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Abstract

This paper describes a tool called Numerical Platon deeeldyy the French Atomic En-
ergy Commission (CEA). It provides an interface to a set ohjpal linear equation solvers
for high-performance computers that may be used in indalsdftware written in various
programming languages. This tool was developed as part mdiderable efforts by the
CEA Nuclear Energy Division in the past years to promote inagsparallel software and
on-shelf parallel tools to help develop new generation &tmn codes. After the presen-
tation of the package architecture and the available dlguos, we show examples of how

Numerical Platon is used in CEA codes.
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1 Introduction

For years, the scientists working for the Nuclear Energyigdon of the French
Atomic Energy Commission (CEA/DEN) have developed nunargimulation
codes in various programming languages. These develogragntat making sig-
nificant steps towards building a numerical nuclear readtois is particularly the
case of the European Platform for NUclear REactor SIMutetigfNURESIM).
Most of these codes need to solve linear systems. Howeeresiolution of these
linear systems uses a large share of program’s CPU loadyetg.90% of the total
CPU time. Moreover, these resolution methods are sharedeketcodes. From a
strategic viewpoint, it was important for CEA to mutualiseldo optimize this part
of the simulation process as efficiently as possible. Thisxdpation step requires
using parallelism both in hardware architecture and invearié. Nuclear simula-
tion has come to heavily rely on massively parallel machiaad developed codes
must use these machines in the best way. This is why it is vepprtant to have

high-performance parallel linear solvers.

At the beginning of this project, numerous libraries for theolution of linear sys-
tems were available in open-source projects. Rather thacecarate on developing
anew library, the CEA preferred to benefit from what alreaxigted. Furthermore,
to avoid depending on any given library, in particular forvadus reasons of con-
tinuation, the CEA decided to develop a tool that uses skwoéithese available
libraries, while offering the possibility to add in-houdgarithms according to the
user’s needs. The choice thus went towards the developmargtandardized in-
terface to several existing libraries. This tool was to bailable in various pro-
gramming languages like C, C++, FORTRAN, Ocaml or pythort sould be used

by the many simulation codes developed by the CEA/DEN. Ttezest in having



several libraries accessible from a unique tool should nitgdessible for each user

to reach the best existing algorithm to solve the specifiblerm.

To promote code reusability, flexibility, portability anggradeability, the CEA/DEN
decided to develop Numerical Platon (NP). It is a standadlinterface which al-
lows users to reach multiple available libraries of linequation solvers from a
single interface without any change in the code, while baiblg to manage dis-
tributed and shared parallelism in a transparent way. Ipettp data and processing
parallelism, but is optimal on scalar machines. It offeligniiives of read/write on
file while hiding the problems of parallel accesses. Nuna¢iiRtaton is ported and
can be installed on many different architectures like FOAj IBM/aix, alpha/osf,

SUN/solaris, SGl/irix, HP/ux, ...

The package can be accessed from an application throughighgtorward inter-
face defined in the form of procedure calls. NP includes maeghranisms needed
within numerical works, such as vector and matrix structyperators. The library
is organized hierarchically, enabling users to employ tlestrappropriate level of
abstraction for a particular problem. For instance, usarsdirectly use a NP con-
jugate gradient routine or can write their own conjugatedgrat through a com-
bination of vector and matrix routines. The designers of MBght to make use
of the most generic interfaces of a number of existing setgieor parallel nu-
merical libraries, rather than selecting one of them andidg it as the standard
for the CEA/DEN. The current NP V3.0 version is based on PEZ3c3 (Balay
et al., 2001) and HyPre 2.0.0 (Falgout and Yang, 2002) fodisiibuted memory
machines and CEA OpenMP routines (Dagum and Menon, 1998héoshared
memory machines. Thus, the CEA/DEN has developed sevenaéncal solvers
and precondionners in OpenMP (cf. Table 1). NP is maintabyeithe CEA and is

licensed under the terms of the GNU Lesser General Pubéose.



At the time the project NP was launched, no equivalent toistted though various
equivalent projects have since appeared. The Trilinogptojor example, (Heroux
et al., 2005) developed by the Sandia laboratory and buliradt the Aztec library

of iterative solvers (Tuminaro et al., 1999), offers ingexs towards tools which
provide either direct solvers or linear algebra. Moreotles, PETSc library notably

enriched its interfaces towards external packages.

This paper will first discuss software for linear algebra ikdreely-available on the
web. We have separated these tools into three groups: tre lalgebra elementary
libraries, the integrated linear solvers, and the interatowards external linear
solver libraries. The Numerical Platon library is then exaead, with a description
of its architecture based on three levels and the differeatable algorithms. The
next section presents two examples of how the NumericabPlgirary is used in
CEA codes. In the first example, Numerical Platon makes isiptesto parallelize
the linear solvers of a typical industrial sequential codethe second example,
Numerical Platon is used in an already parallelized cod=alRy, we conclude and

discuss possible extensions of the library.

2 A brief survey of software for linear algebra freely-available on the web

This section discusses software for linear algebra tha¢edy-available on the web,
including support for questions and bug reports. This surseot exhaustive and
interested readers can consult the Dongarra web site foe mhetails (Dongarra,
2006). We have classified this software into three types Boafe (from simple

to complex): tools for linear elementary operations (asgtotluct, .. .), tools for
integrated linear solvers (as conjugated gradient, . .d)tanlkits integrating the

two above-mentioned types of tools.



2.1 Linear algebra elementary operations

The most popular tools for sequential linear algebra eléargroperations are the
BLAS (Blackford et al., 2002), FLAME (Gunnels et al., 200hdaATLAS (Wha-
ley et al., 2001) libraries for dense, triangular, bandettidragonal matrices. AT-
LAS provides C and FORTRAN 77 interfaces to an efficient BLA$iementa-
tion, as well as a few routines from LAPACK. SparsKit, deysd by Y. Saad
(Saad, 1990) supplies support routines for sparse maffticesld two sparse ma-
trices, to reorder a sparse matrix, etc. ...). One of theggoighe SparsKit package
is to provide basic tools to facilitate exchange of softwand data (for example the
Harwell/Boeing collection of matrices) between researsh®e sparse matrix com-
putations.

There are some libraries for parallel linear algebra openatin distributed mem-
ory, such as the libraries provided by the Trilinos packdgpetra and Teuchos)

from the Sandia National Laboratory (SNL) (Heroux et al.02p

2.2 Integrated linear solvers

Other very popular libraries providing direct solvers foerge matrices are the
sequential LAPACK (Anderson et al., 1999) and FLAME libeai ScaLAPACK
(Blackford et al., 1997) is a distributed memory paralleisien of LAPACK, based
on MPI or PVM. The MUMPS (Amestoy et al., 2001) (Esprit IV Epean project
PARASOL), the SuperLU (Demmel et al., 1999; Li and DemmeQ30and Trili-
nos/Amesos packages (Sala et al., 2006) are a few good exsmipdistributed
memory general sparse matrix direct solvers.

The two most broadly used libraries are the PETSc and the édijBraries for



iterative solvers in a parallel distributed memory cont&itey have several speci-
ficities. PETSc from the Argonne National Laboratory (ANIddaesses dense and
sparse matrices, as well as parallel direct solvers. Hyera the Lawrence Liver-
more National Laboratory also works with shared memory ro@srand is known to
have powerful algebraic multigrid solvers such as Boome@\Mnd conceptual in-
terfaces for structured or block structured and finite elethspace discretization. It
is worth pointing out that PETSc includes interfaces to fuores of other packages
such as HyPre. Among these interfaces we can name the SPadylifor sparse
approximated inverse matrix computation, the Blocksobse$ the SuperLU (se-
quential, parallel shared or distributed memory) for ingdete LU preconditioner.
It is also worth mentioning the pARMS library from Y. Saad é8aand Sosonkina,
2004) based on a preconditioned Krylov subspace approattanain decompo-
sition methods, and the Aztec library (Tuminaro et al., J98&m SNL concerning

iterative solvers in distributed memory.

2.3 Toolkits

Among initiatives similar to NP, once again the Trilinos kage developed at SNL
is worth citing. The Trilinos Project intends to develop angblement robust par-
allel algorithms using modern object-oriented softwarsigie, while still leverag-
ing the value of established numerical libraries. It is bartbund the Aztec library
which provides iterative solvers. This tool gives a coliectof compatible software
packages that support direct solvers, parallel linearabyeomputations, solution
and optimization of linear, non-linear, transient and aiggstems of equations and

related capabilities.

In the last few years, the PETSc library from ANL has devetbpeny interfaces



toward other packages, and in this sense became a tool &qiit@NP.

However, this does not minimise the interest that the CEAfbaBlumerical Pla-
ton. It simply means that the CEA does not have to depend onard external
tool and will be able to better meet user needs by adding neisdle libraries and
CEA/DEN numerical methods. Moreover, NP does not have its$ fmimat of dis-
tributed data, but directly takes the internal format ofliheary used like PETSc or
HyPre. Using PETSc or HyPre via NP does not result in any mopées of objects

than directly using one of these libraries.

3 Numerical Platon architecture

3.1 The NP infrastructure

Figure 1 shows a diagram of the relationships between tlierelft levels of the
Numerical Platon infrastructure. It is built on three lesxeéThe lower level repre-
sents the data structures of the libraries used such as P&i®belyPre, or the
OpenMP CEA/DEN solvers. In sequential runs or shared merf@penMP), the

user data pointers are transmitted to the NP data struatutiesut any memory du-
plication. In distributed memory (MPI), the initially seeptial or distributed user
data structures are spread over the processor memoriemi@idée level represents
the NP API available in different programming languagesstlyathe upper level
represents the numerical methods used in CEA/DEN codesodtdabe interest-

ing in the future to include a high level numerical methodhe NP API from a

CEA/DEN code if this method can interest other users.



Level 1

CEA/DEN High level numerical methods

programs

Level 2 Interface to basic operators and to numerical functions

(BLAS, data access operators, ...)
Numerical
Platon C interface Fortran interface python interface Ocaml interface C++ interface
C interface
Level 3 Fortran structures C structures Parallel fortran Parallel C structures| Parallel C++ classes

Basic libraries | and functions and functio

C++ classes structures and functipnsand functions
S OpenMP or MPI
4 (OpenMP or MPI) | (OpenMP or MPI) | P )

Libraries intended for scalar processes Libraries intended for parallel processes

Fig. 1. The three layers of the Numerical Platon architextur

3.2 NP components

Numerical Platon consists of a variety of components (Cletand Sécher, 2004).
In most cases, each component manipulates two abstract mgmeed\P_vect or
andNP_nat ri x using particular encapsulating data structures. Acceisetinter-
nal representation of vectors and matrices is not necessakis discouraged. This
allows algorithm improvement or data structure modificasiovithout adjustment
of application programs using the package. In other worelstors and matrices are
defined as new data types manipulated by the correspondpppding routines.
The basic operations are implemented in order to allow tbgr@amming of linear
algebra algorithms in a natural way. Numerical Platon \rsf3.0 provides five

modules dealing with:

Environment

Vectors

Matrices (sparse and dense)

e |O

Solvers and preconditioners



Each of these components consists of generic interfacenesuto specific math-
ematical library routines - PETSc, HyPre or CEA OpenMP noegi for instance
- in order to promote code reusability, flexibility and pdwilety. Moreover, this

approach separates the issues of parallelism from thee&lobi@lgorithms.

3.2.1 Environment

This section contains the functions designed to managdgle, time measures,

error checking and trace for debugging.

The NP programs begin with a phase of initialization whickoauatically initial-

izes MPI if this has not done before and sets the number chdsrgiven by option
on command line in OpenMP environment. If this option is n@sent, the max-
imum number of available processors will be used, e.g. twbigmrocessors and
four on quadri-processors. All NP programs should finalize NP environment
as their nearly final statement. If needed, the user canrobitai total number of

processes or threads, or obtain the number of the currenepsoor thread.

The Numerical Platon user has the possibility of imposirgggdarallel environment
of the code inside the sources, in distributed memory or sregth memory. The
user can also decide to choose the parallel environmentaigadly, depending of
the value of an environment variable: NPEMORY. If this variable is set to DIST,
the code will work in distributed memory, but if the varial¢eset to SHARE, the
code will work in shared memory. So the same executable cadeun either with

message passing or with threads, without any change in it.

Each Numerical Platon function of C API returns an errorusgatf this status is

null, no error has occurred, otherwise an error has occuldedrs can do whatever



they want with errors. Fortran API also returns error sta@isst, Ocaml and python

API return exceptions on error.

Numerical Platon offers a trace mode. When users take thisrmggeach NP func-
tion sends information on standard output. This inforntateogenerally the values
of function input and output data. This possibility is o#fdrto help the users to
debug their codes. This possibility must be used for thigppse only and not in

production codes for obvious reasons of performance.

3.2.2 NP vectors and matrices

Numerical Platon does not define a single internal formavémtors and matrices,
but directly uses the internal format of available librariesed. If the user runs
PETSc through NP, the format will be PETSc for vectors andricet, if the user
runs HyPre through NP, the format will be HyPre for vectord amatrices, and if

the user runs OpenMP, the format will be the specific NumeRtaon format.

Vectors and matrices are created in two steps. The first #tsyates a new NP ob-
ject structure with only a string for object name. The NP timtreturns the object
pointer. The second step allows the user to specify the ctarstics of the object:

sequential or parallel, the data type: integer, float or d#ube object size, the kind
of distribution in case of parallelism, the size of the logatt of the object in case
of distributed parallelism (NP gives a default distributibthis option is not used).

Numerical Platon allows the user to create six formats ofriced: dense format:
all the components of the matrices are stocked, symmetnsalformat: the upper
triangular part of the matrices is stocked, CSR for commeésparse row: all the
non zero components of the matrices are stocked row by rawrsstric CSR: the

non zero components of the upper triangular part of the oegrare stocked row
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A -

FProc. 0 local vector

LI

Froc. n local vector [ll | |
VEC : —

Proc. 0 Froc.n

Fig. 2. NP vector: data set only in local part of the object.

by row, CSC for compressed sparse column: all the non zergoasnts of the
matrices are stocked column by column, symmetric CSC: thezeoo components
of the upper triangular part of the matrices are stockedroalby column. All these
formats are available in OpenMP, but in the case of distetbuhemory, only in-
ternal formats of available libraries are accessible (CBR@SRSYM for PETSc

and CSR for HyPre).

NP has functions to set values in objects. There are two lkahslstting functions in
case of distributed parallelism. The first setting is inséreg when the NP objects
are assembled in parallel and allows the user to set valuégeilocal part of the
object only, see Fig. 2. The second setting is interestingnithe linear solver only
is parallelized and the NP objects are assembled in se@qlibgtonly one proces-
sor, which allows the user to set values from one procesdbetothers, see Fig. 3.
In the case of distributed parallelism, the user has no adoeimformation on the
internal format used, so there is a copy of the values fronirthet array to the NP
object. However, in the case of shared parallelism, NP caattly handle the user

arrays to the internal NP object format, which means then@idata recopy.

In a distributed memory run, the NP assembly procedureibiiges, if necessary,
the object via message-passing communications after p@é@nthe object values

and, only for a sparse matrix, computes an optimal comprassi the matrix. In

11



Proc. 0 local vector [T |:-:}:-:i:-:l:-:}:-:}:-:l |
- |
VEC : Froc. 0

TAR -

| Froc.n
|

Fig. 3. NP vector: data set from one processor to the others.

the particular case where only one process contributesitd the entire matrix,
it may be interesting to perform several flushings beforédmyg the entire object
to avoid having all this object in the local memory beforeemsbling. In a shared
memory run, the NP object assembling is only useful on NPssparatrices. This

assembling computes an optimal compaction of the sparsemat

Some NP functions allow the user to:get values from NP objexpy the values
of an object from one to another, multiply the values of areobpy a single value,
compute the dot product of vectors or the following lineamtanations of vectors:
X = ax+ by, w = ax+ by andy = ax+y, compute the matrix vector product, send

the object’s values to the standard output, and then toaeli? object in memory.

3.23 NPIO

The user can save NP objects in files. These files have a bioanaft built with
XDR standard. In the case of distributed memory parallgliainprocesses send
data to process zero. Only process zero writes data in fitesN& object by file.
The user can read NP objects from files. In the case of dis&tbmemory paral-

lelism, all processes read their local data in the same file.

12



3.2.4 NP solvers and preconditioners

In the current Numerical Platon version which uses PETSpe81U and HyPre
packages, the different solvers available are (cf. Tahl€hdlesky and LU factori-
sations associated with different renumberings like redtueverse Cuthill-McKee,
nested dissection, one way dissection, row length, minindegree or quotient
minimum degree. The different iteratives solvers avadadite: conjugate gradi-
ent, GMRES, biconjugate gradient stabilized, conjugatelignt squared, trans-

pose free quasi-minimal residual, Richardson and muttigrethods.

Some preconditioners are available in association witkersolvers: symmetric
successive over relaxation (SSOR), incomplete Cholesitpifi@ation, incomplete
LU factorisation (ILU(k)), dual threshold incomplete LUd@risation (PILUT), di-

agonal, sparse approximate inverse (SPAI), additive Schauad polynomial pre-

conditioners

**Here: Table 1 **

4 Numerical Platon in industrial codes

As little knowledge is required on parallelisation techreg (MPI or OpenMP),the
effort to incorporate NP routines in user codes is ratheigmficant. Sequential
(Grandotto et al., 1989; Grandotto and Obry, 1996) or par&alvin et al., 2002)
CEA industrial software have included NP solvers and hageessed their numer-
ical method capacities, both in sequential runs on desldoppaters and in parallel
ones on massively parallel computers. This is particulemlgial for CFD software
with projection schemes for which the CPU time spent in tleeative pressure

solver can be as high as 90%.

13



Moreover, Numerical Platon provides users with the po8gif designing the
same code for a large range of computers, from one-proc€X¥3ssrto massively
parallel mainframes. An even more interesting aspect iptssibility of using a
broad range of sequential or parallel linear solvers inedéht existing numerical
libraries like PETSc or HyPre without any change in the uségrface. With a
given specific library implementation, the change in solianary often involves
re-writing an important part of the user code with an extrarge in the data struc-
tures. This flexibility largely balances the slight overtiehue to the NP interface
between the user code and specialized libraries. This meg&asier to use the best
appropriate solver for the user problem without change draestevelopment. It
can be understood in terms of numerical method choice (dmethods, iterative
methods for symmetric or non-symmetric matrix, Schwargehtaic multigrid,
...). Also it can be understood in terms of versatility colesing the target com-
puter system (distributed or shared memory, mono-processmulti-processors,
...). In particular, the choice of the computer memory tygpdane via an environ-

ment variable, by specifying the type or letting NP decidetbgif.

At the CEA, we have so far been able to prove that there is ncheeel involved
in using NP rather than directly using a library like PetsdHyPre. Performances
in CPU time or in memory are the same, and effort to incoroN® into a given
code is similar to directly incorporating one of the aboventioned solvers like
Petsc or HyPre (cf. Table 2). CPU times on one processor piaiard by the fact

that sequential jobs use dual core, but parallel jobs uggesaore.
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Today, many CEA codes have introduced NP APIs that have &so bvaluated
at EDF, the main French electric power supplier. This is dmnbe able to have
linear system parallel resolutions in the context of setjabdata or to increase the
choice of parallel solvers in the context of distributedaddthe following section

reviews a particular example of each type of target codeitaatare.

**Here: Table 2 **

4.1 NP and sequential data codes

In this category we considetassicalindustrial codes initially written as sequential
codes for which the data are located on a unique node (sharetbm with one or
many processors). Even if the parallel build of the matrixasallowed by the code
design, NP provides a way to solve the linear systems in lgar&Vith this goal,
NP was successfully introduced into the following CEA codgsnepi (Grandotto
et al., 1989; Grandotto and Obry, 1996; Belliard, 2001)c&liV (Toumi et al.,
2000), Apollo 1l (Sanchez et al., 1988), Ovap (Kumbaro andi@se, 2001; Kum-
baro et al., 2002), Alliances project (Montarnal et al., @0Below is a review of

the Genepi code.

4.1.1 The Genepi code case

The CEA Genepi code is devoted to simulating the 3D steadyptrase flow in

steam generators (SG) of French nuclear power plants. TérechrSG manufac-
turer considers this code as a benchmark in the industmapeation chain for SG
studies. Consequently, it is not possible to deeply modfgiructure to transform

it into a distributed memory parallel code.
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The re-engineering of the code needed to introduce the ube &P library (FOR-
TRAN API) was easy due to the modularity and the orthogoyalitthe data and
procedures in Genepi. The matrix building is always doneeguential. In the con-
text of shared memory parallelism, CSR data and vector datdagys are put in the
NP_vect or andNP_matri x structures, without extra memory cost, and in-house
openMP solvers are run. In the context of distributed menpamgallelism, we set
up parallel computation servers in a master/slave manndy @e task (master,
processor rank 0) manages the computation algorithm andataein a sequential
way. The other tasks (slave, processor ran®) are specialized as servers of paral-
lel services for distributed parallelism, see Figure 4.tA# tasks contribute to the
data distribution and the parallel resolution of linearteyss. In this case, CSR and
vector data are copied in tid°_vect or andNP_mat ri x structures, with an extra

memory cost.

Moreover, the original Genepi solver toolkit is largely iroged by the NP library
without code change, even for sequential runs. Once the/aitis modified so it
can interface with a high-level NP solver, no more work is éodone to use any
other NP solver. More specifically, the independent choicthe preconditioner
and the solver (generally not the case in an in-house coddy [® very versatile
algorithms adapted to the target matrix. Even if the higlelsolvers provided by
NP are very efficient, in-house Genepi solvers were alsollpizad with the NP

parallel elementary operations listed in Section 3.2.2.

4.1.1.1 An example: the pressure computation by a projectioscheme. In
computational fluid dynamics, projection schemes (Greslddzhan, 1990; Ferziger
and Peric, 1996) are widely used to compute the velocity squee couple for the

Navier - Stokes equation. After a prediction step in whichredpcted velocity is

16



MPI launcher

task_0 ¢ task_1 task_2

client spec. I service server speg /I service server s

. :
data build—uF wait for service requirement
‘ ;
V v
/I solver (client) I solver service I solver servicg
I/ solve I solve I solve

wait for service requirement

| v v

end (client) end service end service

Fig. 4. Master/slave mode for the parallel resolution in@enepi code
obtained from a given pressure, a projection step allowsaohneputation of a pres-
sure increment and a corrected velocity. This last stepsiselye an elliptic PDE.
Initially in the Genepi code, the linear system for this PD&svsolved by the LU
method in sequential. It is very important to precisely sdlve linear system since
the mass conservation depends on it.

For example, a test case involving 150,000 cells needs 1.9n@&®Bory, which is
nearly the maximum memory available with a 32-bit computeh#ecture. Well-
known memory limitations result from the filling of the matruring the factor-
ization phase, and iterative methods are needed to inctieaseimber of cells with
the same memory amount. We recall that the matrix is assehobl@ unique node

before the sequential or parallel solve phase. By using aixnampact storage

17



and the diagonal preconditioned conjugate gradient (PD@®yided by PETSc
through the NP library, a 500,000 cell test case can be rurgusily 1.7 GB.

Using a stop criterion of 1@ for the relative residual diminution, the pressure in-
crement resolution is very CPU-time-consuming for a largenher of cells. For
500,000 cells in sequential, the CPU time for one pressunepcbation is about
90% of one time step (CPU time) and about 10,000 time stepsheusin to reach
the stationary regime. The DIGITAL EV68 1.25 Ghz processeeds about half
an hour, see Table 3. Hence, parallel computations are aiuddsecessity. Ta-
ble 3 presents parallel computation results in a distridbutemory context. The
speed-up values are very good and we believe that full gahsomputations will

be possible in the future.

**Here: Table 3 **

4.2 NP and distributed data codes

In this category, we considedvancedndustrial codes initially written as parallel
codes for which the data are distributed on nodes (disetbmemory with one
or many processors by node): Trio-U (Calvin, 2003a; Caltiale 2002; Calvin,
2003Db), Alliances (Montarnal et al., 2006) or Ovap (Kumbamna Seignole, 2001;
Kumbaro et al., 2002). NP provides a way to increase the elafiavailable paral-

lel solvers. Below is a review of the Trio-U code.

4.2.1 Trio-U code case

Trio-U was designed to solve large 3D structured or unstmect CFD problems.

The code is intrinsically parallel, and an object-orientegign, UML, is used. The

18



implementation language chosen is C++. All the parallelisemagement and the
communication routines have been encapsulated. Par@lelrid communication
classes over standard 1/0O streams of C++ have been definéh allows the de-
veloper to easily use the different modules of the applicatwithout dealing with
basic parallel process management and communicationsedJer, the encapsu-
lation of the communication routines guarantees the poitiabf the application,
thus providing the efficient tuning of basic communicatiorthods in order to
achieve the best performance level for the target architecthis new generation
code was developed from the beginning in distributed memongext. Hence, the
code was already a parallel one, but NP is used to reach nelgdaolvers from
PETSc or HyPre libraries without large new development® iitatrix assembly

and the resolution are done in parallel (SPMD).

4.2.1.1 Trio-U and NP interface The Trio-U code focuses on the resolution
of the linear system in pressure resulting from the resofutf the Navier-Stokes
equations. In the incompressible case, the resolutioredfitivier-Stokes equations
with an Euler description implies that the pressure magiganstant and depends
on the discretization only. The resolution algorithms aepehdent neither on the
discretization, nor on the solved equations. In the Trioedign, the Navier-Stokes
equation carries the linear system to be solved. An asserabject, which spe-
cializes according to the discretizations, has the mairtfan of assembling the

matrix. Another object, th&ol veur Sys has a method to resolve the linear system.

In the Trio-U code, the pressure matrices are symmetriagsspand unstructured.
They are stored in the symmetrical Compressed Sparse Ravatorowever, other
matrix formats are also used (dense, diagonal or by bloakspther systems or

when certain algorithms are required. The matrices pedslace used in particular
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for the parallel cases.

The main algorithm of resolution used in Trio-U is the corgtggradient algo-
rithm. In order to improve convergence of this algorithmisitnecessary to use
preconditioning. Currently the SSOR algorithm is gengralsed, although it is

also possible to use an incomplete factorization LU.

Trio-U is a parallel code, thus it is important to have effezparallel algorithms for
the resolution of linear systems. The method of parallébrein Trio-U is based
on a domain decomposition into as many domains as there acegsors used for
the calculation. Domain overlapping is used in order to emglie coherence of the
results calculated in parallel. The vectors are thus reprtesl by distributed vectors
which have a real part representing the local data with theado considered, and

a virtual part corresponding to overlapping with the neiginting domains.

The use of NP for Trio-U consists in the possibility of propasparallel linear

solvers that are more efficient than those currently aveslalbhe main interfacing
difficulty lies in the fact that the data - matrices and vestaare already distributed
in the code. It was thus necessary to have the initial digiob of the data coincide

with the distribution suggested by Numerical Platon.

The principle of the data distribution in NP is simple and @dies with the majority
of the parallel scientific libraries. The matrix is distrted per consecutive blocks of
lines on the various processors. The vectors concernamhfdiie same distribution.
This imposes two conditions: a processor must have comfphete of the matrix
and, considering one processor, the lines of the matrix tmeisbntiguous. In Trio-
U, the matrices are mainly sparse and thus the first condgioret. With regard to
the second condition, it is necessary to renumber the elentenrectly to ensure

single global numbering so that all the domains satisfy dwosd condition.
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Fig. 5. Performance of the different algorithms in the sedjaé case in the TridJ code
(average time of one time step in seconds)

Various tests were performed while varying the differemgoaithms of resolution
and machine architectures available. The benchmark wasalat#on of a T-piece
of mixture in a Finite Element Volume discretization of 1000 tetrahedrons with
a Large Eddy Simulation model. Simulation was performedesntime steps. We

were interested in measuring the performance at the avéragef one time step.

Tests were run on a massively parallel mainframe and on atthepat PC cluster.

4.2.1.2 Results on HP cluster The HP/COMPAQ SC280 machine was made
up of 70 nodes ES40 (quadri processors EV68 to 833 MHz with Tof#hared
memory) and inter-connected via a Quadrics network. Figuyeves the results of
the tests performed in a sequential case with the differgotrighms: in-house CG

SSOR in comparison with some NP solvers.

It can be noticed that, except for ILU preconditioning, tlaegmeters of the differ-

ent algorithms are numerous and their variation involvessaterable differences
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Fig. 6. Performance of the different algorithms in the patatase in the TridJ code

(average time of one time step in seconds and parallel eftigje

in performance. If the average time of a time step obtaineddiyg the standard
algorithm of Trio-U is used as a reference base, i.e. theugaig gradient com-
bined with a SSOR preconditioning, the best performancelseare obtained with
an ILU pre-conditioning and a multigrid algorithm. Howeube profit does not

exceed 3 to 4%.

After having tested the sequential performances of theuaralgorithms, we eval-
uated these algorithms in parallel, by taking the optimahpeeters of the sequen-
tial one. The results obtained are summarised in Figure 6oki¢erved that the

parallel efficiency is good regardless of the algorithm used

4.2.1.3 Results on PC cluster This cluster was made up of 56 given Pentium
IV processors from 1.7 to 2.4 GHz, having 1 Gb of RAM and irdennected
via a fast SCI network. The main performance measurements giegen on an

algorithm of conjugate gradient with preconditioning. Weampared the standard
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Fig. 7. Parallel performance on PC cluster in the Tdaode (average time of one time

step in seconds and parallel efficiency)

preconditioning (in-house Trio-U SSOR) with ILU preconditer provided by NP.
The other algorithms were tested, but revealed a bug impleatien of MPI on

the fast network of the PC cluster. Figure 7 shows the residlfserformance on
the cluster (average time of one time step and parallel effey defined by the

sequential/parallel time ratio).

It was remarked that the gain in term of performance levels matable. This was
true for the sequential case (about 13%) but especiallyi@parallel case where
we obtained an efficiency close to 0.6, whereas it was only @ii2h a standard

algorithm (60% gain in term of CPU time).

5 Conclusion

This paper has presented the NP project and its final purpdseh is to provide

a unified interface towards several freely available sofén@ainly PETSc and
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HyPre) for parallel linear algebra operations ranging fraentor and matrix opera-
tions to integrated linear solvers. Special attention wasrgto minimising the data
copy between structures as well as possible in order to preske performance
levels.

The main features of the APIs, the NP routines and the albsiypes of the NP
structures have been presented. Interfaces with varioogrggmming languages
(C, C++, FORTRAN, Ocaml and python) allow easy implementafor the user.
Moreover, coming with a LGPL license and interfaces to fremlailable libraries,
the sources of the codes are available. This is of great tapoe for industrial
software stability in time. In order to be compatible witletexternal libraries, the
necessary periodic efforts are only done once by the NP’sldpment team and
not many times by each client software using PETSc or HyRparsgely. This is
an important aspect.

Among all the CEA codes having incorporated the NP librarfigices, Apollo I,
Flica 1V, Genepi, Ovap, Trio-U), we have shown how the linelgebra solvers of
a typical industrial sequential code (Genepi) can be paia#ld without consider-
able extra development cost, which opens new perspectivesdshes with a large
number of cells. Furthermore, we have presented an exarhpl€&A new gener-
ation parallel code (Trio-U) using the NP interface to getibdity in the choice of
linear algebra solvers. This gave us the opportunity tortest methods and adapt
the solver choice to a particular problem to solve.

Concerning future prospects for Numerical Platon, we apeeting the integration
of the CEA SLOORP library (Meurant, 2001; Colombet et al., 20Parallel Object
Oriented Linear Solvers, in French) including, among othethods, efficient al-

gebraic multigrid algorithms written in C++.
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Conjugate gradient parallel parallel - parallel
GMRES parallel parallel - parallel
BICGSTAB parallel parallel - parallel
CGS parallel - - parallel
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polynomial parallel only for CG - - parallel only for CG

additive schwarz

parallel

Table 1

Available solvers and preconditioners in Numerical Platon
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1proc | 4proc | 9proc | 16 proc | 25 proc | 64 proc

HYPRE 657.2 | 307.5 | 181.0 95.4 67.1 18.3

NP/HYPRE | 641.1 | 308.9 | 181.2 93.6 67.3 18.6

Table 2
NP+HyPre/HyPre comparison: CPU time (in seconds) to saheaf system on a cluster

with conjugate gradient without pre-conditioning

Proc. Number| CPU time (s)| Speed-up
1 1531 -

4 415 3.7

12 120 12.7

16 95 16.1

Table 3
Distributed memory parallel computations of the projectstep in the Genepi code (CEA

HP ES45 cluster: 4 proc. DIGITAL EV68 1.25 GHz / 4 GB. 1 task loge)
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