algorithms do exist!), the
bound given for the first stage still holds. We also need to compute intersections
of convex polytopes. The complexity of such operations is not trivial in high
dimensions, but let us stress that the intersection of k convex polytopes of R3
can be computed in time O(mInk), where m stands for the total size of these
polytopes (see [4]). Moreover, let us recall that the first unrecognizable B,, as
well as the sum of sizes of the L;’s are expected to be much smaller than B.
In conclusion, theoretical time complexity bounds are probably much bigger
than the practical efficiency of this algorithm, and further expriments should be
performed to get a better analysis.
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Appendix

Proposition 1. Let o = (..., aq) € RI\{0} and p € R. Then, for a;j # 0:
a; ;(Pa,p) = max(|a;/aj],1) and a;tj (Pavp) = max([a;/ay],1),

where the floor and the ceiling of x € R are respectively denoted by |x| and [x].

Proof. Let € Z? and I C 7Z such that the following binary function is an

(4, j)-run of Py, p:

= Z(m “+ kej, Z*)

kel
Assume that I contains an interval [a, b], of length b — a + 1. Then, one has:

Pap(®+aej,i) =1 = (z|a) +aa; < p < (x]a) + aej + a,
Paplx+bej,i)=1 = (z|a) +ba; < p < (x|]a) + baj + a.
One deduces:
(b—a)a; < p— (@la) < s,
that is, for a;; # 0:
b—a+1<2 41,
Qj
This thus gives an upper bounds of the length of I. If I is not empty, let us write
I = [a,b]. Then, one has:
Pap(x+ae;,i) =1 = (z|o) + (a — 1)y < (z|or) + aa; < p,
and one deduces:
Paplx+(a—1)e;,i) =0 = p> (xla) + (a — 1)aj + ;.
Similarly, one shows:
p < (xlo) + (b+ 1)ay + a.

Finally, one has:
(@ —1)a; +a; < p—(zlo) < (b+ L)ey,

that is, for a; # 0:
b—a+1> 1,
Qj
This thus gives a lower bounds of the length of I. Moreove, note that if I is
empty, then one has:
ve € 29, p— (z|a) ¢)0, .
It is not hard to see that this yields that «; > «, that is, ca;/a; — 1 < 0. The
above lower bound thus still holds. In conclusion, we shown:

Q5 _ Q5
a—j —1<a;;(Pa,) < a;fj(Pmp) < a—j + 1.

The result follows (recall that, by definition, runs are non-empty). O



14

Theorem 2. Let o € [0,1]¢ N Q? with the finite Brun expansion (an,in)o<n<N
and p € R. Let Dy a),, be the binary function defined by:

D(1,a),0 = BT (Bag,ig) © - - - 0 BT (Bax i) (L) €1,17),
and L1 o), be the lattice of rank d of 741 defined by:

d+1
_ —1 —1
L(l,a),p = Bao,io .. 'BaN,iN E Zey.
k=2

Then, the geometrical interpretation of the stepped plane P(1 o) , 1 the union of
all the translations along L1 o), of the geometrical interpretation of D1 ), ,-

Proof. On the other hand, one easily sees that translations of the geometrical
interpretation of (|p|e1,ey) along the lattice Zes + ... + Zegy1 yield the geo-
metrical interpretation of the stepped plane P(1 g),,- On the other hand, if D is
a binary function such that the translations along a lattice L of its geometrical
interpretation yield the geometrical interpretation of a stepped plane P, then,
for any unimodular substitution o, Th.1 yields that Ej(c)(D) is a binary func-
tion whose geometrical interpretation, translated along the lattice M 1L, yields
the geometrical interpretation of the stepped plane E} (o)(P). The result follows
by considering the unimodular substitution o = B4y iy © ... © Bag,io- O

Proposition 2. Let B be a recognizable binary function of Bg41 and B the
binary function obtained by successively applying ¢o(B),i(B), Va(B),i(B) nd Xi(B)-
Then, for any stepped plane P € Pyy1, one has B < P if and only if B<P.
Moreover, if B does not have open (1,i(B) + 1)-run, then one has :

0<B<P & 0<T(B)<T(P).

Proof. Let B be a recognizable binary function. Assume that there is a stepped
plane P such that B < P. Thus, any left-open and right-closed (1,74 1)-run of B
is less or equal to a closed (1,74 1)-run of P. Since such a run has length at least
a(P) = a(B), this yields that ¢,p),:(s)(B) is still less or equal to P. Conversely,
if dq(B),i(3)(B) is less or equal to P, then B also since B < ¢q(g),i(5)(B). This
shows that B < P if and only if ¢q(5),48)(B) < P. One similarly proceeds for
Ya.i et Xi, so that, finally, B < P if and only if B < P.

Let us now assume that B does not have open (1,4(B) 4 1)-run. It is not hard
to see that B can be written as the image by Ef(0,,;) of a binary function, say
B’ (actually, this is what led the definition of rules Gai, Ya,i and x;). It is also
easily seen that B is, as BB, recognizable. In particular, T(B) = E} (6;(18)71.(8))(3)
is a binary function. Now, assume that there is a stepped plane P such that
B <P and T(P) > 0. Let us introduce the binary function C =P — B. The fact
that both P and B are images by Ef(f,,;) of binary functions yields that it is
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also the case for C. So, one has: C = E{(0,,)(C’), for some binary function C’.
Hence, by applying T' = EY (ﬁa_(%p) i(p)) on P, one obtains:

T(P)=TB)+T(C)=TB)+C >TB) =B >0.
Thus, we shown that one has, for any stepped plane P:
0<B<P = 0<T(B) <T(P).

Conversely, assume that 0 < T(l’;’)leqT(P) for some stepped plane P. It is easily
seen that the subset of positive functions of § is stable under dual maps of
substitutions. Thus, since B,(p) ) is a subsitution, applying E7(Bap),ip))
yields 0 < B < P. This concludes the proof. a

Theorem 3. The algorithm HybridBrunReco with a binary function B as input
returns the set P(B) in finite time.

Proof. Let us first shows that the algorithm finishes, by proving that |B,,1] is
less than |B,| (so that, eventually, B, is not a recognizable binary function).
Let us respectively denote f(B,), f(Bn — L) and f(Bni1) by (x1,...,2Za11),
(Y15---,Yd+1) and (21,. .., 24+1), where f maps any binary function of finite size
onto the integer vector whose i-th entry counts the number of faces of type i in

this binary function. One checks that the action of dual maps yields:

21 = Yip,+1,
Rin+1 = Y1 — AnlYi,+1,
Zj = yj-

We also easily deduce from the definition of B:

/
Y1 =21 + ali,+1 — Ty,

— 1 "
Yip+1 = Tip+1 T 557215
Y = Ty,

where x) (resp. z%) is the sum of the sizes of the (1,4, + 1)-runs extended by
Dan, in (r€SP. Vg, 4. ). One then computes:

e 1—a
B = zZj = z; + ——a — x| =|B,| + ——a — .
Busil =Dz =3 @i+ —qaf —ai = |Bal + — o —af
Jj=1 Jj=1
Since a, > 1, one has |Bp4+1] < |B,|, with the inegality being strict except if
x} = 0. But 2} = 0 would mean that there is no right-closed (1,4, + 1)-run, and
thus that B,, would not be recognizable. Thus, x| # 0, and one has | B, 11| < |Bn|.

Let us now prove the correction of the algorithm. We proceed by induction
on the number of steps of the “Brun” stage, that is, lines 3 9. If n = 0, this
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follows from the (assumed) correction of XReco. Assume that the result holds
for n. One checks:

(1,),p) € P(Bo) < 0 < By < P1,a),p
s0< By < P,a),p
©0<By—Lo<Pray, e 0<Lo<Pua),
<0<B; < PBJDI,iD(l»a)»P et ((1,a),p) € XReco(Lg)

= (B;)%io(l,a),p) € P(B1) et ((1,a),p) € XReco(Ly)
Note that this is Prop. 2 which ensures that we can go from the first to the
second lines and from the third one to the fourth one (by applying EY (ﬁ;ollo))
Finally, one has:

P(By) = B!, , P(B1) NXReco(Ly).

ao,%0

The correction of the algorithm follows by induction. a



