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Abstract

This paper describes a tool called Numerical Platon developed by the French Atomic En-

ergy Commission (CEA). It provides an interface to a set of parallel linear equation solvers

for high-performance computers that may be used in industrial software written in various

programming languages. This tool was developed as part of considerable efforts by the

CEA Nuclear Energy Division in the past years to promote massively parallel software and

on-shelf parallel tools to help develop new generation simulation codes. After the presen-

tation of the package architecture and the available algorithms, we show examples of how

Numerical Platon is used in CEA codes.
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1 Introduction

For years, the scientists working for the Nuclear Energy Division of the French

Atomic Energy Commission (CEA/DEN) have developed numerical simulation

codes in various programming languages. These developments aim at making sig-

nificant steps towards building a numerical nuclear reactor. This is particularly the

case of the European Platform for NUclear REactor SIMulations (NURESIM).

Most of these codes need to solve linear systems. However, the resolution of these

linear systems uses a large share of program’s CPU load, e.g.up to 90% of the total

CPU time. Moreover, these resolution methods are shared between codes. From a

strategic viewpoint, it was important for CEA to mutualise and to optimize this part

of the simulation process as efficiently as possible. This optimization step requires

using parallelism both in hardware architecture and in software. Nuclear simula-

tion has come to heavily rely on massively parallel machines, and developed codes

must use these machines in the best way. This is why it is very important to have

high-performance parallel linear solvers.

At the beginning of this project, numerous libraries for theresolution of linear sys-

tems were available in open-source projects. Rather than concentrate on developing

a new library, the CEA preferred to benefit from what already existed. Furthermore,

to avoid depending on any given library, in particular for obvious reasons of con-

tinuation, the CEA decided to develop a tool that uses several of these available

libraries, while offering the possibility to add in-house algorithms according to the

user’s needs. The choice thus went towards the development of a standardized in-

terface to several existing libraries. This tool was to be available in various pro-

gramming languages like C, C++, FORTRAN, Ocaml or python so it could be used

by the many simulation codes developed by the CEA/DEN. The interest in having
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several libraries accessible from a unique tool should makeit possible for each user

to reach the best existing algorithm to solve the specific problem.

To promote code reusability, flexibility, portability and upgradeability, the CEA/DEN

decided to develop Numerical Platon (NP). It is a standardized interface which al-

lows users to reach multiple available libraries of linear equation solvers from a

single interface without any change in the code, while beingable to manage dis-

tributed and shared parallelism in a transparent way. It supports data and processing

parallelism, but is optimal on scalar machines. It offers primitives of read/write on

file while hiding the problems of parallel accesses. Numerical Platon is ported and

can be installed on many different architectures like PC/linux, IBM/aix, alpha/osf,

SUN/solaris, SGI/irix, HP/ux, ...

The package can be accessed from an application through a straightforward inter-

face defined in the form of procedure calls. NP includes many mechanisms needed

within numerical works, such as vector and matrix structureoperators. The library

is organized hierarchically, enabling users to employ the most appropriate level of

abstraction for a particular problem. For instance, users can directly use a NP con-

jugate gradient routine or can write their own conjugate gradient through a com-

bination of vector and matrix routines. The designers of NP sought to make use

of the most generic interfaces of a number of existing sequential or parallel nu-

merical libraries, rather than selecting one of them and adopting it as the standard

for the CEA/DEN. The current NP V3.0 version is based on PETSc2.3.3 (Balay

et al., 2001) and HyPre 2.0.0 (Falgout and Yang, 2002) for thedistributed memory

machines and CEA OpenMP routines (Dagum and Menon, 1998) forthe shared

memory machines. Thus, the CEA/DEN has developed several numerical solvers

and precondionners in OpenMP (cf. Table 1). NP is maintainedby the CEA and is

licensed under the terms of the GNU Lesser General Public license.
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At the time the project NP was launched, no equivalent tool existed though various

equivalent projects have since appeared. The Trilinos project, for example, (Heroux

et al., 2005) developed by the Sandia laboratory and built around the Aztec library

of iterative solvers (Tuminaro et al., 1999), offers interfaces towards tools which

provide either direct solvers or linear algebra. Moreover,the PETSc library notably

enriched its interfaces towards external packages.

This paper will first discuss software for linear algebra that is freely-available on the

web. We have separated these tools into three groups: the linear algebra elementary

libraries, the integrated linear solvers, and the interfaces towards external linear

solver libraries. The Numerical Platon library is then examined, with a description

of its architecture based on three levels and the different available algorithms. The

next section presents two examples of how the Numerical Platon library is used in

CEA codes. In the first example, Numerical Platon makes it possible to parallelize

the linear solvers of a typical industrial sequential code.In the second example,

Numerical Platon is used in an already parallelized code. Finally, we conclude and

discuss possible extensions of the library.

2 A brief survey of software for linear algebra freely-available on the web

This section discusses software for linear algebra that is freely-available on the web,

including support for questions and bug reports. This survey is not exhaustive and

interested readers can consult the Dongarra web site for more details (Dongarra,

2006). We have classified this software into three types as follows (from simple

to complex): tools for linear elementary operations (as dotproduct, . . . ), tools for

integrated linear solvers (as conjugated gradient, . . . ) and toolkits integrating the

two above-mentioned types of tools.
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2.1 Linear algebra elementary operations

The most popular tools for sequential linear algebra elementary operations are the

BLAS (Blackford et al., 2002), FLAME (Gunnels et al., 2001) and ATLAS (Wha-

ley et al., 2001) libraries for dense, triangular, banded ortridiagonal matrices. AT-

LAS provides C and FORTRAN 77 interfaces to an efficient BLAS implementa-

tion, as well as a few routines from LAPACK. SparsKit, developed by Y. Saad

(Saad, 1990) supplies support routines for sparse matrices(to add two sparse ma-

trices, to reorder a sparse matrix, etc. . . . ). One of the goals of the SparsKit package

is to provide basic tools to facilitate exchange of softwareand data (for example the

Harwell/Boeing collection of matrices) between researchers in sparse matrix com-

putations.

There are some libraries for parallel linear algebra operations in distributed mem-

ory, such as the libraries provided by the Trilinos package (Epetra and Teuchos)

from the Sandia National Laboratory (SNL) (Heroux et al., 2005).

2.2 Integrated linear solvers

Other very popular libraries providing direct solvers for dense matrices are the

sequential LAPACK (Anderson et al., 1999) and FLAME libraries. ScaLAPACK

(Blackford et al., 1997) is a distributed memory parallel version of LAPACK, based

on MPI or PVM. The MUMPS (Amestoy et al., 2001) (Esprit IV European project

PARASOL), the SuperLU (Demmel et al., 1999; Li and Demmel, 2003) and Trili-

nos/Amesos packages (Sala et al., 2006) are a few good examples of distributed

memory general sparse matrix direct solvers.

The two most broadly used libraries are the PETSc and the HyPre libraries for
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iterative solvers in a parallel distributed memory context. They have several speci-

ficities. PETSc from the Argonne National Laboratory (ANL) addresses dense and

sparse matrices, as well as parallel direct solvers. HyPre from the Lawrence Liver-

more National Laboratory also works with shared memory matrices and is known to

have powerful algebraic multigrid solvers such as BoomerAMG, and conceptual in-

terfaces for structured or block structured and finite element space discretization. It

is worth pointing out that PETSc includes interfaces to functions of other packages

such as HyPre. Among these interfaces we can name the SPAI library for sparse

approximated inverse matrix computation, the Blocksolve95, or the SuperLU (se-

quential, parallel shared or distributed memory) for incomplete LU preconditioner.

It is also worth mentioning the pARMS library from Y. Saad (Saad and Sosonkina,

2004) based on a preconditioned Krylov subspace approach and domain decompo-

sition methods, and the Aztec library (Tuminaro et al., 1999) from SNL concerning

iterative solvers in distributed memory.

2.3 Toolkits

Among initiatives similar to NP, once again the Trilinos package developed at SNL

is worth citing. The Trilinos Project intends to develop andimplement robust par-

allel algorithms using modern object-oriented software design, while still leverag-

ing the value of established numerical libraries. It is built around the Aztec library

which provides iterative solvers. This tool gives a collection of compatible software

packages that support direct solvers, parallel linear algebra computations, solution

and optimization of linear, non-linear, transient and eigen systems of equations and

related capabilities.

In the last few years, the PETSc library from ANL has developed many interfaces
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toward other packages, and in this sense became a tool equivalent to NP.

However, this does not minimise the interest that the CEA hasfor Numerical Pla-

ton. It simply means that the CEA does not have to depend on only one external

tool and will be able to better meet user needs by adding new available libraries and

CEA/DEN numerical methods. Moreover, NP does not have its own format of dis-

tributed data, but directly takes the internal format of thelibrary used like PETSc or

HyPre. Using PETSc or HyPre via NP does not result in any more copies of objects

than directly using one of these libraries.

3 Numerical Platon architecture

3.1 The NP infrastructure

Figure 1 shows a diagram of the relationships between the different levels of the

Numerical Platon infrastructure. It is built on three levels. The lower level repre-

sents the data structures of the libraries used such as PETScand HyPre, or the

OpenMP CEA/DEN solvers. In sequential runs or shared memory(OpenMP), the

user data pointers are transmitted to the NP data structureswithout any memory du-

plication. In distributed memory (MPI), the initially sequential or distributed user

data structures are spread over the processor memories. Themiddle level represents

the NP API available in different programming languages. Lastly, the upper level

represents the numerical methods used in CEA/DEN codes. It would be interest-

ing in the future to include a high level numerical method in the NP API from a

CEA/DEN code if this method can interest other users.
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Level 2

Numerical
Platon

C structuresFortran structures
and functions and functionsC++ classes structures and functions

(OpenMP or MPI)

Parallel fortran

(OpenMP or MPI)
and functions

Parallel C structures

(OpenMP or MPI)

Libraries intended for scalar processes Libraries intended for parallel processes

Level 1

programs
CEA/DEN

Level 3
Basic libraries

High level numerical methods

C++ interfaceOcaml interfacepython interfaceFortran interfaceC interface

C interface

Parallel C++ classes

Interface to basic operators and to numerical functions

(BLAS, data access operators, ...)

Fig. 1. The three layers of the Numerical Platon architecture.

3.2 NP components

Numerical Platon consists of a variety of components (Colombet and Sécher, 2004).

In most cases, each component manipulates two abstract types namedNP vector

andNP matrix using particular encapsulating data structures. Access tothe inter-

nal representation of vectors and matrices is not necessaryand is discouraged. This

allows algorithm improvement or data structure modifications without adjustment

of application programs using the package. In other words, vectors and matrices are

defined as new data types manipulated by the corresponding supporting routines.

The basic operations are implemented in order to allow the programming of linear

algebra algorithms in a natural way. Numerical Platon version V3.0 provides five

modules dealing with:

• Environment

• Vectors

• Matrices (sparse and dense)

• IO

• Solvers and preconditioners
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Each of these components consists of generic interface routines to specific math-

ematical library routines - PETSc, HyPre or CEA OpenMP routines for instance

- in order to promote code reusability, flexibility and portability. Moreover, this

approach separates the issues of parallelism from the choice of algorithms.

3.2.1 Environment

This section contains the functions designed to manage parallelism, time measures,

error checking and trace for debugging.

The NP programs begin with a phase of initialization which automatically initial-

izes MPI if this has not done before and sets the number of threads given by option

on command line in OpenMP environment. If this option is not present, the max-

imum number of available processors will be used, e.g. two onbi-processors and

four on quadri-processors. All NP programs should finalize the NP environment

as their nearly final statement. If needed, the user can obtain the total number of

processes or threads, or obtain the number of the current process or thread.

The Numerical Platon user has the possibility of imposing the parallel environment

of the code inside the sources, in distributed memory or in shared memory. The

user can also decide to choose the parallel environment dynamically, depending of

the value of an environment variable: NPMEMORY. If this variable is set to DIST,

the code will work in distributed memory, but if the variableis set to SHARE, the

code will work in shared memory. So the same executable code can run either with

message passing or with threads, without any change in it.

Each Numerical Platon function of C API returns an error status. If this status is

null, no error has occurred, otherwise an error has occurred. Users can do whatever
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they want with errors. Fortran API also returns error status. C++, Ocaml and python

API return exceptions on error.

Numerical Platon offers a trace mode. When users take this option, each NP func-

tion sends information on standard output. This information is generally the values

of function input and output data. This possibility is offered to help the users to

debug their codes. This possibility must be used for this purpose only and not in

production codes for obvious reasons of performance.

3.2.2 NP vectors and matrices

Numerical Platon does not define a single internal format forvectors and matrices,

but directly uses the internal format of available libraries used. If the user runs

PETSc through NP, the format will be PETSc for vectors and matrices, if the user

runs HyPre through NP, the format will be HyPre for vectors and matrices, and if

the user runs OpenMP, the format will be the specific Numerical Platon format.

Vectors and matrices are created in two steps. The first step allocates a new NP ob-

ject structure with only a string for object name. The NP function returns the object

pointer. The second step allows the user to specify the characteristics of the object:

sequential or parallel, the data type: integer, float or double, the object size, the kind

of distribution in case of parallelism, the size of the localpart of the object in case

of distributed parallelism (NP gives a default distribution if this option is not used).

Numerical Platon allows the user to create six formats of matrices: dense format:

all the components of the matrices are stocked, symmetric dense format: the upper

triangular part of the matrices is stocked, CSR for compressed sparse row: all the

non zero components of the matrices are stocked row by row, symmetric CSR: the

non zero components of the upper triangular part of the matrices are stocked row
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Fig. 2. NP vector: data set only in local part of the object.

by row, CSC for compressed sparse column: all the non zero components of the

matrices are stocked column by column, symmetric CSC: the non zero components

of the upper triangular part of the matrices are stocked column by column. All these

formats are available in OpenMP, but in the case of distributed memory, only in-

ternal formats of available libraries are accessible (CSR and CSRSYM for PETSc

and CSR for HyPre).

NP has functions to set values in objects. There are two kindsof setting functions in

case of distributed parallelism. The first setting is interesting when the NP objects

are assembled in parallel and allows the user to set values inthe local part of the

object only, see Fig. 2. The second setting is interesting when the linear solver only

is parallelized and the NP objects are assembled in sequential by only one proces-

sor, which allows the user to set values from one processor tothe others, see Fig. 3.

In the case of distributed parallelism, the user has no access to information on the

internal format used, so there is a copy of the values from theinput array to the NP

object. However, in the case of shared parallelism, NP can directly handle the user

arrays to the internal NP object format, which means there isno data recopy.

In a distributed memory run, the NP assembly procedure distributes, if necessary,

the object via message-passing communications after having set the object values

and, only for a sparse matrix, computes an optimal compression of the matrix. In
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Fig. 3. NP vector: data set from one processor to the others.

the particular case where only one process contributes to build the entire matrix,

it may be interesting to perform several flushings before building the entire object

to avoid having all this object in the local memory before assembling. In a shared

memory run, the NP object assembling is only useful on NP sparse matrices. This

assembling computes an optimal compaction of the sparse matrix.

Some NP functions allow the user to:get values from NP objects, copy the values

of an object from one to another, multiply the values of an object by a single value,

compute the dot product of vectors or the following linear combinations of vectors:

x = ax+by, w = ax+by andy = ax+y, compute the matrix vector product, send

the object’s values to the standard output, and then to destroy NP object in memory.

3.2.3 NP IO

The user can save NP objects in files. These files have a binary format built with

XDR standard. In the case of distributed memory parallelism, all processes send

data to process zero. Only process zero writes data in files, one NP object by file.

The user can read NP objects from files. In the case of distributed memory paral-

lelism, all processes read their local data in the same file.

12



3.2.4 NP solvers and preconditioners

In the current Numerical Platon version which uses PETSc, SuperLU and HyPre

packages, the different solvers available are (cf. Table 1): Cholesky and LU factori-

sations associated with different renumberings like natural, reverse Cuthill-McKee,

nested dissection, one way dissection, row length, minimumdegree or quotient

minimum degree. The different iteratives solvers available are: conjugate gradi-

ent, GMRES, biconjugate gradient stabilized, conjugate gradient squared, trans-

pose free quasi-minimal residual, Richardson and multigrid methods.

Some preconditioners are available in association with these solvers: symmetric

successive over relaxation (SSOR), incomplete Cholesky factorisation, incomplete

LU factorisation (ILU(k)), dual threshold incomplete LU factorisation (PILUT), di-

agonal, sparse approximate inverse (SPAI), additive Schwarz and polynomial pre-

conditioners

**Here: Table 1 **

4 Numerical Platon in industrial codes

As little knowledge is required on parallelisation techniques (MPI or OpenMP),the

effort to incorporate NP routines in user codes is rather insignificant. Sequential

(Grandotto et al., 1989; Grandotto and Obry, 1996) or parallel (Calvin et al., 2002)

CEA industrial software have included NP solvers and have increased their numer-

ical method capacities, both in sequential runs on desktop computers and in parallel

ones on massively parallel computers. This is particularlycrucial for CFD software

with projection schemes for which the CPU time spent in the iterative pressure

solver can be as high as 90%.
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Moreover, Numerical Platon provides users with the possibility of designing the

same code for a large range of computers, from one-processorPCs to massively

parallel mainframes. An even more interesting aspect is thepossibility of using a

broad range of sequential or parallel linear solvers in different existing numerical

libraries like PETSc or HyPre without any change in the user interface. With a

given specific library implementation, the change in solverlibrary often involves

re-writing an important part of the user code with an extra change in the data struc-

tures. This flexibility largely balances the slight overhead due to the NP interface

between the user code and specialized libraries. This makesit easier to use the best

appropriate solver for the user problem without change or extra development. It

can be understood in terms of numerical method choice (direct methods, iterative

methods for symmetric or non-symmetric matrix, Schwarz, algebraic multigrid,

. . . ). Also it can be understood in terms of versatility considering the target com-

puter system (distributed or shared memory, mono-processor or multi-processors,

. . . ). In particular, the choice of the computer memory type is done via an environ-

ment variable, by specifying the type or letting NP decide byitself.

At the CEA, we have so far been able to prove that there is no overhead involved

in using NP rather than directly using a library like Petsc orHyPre. Performances

in CPU time or in memory are the same, and effort to incorporate NP into a given

code is similar to directly incorporating one of the above-mentioned solvers like

Petsc or HyPre (cf. Table 2). CPU times on one processor are explained by the fact

that sequential jobs use dual core, but parallel jobs use single core.
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Today, many CEA codes have introduced NP APIs that have also been evaluated

at EDF, the main French electric power supplier. This is doneto be able to have

linear system parallel resolutions in the context of sequential data or to increase the

choice of parallel solvers in the context of distributed data. The following section

reviews a particular example of each type of target code architecture.

**Here: Table 2 **

4.1 NP and sequential data codes

In this category we considerclassicalindustrial codes initially written as sequential

codes for which the data are located on a unique node (shared memory with one or

many processors). Even if the parallel build of the matrix isnot allowed by the code

design, NP provides a way to solve the linear systems in parallel. With this goal,

NP was successfully introduced into the following CEA codes: Genepi (Grandotto

et al., 1989; Grandotto and Obry, 1996; Belliard, 2001), Flica IV (Toumi et al.,

2000), Apollo II (Sanchez et al., 1988), Ovap (Kumbaro and Seignole, 2001; Kum-

baro et al., 2002), Alliances project (Montarnal et al., 2006). Below is a review of

the Genepi code.

4.1.1 The Genepi code case

The CEA Genepi code is devoted to simulating the 3D steady two-phase flow in

steam generators (SG) of French nuclear power plants. The French SG manufac-

turer considers this code as a benchmark in the industrial computation chain for SG

studies. Consequently, it is not possible to deeply modify its structure to transform

it into a distributed memory parallel code.
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The re-engineering of the code needed to introduce the use ofthe NP library (FOR-

TRAN API) was easy due to the modularity and the orthogonality of the data and

procedures in Genepi. The matrix building is always done in sequential. In the con-

text of shared memory parallelism, CSR data and vector data pointers are put in the

NP vector and NP matrix structures, without extra memory cost, and in-house

openMP solvers are run. In the context of distributed memoryparallelism, we set

up parallel computation servers in a master/slave manner. Only one task (master,

processor rank 0) manages the computation algorithm and thedata in a sequential

way. The other tasks (slave, processor rank6= 0) are specialized as servers of paral-

lel services for distributed parallelism, see Figure 4. Allthe tasks contribute to the

data distribution and the parallel resolution of linear systems. In this case, CSR and

vector data are copied in theNP vector andNP matrix structures, with an extra

memory cost.

Moreover, the original Genepi solver toolkit is largely improved by the NP library

without code change, even for sequential runs. Once the software is modified so it

can interface with a high-level NP solver, no more work is to be done to use any

other NP solver. More specifically, the independent choice of the preconditioner

and the solver (generally not the case in an in-house code) leads to very versatile

algorithms adapted to the target matrix. Even if the high-level solvers provided by

NP are very efficient, in-house Genepi solvers were also parallelized with the NP

parallel elementary operations listed in Section 3.2.2.

4.1.1.1 An example: the pressure computation by a projection scheme. In

computational fluid dynamics, projection schemes (Gresho and Chan, 1990; Ferziger

and Peric, 1996) are widely used to compute the velocity - pressure couple for the

Navier - Stokes equation. After a prediction step in which a predicted velocity is
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MPI launcher

task_0 task_1 task_2

// solve// solve

wait for service requirement 

wait for service requirement 

data build−up

data use

// solve

// solver (client) // solver service // solver service

end service end serviceend (client)

client spec. // service server spec. // service server spec.

Fig. 4. Master/slave mode for the parallel resolution in theGenepi code

obtained from a given pressure, a projection step allows thecomputation of a pres-

sure increment and a corrected velocity. This last step needs solve an elliptic PDE.

Initially in the Genepi code, the linear system for this PDE was solved by the LU

method in sequential. It is very important to precisely solve the linear system since

the mass conservation depends on it.

For example, a test case involving 150,000 cells needs 1.9 GBmemory, which is

nearly the maximum memory available with a 32-bit computer architecture. Well-

known memory limitations result from the filling of the matrix during the factor-

ization phase, and iterative methods are needed to increasethe number of cells with

the same memory amount. We recall that the matrix is assembled on a unique node

before the sequential or parallel solve phase. By using a matrix compact storage
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and the diagonal preconditioned conjugate gradient (PDCG)provided by PETSc

through the NP library, a 500,000 cell test case can be run using only 1.7 GB.

Using a stop criterion of 10−9 for the relative residual diminution, the pressure in-

crement resolution is very CPU-time-consuming for a large number of cells. For

500,000 cells in sequential, the CPU time for one pressure computation is about

90% of one time step (CPU time) and about 10,000 time steps must be run to reach

the stationary regime. The DIGITAL EV68 1.25 Ghz processor needs about half

an hour, see Table 3. Hence, parallel computations are an absolute necessity. Ta-

ble 3 presents parallel computation results in a distributed memory context. The

speed-up values are very good and we believe that full transient computations will

be possible in the future.

**Here: Table 3 **

4.2 NP and distributed data codes

In this category, we consideradvancedindustrial codes initially written as parallel

codes for which the data are distributed on nodes (distributed memory with one

or many processors by node): Trio-U (Calvin, 2003a; Calvin et al., 2002; Calvin,

2003b), Alliances (Montarnal et al., 2006) or Ovap (Kumbaroand Seignole, 2001;

Kumbaro et al., 2002). NP provides a way to increase the choice of available paral-

lel solvers. Below is a review of the Trio-U code.

4.2.1 Trio-U code case

Trio-U was designed to solve large 3D structured or unstructured CFD problems.

The code is intrinsically parallel, and an object-orienteddesign, UML, is used. The
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implementation language chosen is C++. All the parallelismmanagement and the

communication routines have been encapsulated. Parallel I/O and communication

classes over standard I/O streams of C++ have been defined, which allows the de-

veloper to easily use the different modules of the application without dealing with

basic parallel process management and communications. Moreover, the encapsu-

lation of the communication routines guarantees the portability of the application,

thus providing the efficient tuning of basic communication methods in order to

achieve the best performance level for the target architecture. This new generation

code was developed from the beginning in distributed memorycontext. Hence, the

code was already a parallel one, but NP is used to reach new parallel solvers from

PETSc or HyPre libraries without large new developments. The matrix assembly

and the resolution are done in parallel (SPMD).

4.2.1.1 Trio-U and NP interface The Trio-U code focuses on the resolution

of the linear system in pressure resulting from the resolution of the Navier-Stokes

equations. In the incompressible case, the resolution of the Navier-Stokes equations

with an Euler description implies that the pressure matrix is constant and depends

on the discretization only. The resolution algorithms are dependent neither on the

discretization, nor on the solved equations. In the Trio-U design, the Navier-Stokes

equation carries the linear system to be solved. An assembler object, which spe-

cializes according to the discretizations, has the main function of assembling the

matrix. Another object, theSolveurSys has a method to resolve the linear system.

In the Trio-U code, the pressure matrices are symmetric, sparse and unstructured.

They are stored in the symmetrical Compressed Sparse Row format. However, other

matrix formats are also used (dense, diagonal or by blocks) for other systems or

when certain algorithms are required. The matrices per blocks are used in particular
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for the parallel cases.

The main algorithm of resolution used in Trio-U is the conjugate gradient algo-

rithm. In order to improve convergence of this algorithm, itis necessary to use

preconditioning. Currently the SSOR algorithm is generally used, although it is

also possible to use an incomplete factorization LU.

Trio-U is a parallel code, thus it is important to have effective parallel algorithms for

the resolution of linear systems. The method of parallelization in Trio-U is based

on a domain decomposition into as many domains as there are processors used for

the calculation. Domain overlapping is used in order to ensure the coherence of the

results calculated in parallel. The vectors are thus represented by distributed vectors

which have a real part representing the local data with the domain considered, and

a virtual part corresponding to overlapping with the neighbouring domains.

The use of NP for Trio-U consists in the possibility of proposing parallel linear

solvers that are more efficient than those currently available. The main interfacing

difficulty lies in the fact that the data - matrices and vectors - are already distributed

in the code. It was thus necessary to have the initial distribution of the data coincide

with the distribution suggested by Numerical Platon.

The principle of the data distribution in NP is simple and complies with the majority

of the parallel scientific libraries. The matrix is distributed per consecutive blocks of

lines on the various processors. The vectors concerned follow the same distribution.

This imposes two conditions: a processor must have completelines of the matrix

and, considering one processor, the lines of the matrix mustbe contiguous. In Trio-

U, the matrices are mainly sparse and thus the first conditionis met. With regard to

the second condition, it is necessary to renumber the elements correctly to ensure

single global numbering so that all the domains satisfy the second condition.
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Fig. 5. Performance of the different algorithms in the sequential case in the TrioU code

(average time of one time step in seconds)

Various tests were performed while varying the different algorithms of resolution

and machine architectures available. The benchmark was a calculation of a T-piece

of mixture in a Finite Element Volume discretization of 170,000 tetrahedrons with

a Large Eddy Simulation model. Simulation was performed on ten time steps. We

were interested in measuring the performance at the averagetime of one time step.

Tests were run on a massively parallel mainframe and on a department PC cluster.

4.2.1.2 Results on HP cluster The HP/COMPAQ SC280 machine was made

up of 70 nodes ES40 (quadri processors EV68 to 833 MHz with 1 Gbof shared

memory) and inter-connected via a Quadrics network. Figure5 gives the results of

the tests performed in a sequential case with the different algorithms: in-house CG

SSOR in comparison with some NP solvers.

It can be noticed that, except for ILU preconditioning, the parameters of the differ-

ent algorithms are numerous and their variation involves considerable differences
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Fig. 6. Performance of the different algorithms in the parallel case in the TrioU code

(average time of one time step in seconds and parallel efficiency)

in performance. If the average time of a time step obtained byusing the standard

algorithm of Trio-U is used as a reference base, i.e. the conjugate gradient com-

bined with a SSOR preconditioning, the best performance levels are obtained with

an ILU pre-conditioning and a multigrid algorithm. Howeverthe profit does not

exceed 3 to 4%.

After having tested the sequential performances of the various algorithms, we eval-

uated these algorithms in parallel, by taking the optimal parameters of the sequen-

tial one. The results obtained are summarised in Figure 6. Weobserved that the

parallel efficiency is good regardless of the algorithm used.

4.2.1.3 Results on PC cluster This cluster was made up of 56 given Pentium

IV processors from 1.7 to 2.4 GHz, having 1 Gb of RAM and inter-connected

via a fast SCI network. The main performance measurements were given on an

algorithm of conjugate gradient with preconditioning. We compared the standard
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Fig. 7. Parallel performance on PC cluster in the TrioU code (average time of one time

step in seconds and parallel efficiency)

preconditioning (in-house Trio-U SSOR) with ILU preconditioner provided by NP.

The other algorithms were tested, but revealed a bug implementation of MPI on

the fast network of the PC cluster. Figure 7 shows the resultsof performance on

the cluster (average time of one time step and parallel efficiency defined by the

sequential/parallel time ratio).

It was remarked that the gain in term of performance levels was notable. This was

true for the sequential case (about 13%) but especially for the parallel case where

we obtained an efficiency close to 0.6, whereas it was only 0.25 with a standard

algorithm (60% gain in term of CPU time).

5 Conclusion

This paper has presented the NP project and its final purpose,which is to provide

a unified interface towards several freely available software (mainly PETSc and
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HyPre) for parallel linear algebra operations ranging fromvector and matrix opera-

tions to integrated linear solvers. Special attention was given to minimising the data

copy between structures as well as possible in order to preserve the performance

levels.

The main features of the APIs, the NP routines and the abstract types of the NP

structures have been presented. Interfaces with various programming languages

(C, C++, FORTRAN, Ocaml and python) allow easy implementation for the user.

Moreover, coming with a LGPL license and interfaces to freely available libraries,

the sources of the codes are available. This is of great importance for industrial

software stability in time. In order to be compatible with the external libraries, the

necessary periodic efforts are only done once by the NP’s development team and

not many times by each client software using PETSc or HyPre separately. This is

an important aspect.

Among all the CEA codes having incorporated the NP library (Alliances, Apollo II,

Flica IV, Genepi, Ovap, Trio-U), we have shown how the linearalgebra solvers of

a typical industrial sequential code (Genepi) can be parallelized without consider-

able extra development cost, which opens new perspectives for meshes with a large

number of cells. Furthermore, we have presented an example of a CEA new gener-

ation parallel code (Trio-U) using the NP interface to get flexibility in the choice of

linear algebra solvers. This gave us the opportunity to testnew methods and adapt

the solver choice to a particular problem to solve.

Concerning future prospects for Numerical Platon, we are expecting the integration

of the CEA SLOOP library (Meurant, 2001; Colombet et al., 2004) Parallel Object

Oriented Linear Solvers, in French) including, among othermethods, efficient al-

gebraic multigrid algorithms written in C++.
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Methods PETSc+SuperLU HyPre multi-threaded

SuperLU CEA OpenMP

Conjugate gradient parallel parallel - parallel

GMRES parallel parallel - parallel

BICGSTAB parallel parallel - parallel

CGS parallel - - parallel

Solvers TFQMR parallel - - -

Richardson parallel - - -

multigrid - parallel - -

LU factorisation parallel - parallel -

Cholesky factorisation parallel - parallel -

SSOR sequential - - sequential but can be

used with parallel solver

ILU(k) parallel for k=0 parallel - sequential but can be

sequential for k>0 used with parallel solver

Preconditioners PILUT - parallel - -

diagonal parallel parallel - parallel

SPAI parallel parallel - -

polynomial parallel only for CG - - parallel only for CG

additive schwarz parallel - - -

Table 1

Available solvers and preconditioners in Numerical Platon
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1 proc 4 proc 9 proc 16 proc 25 proc 64 proc

HYPRE 657.2 307.5 181.0 95.4 67.1 18.3

NP/HYPRE 641.1 308.9 181.2 93.6 67.3 18.6

Table 2

NP+HyPre/HyPre comparison: CPU time (in seconds) to solve linear system on a cluster

with conjugate gradient without pre-conditioning

Proc. Number CPU time (s) Speed-up

1 1531 -

4 415 3.7

12 120 12.7

16 95 16.1

Table 3

Distributed memory parallel computations of the projection step in the Genepi code (CEA

HP ES45 cluster: 4 proc. DIGITAL EV68 1.25 GHz / 4 GB. 1 task by node)
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