Rank four vector bundles without theta divisor over a curve of genus two

Christian Pauly

To cite this version:

HAL Id: hal-00274414
https://hal.archives-ouvertes.fr/hal-00274414
Submitted on 18 Apr 2008

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
RANK FOUR VECTOR BUNDLES WITHOUT THETA DIVISOR OVER A CURVE OF GENUS TWO

CHRISTIAN PAULY

Abstract. We show that the locus of stable rank four vector bundles without theta divisor over a smooth projective curve of genus two is in canonical bijection with the set of theta-characteristics. We give several descriptions of these bundles and compute the degree of the rational theta map.

1. Introduction

Let \(C \) be a complex smooth projective curve of genus 2 and let \(\mathcal{M}_r \) denote the coarse moduli space parametrizing semi-stable rank-\(r \) vector bundles with trivial determinant over the curve \(C \). Let \(C \cong \Theta \subset \text{Pic}^1(C) \) be the Riemann theta divisor in the degree 1 component of the Picard variety of \(C \). For any \(E \in \mathcal{M}_r \) we consider the locus

\[\theta(E) = \left\{ L \in \text{Pic}^1(C) \mid h^0(C, L \otimes E) > 0 \right\}, \]

which is either a curve linearly equivalent to \(r\Theta \) or \(\theta(E) = \text{Pic}^1(C) \), in which case we say that \(E \) has no theta divisor. We obtain thus a rational map, the so-called theta map

\[\theta : \mathcal{M}_r \dashrightarrow |r\Theta|, \]

between varieties having the same dimension \(r^2 - 1 \). We denote by \(\mathcal{B}_r \) the closed subvariety of \(\mathcal{M}_r \) parametrizing semi-stable bundles without theta divisor. It is known \cite{R} that \(\mathcal{B}_2 = \mathcal{B}_3 = \emptyset \) and that \(\mathcal{B}_r \neq \emptyset \) for \(r \geq 4 \).

It was recently shown that \(\theta \) is generically finite; see \cite{B1} Theorem A. Moreover the cases of low ranks \(r \) have been studied in the past: if \(r = 2 \) the theta map is an isomorphism \(\mathcal{M}_2 \cong \mathbb{P}^3 \) \cite{NR} and if \(r = 3 \) the theta map realizes \(\mathcal{M}_3 \) as a double covering of \(\mathbb{P}^8 \) ramified along a sextic hypersurface \cite{O}.

In this note we study the next case \(r = 4 \) and give a complete description of the locus \(\mathcal{B}_4 \). Our main result is the following

Theorem 1.1. Let \(C \) be a curve of genus 2.

1. The locus \(\mathcal{B}_4 \) is of dimension 0, reduced and of cardinality 16.
2. There exists a canonical bijection between \(\mathcal{B}_4 \) and the set of theta-characteristics of \(C \). Let \(E_\kappa \in \mathcal{B}_4 \) denote the stable vector bundle associated with the theta-characteristic \(\kappa \). Then

\[\Lambda^2 E_\kappa = \bigoplus_{\alpha \in S(\kappa)} \alpha, \quad \text{Sym}^2 E_\kappa = \bigoplus_{\alpha \in J[2] \setminus S(\kappa)} \alpha, \]

where \(S(\kappa) \) is the set of 2-torsion line bundles \(\alpha \in J[2] \) such that \(\kappa \alpha \in \Theta \subset \text{Pic}^1(C) \).
3. If \(\kappa \) is odd, then \(E_\kappa \) is a symplectic bundle. If \(\kappa \) is even, then \(E_\kappa \) is an orthogonal bundle with non-trivial Stiefel-Whitney class.
4. The 16 vector bundles \(E_\kappa \) are invariant under the tensor product with the group \(J[2] \).

2000 Mathematics Subject Classification. Primary 14H60, 14D20.
The 16 vector bundles E_κ already appeared in Raynaud’s paper \cite{R} as Fourier-Mukai transforms and were further studied in \cite{H} and \cite{P} — see section 2.2. We note that Theorem 1.1 completes the main result of \cite{H} which describes the restriction of B_4 to \textit{symplectic} rank-4 bundles. The method of this paper is different and is partially based on \cite{P}.

As an application of Theorem 1.1 we obtain the degree of the theta map for $r = 4$. We refer to \cite{BN} for a geometric interpretation of the general fiber of θ in terms of certain irreducible components of a Brill-Noether locus of the curve $\theta(E) \subset \text{Pic}^1(C)$.

Corollary 1.2. The degree of the rational theta map $\theta : M_4 \longrightarrow |4\Theta|$ equals 30.

Acknowledgements: I am grateful to George Hitching and Olivier Serman for useful discussions.

Notations: If E is a vector bundle over C, we will write $H^i(E)$ for $H^i(C, E)$ and $h^i(E)$ for $\dim H^i(C, E)$. We denote the slope of E by $\mu(E) := \frac{\deg E}{\rk E}$, the canonical bundle over C by K and the degree d component of the Picard variety of C by $\text{Pic}^d(C)$. We denote by $J := \text{Pic}^0(C)$ the Jacobian of C and by $J[n]$ its group of n-torsion points. The divisor $\Theta_\kappa \subset J$ is the translate of the Riemann theta divisor $C \cong \Theta \subset \text{Pic}^1(C)$ by a theta-characteristic κ. The line bundle $\mathcal{O}_J(2\Theta_\kappa)$ does not depend on κ and will be denoted by $\mathcal{O}_J(2\Theta)$.

2. Proof of Theorem 1.1

2.1. The 16 vector bundles E_κ. We first show that the set-theoretical support of B_4 consists of 16 stable vector bundles E_κ, which are canonically labelled by the theta-characteristics of C.

We note that $B_4 \neq \emptyset$ by \cite{H}, see also \cite{H} Theorem 1.1. We consider a vector bundle $\mathcal{E} \in B_4$. Since $B_2 = B_3 = \emptyset$, we deduce that \mathcal{E} is stable. We introduce $\mathcal{E}' = \mathcal{E}^* \otimes K$. Then $\mu(\mathcal{E}') = 2$ and since $\mathcal{E} \in B_4$, we obtain that $h^0(\mathcal{E}' \otimes \lambda^{-1}) = h^1(\mathcal{E} \otimes \lambda) = h^0(\mathcal{E} \otimes \lambda) > 0$ for any $\lambda \in \text{Pic}^1(C)$. In particular for any $x \in C$ we have $h^0(\mathcal{E}' \otimes \mathcal{O}_C(-x)) > 0$. On the other hand stability of \mathcal{E} implies that $h^0(\mathcal{E}) = h^1(\mathcal{E}') = 0$. Hence $h^0(\mathcal{E}') = 4$ by Riemann-Roch. Thus we obtain that the evaluation map of global sections

$$\mathcal{O}_C \otimes H^0(\mathcal{E}') \xrightarrow{ev} \mathcal{E}'$$

is not of maximal rank. Let us denote by $I := \text{im} \ ev$ the subsheaf of \mathcal{E}' given by the image of ev. Then clearly $h^0(I) = 4$. The cases $\rk I \leq 2$ are easily ruled out using stability of \mathcal{E}'. Hence we conclude that $\rk I = 3$. We then consider the natural exact sequence

$$0 \longrightarrow L^{-1} \longrightarrow \mathcal{O}_C \otimes H^0(\mathcal{E}') \xrightarrow{ev} I \longrightarrow 0,$$

where L is the line bundle such that $L^{-1} := \ker ev$.

Proposition 2.1. We have $h^0(I^*) = 0$.

Proof. Suppose on the contrary that there exists a non-zero map $I \rightarrow \mathcal{O}_C$. Its kernel $S \subset I$ is a rank-2 subsheaf of \mathcal{E}' and by stability of \mathcal{E}' we obtain $\mu(S) < \mu(\mathcal{E}') = 2$, hence $\deg S \leq 3$. Moreover $h^0(S) \geq h^0(I) - 1 = 3$.

Assume that $\deg S = 3$. Then S is stable and S can be written as an extension

$$0 \longrightarrow \mu \longrightarrow S \longrightarrow \nu \longrightarrow 0,$$

with $\deg \mu = 1$ and $\deg \nu = 2$. The condition $h^0(S) \geq 3$ then implies that $\mu = \mathcal{O}_C(x)$ for some $x \in C$, $\nu = K$ and that the extension has to be split, i.e., $S = K \oplus \mathcal{O}_C(x)$. This contradicts stability of S.

The assumption $\deg S \leq 2$ similarly leads to a contradiction. We leave the details to the reader. \qed
Now we take the cohomology of the dual of the exact sequence \([1]\) and we obtain — using \(h^0(I^*) = 0\) — an inclusion \(H^0(\mathcal{E}')^* \subset H^0(L)\). Hence \(h^0(L) \geq 4\), which implies \(\text{deg } L \geq 5\). On the other hand \(\text{deg } L = \text{deg } I\) and by stability of \(\mathcal{E}'\), we have \(\mu(I) < 2\), i.e., \(\text{deg } L \leq 5\). So we can conclude that \(\text{deg } L = 5\), that \(H^0(\mathcal{E}')^* = H^0(L)\) and that \(I = E_L\), where \(E_L\) is the evaluation bundle associated to \(L\) defined by the exact sequence
\[
(2) \quad 0 \to E_L^* \to H^0(L) \otimes \mathcal{O}_C \xrightarrow{ev} L \to 0.
\]

Moreover the subsheaf \(E_L \subset \mathcal{E}'\) is of maximal degree, hence \(E_L\) is a subbundle of \(\mathcal{E}'\) and we have an exact sequence
\[
(3) \quad 0 \to E_L \to \mathcal{E}' \to K^4L^{-1} \to 0,
\]
with extension class \(e \in \text{Ext}^1(K^4L^{-1}, E_L) = H^1(E_L \otimes K^{-4}L) = H^0(E_L^* \otimes K^5L^{-1})\). Using Riemann-Roch and stability of \(E_L\) (see e.g. \([5]\)) one shows that
\[
\begin{align*}
\text{deg } L & = 5, \\
h^0(E_L^* \otimes K^5L^{-1}) & = 7, \\
h^0(E_L^* \otimes K^5L^{-1}(-x)) & = 4, \\
h^0(E_L^* \otimes K^5L^{-1}(-x) - y)) & = 1
\end{align*}
\]
for general points \(x, y \in C\). In that case we denote by \(\mu_{x,y} \in \mathbb{P}H^0(E_L^* \otimes K^5L^{-1})\) the point determined by the 1-dimensional subspace \(H^0(E_L^* \otimes K^5L^{-1}(-x - y))\). We also denote by \(S \subset \mathbb{P}H^0(E_L^* \otimes K^5L^{-1})\) the linear span of the points \(\mu_{x,y}\) when \(x\) and \(y\) vary in \(C\) and by \(H_e \subset \mathbb{P}H^0(E_L^* \otimes K^5L^{-1})\) the hyperplane determined by the non-zero class \(e\).

Tensoring the sequence \([3]\) with \(K^{-4}L(x + y)\) and taking cohomology one shows that \(\mu_{x,y} \in H_e\) if and only if \(h^0(\mathcal{E}' \otimes K^{-4}L(x + y)) > 0\). Since we assume \(\mathcal{E} \in \mathcal{B}_4\), we obtain
\[
S \subset H_e.
\]

We consider a general point \(x \in C\) such that \(h^0(E_L^* \otimes K^5L^{-1}(-x)) = 4\) and denote for simplicity \(A := E_L^* \otimes K^5L^{-1}(-x)\).

Then \(A\) is stable with \(\mu(A) = \frac{7}{3}\). We consider the evaluation map of global sections
\[
\text{ev}_A : \mathcal{O}_C \otimes H^0(A) \to A
\]
and consider the set \(S_A\) of points \(p \in C\) for which \((\text{ev}_A)_p\) is not surjective, i.e.
\[
S_A = \{ p \in C \mid h^0(A(-p)) \geq 2 \}.
\]

Then we have the following

Lemma 2.2. We assume that \(x\) is general.

(1) If \(L^2 \neq K^5\), then the set \(S_A\) consists of the 2 distinct points \(p_1, p_2\) determined by the relation \(\mathcal{O}_C(p_1 + p_2) = K^4L^{-1}(-x)\).

(2) If \(L^2 = K^5\), then the set \(S_A\) consists of the 2 distinct points \(p_1, p_2\) introduced in (1) and the conjugate \(\sigma(x)\) of \(x\) under the hyperelliptic involution \(\sigma\).

Proof. Given a point \(p \in C\), we tensorize the exact sequence \([3]\) with \(K^5L^{-1}(-x - p)\) and take cohomology:
\[
0 \to H^0(A(-p)) \to H^0(L) \otimes H^0(K^5L^{-1}(-x - p)) \to H^0(K^5(-x - p)) \to \cdots
\]
We note that \(h^0(K^5L^{-1}(-x - p)) = 2\). We distinguish two cases.

(a) The pencil \(|K^5L^{-1}(-x - p)|\) has a base-point, i.e. there exists a point \(q \in C\) such that \(K^5L^{-1}(-x - p) = K(q)\), or equivalently \(K^4L^{-1}(-x) = \mathcal{O}_C(p + q)\). Since \(x\) is general, we have \(h^0(K^4L^{-1}(-x)) = 1\), which determines \(p\) and \(q\), i.e., \(\{p, q\} = \{p_1, p_2\}\). In this case \(|K^5L^{-1}(-x - p)| = |K(q)| = |K|\) and \(h^0(A(-p)) = h^0(K^{-1}L) = 2\). This shows that \(p_1, p_2 \in S_A\).
(b) The pencil $|K^5L^{-1}(-x-p)|$ is base-point-free. By the base-point-free-pencil-trick, we have $H^0(A(-p)) \cong H^0(L^2K^{-5}(x+p))$. Since $\deg L^2K^{-5}(x+p) = 2$, we have $h^0(L^2K^{-5}(x+p)) = 2$ if and only if $L^2K^{-5}(x+p) = K$, or equivalently $O_C(p) = K^6L^{-2}(-x)$. If $K^6L^{-2} \neq K$, then for general $x \in C$ the line bundle $K^6L^{-2}(-x)$ is not of the form $O_C(p)$. If $K^6L^{-2} = K$, then for any $x \in C$, $K^6L^{-2}(-x) = O_C(x)$, which implies that $\sigma(x) \in S_A$.

This shows the lemma. \hfill \Box

Proposition 2.3. If $L^2 \neq K^5$, then $S = \mathbb{P}H^0(E^*_L \otimes K^5L^{-1})$.

Proof. We consider a general point $x \in C$ and the rank-3 bundle A. Let $B \subset A$ denote the subsheaf given by the image of ev_A. By Lemma 2.2 (1) we have $\deg B = \deg A - 2 = 5$. Moreover $H^0(B) = H^0(A)$ and there is an exact sequence

$$0 \to M^{-1} \to O_C \otimes H^0(B) \xrightarrow{\varphi} E_B \to 0,$$

where $M \in \text{Pic}^5(C)$. It follows that the rational map

$$\phi_x : C \dashrightarrow \mathbb{P}^5 = \mathbb{P}H^0(A) = \mathbb{P}^3,$$

factorizes through

$$C \xrightarrow{\varphi_M} |M|^* \to \mathbb{P}H^0(B),$$

where φ_M is the morphism given by the linear system $|M|$ and the second map is linear and identifies with the projectivization of the dual of δ, which is given by the long exact sequence obtained from (4) by dualizing and taking cohomology:

$$0 \to H^0(B^*) \to H^0(B) \xrightarrow{\delta} H^0(M) \to H^1(B^*) \to \cdots$$

We obtain that the linear span of im ϕ_x is non-degenerate if and only if $H^0(B^*) = 0$.

We now show that $h^0(B^*) = 0$. Suppose on the contrary that there exists a non-zero map $B \to O_C$. Its kernel $S \subset B$ is a rank-2 subsheaf of A with $\deg S \geq \deg B = 5$, hence $\mu(S) \geq \frac{5}{2}$, which contradicts stability of A — recall that $\mu(A) = \frac{5}{2}$.

This shows that im ϕ_x spans $\mathbb{P}H^0(A) \subset \mathbb{P}H^0(E^*_L \otimes K^5L^{-1})$ for general $x \in C$. We now take 2 general points $x, x' \in C$ and deduce from $\dim H^0(A) \cap H^0(A') = \dim H^0(E^*_L \otimes K^5L^{-1}(-x-x')) = 1$ that the linear span of the union $\mathbb{P}H^0(A) \cap \mathbb{P}H^0(A')$ equals the full space $\mathbb{P}H^0(E^*_L \otimes K^5L^{-1})$. This shows the proposition. \hfill \Box

We deduce from the proposition that the line bundle L satisfies the relation $L^2 = K^5$, i.e.

$$L = K^2 \kappa$$

for some theta-characteristic κ of C. In that case we note that $H^0(E^*_L \otimes K^5L^{-1})$ equals $H^0(E^*_L \otimes L)$ and we can consider the exact sequence

$$0 \to H^0(E^*_L \otimes L) \to H^0(L) \otimes H^0(L) \xrightarrow{\mu} H^0(L^2) \to 0,$$

obtained from (2) by tensoring with L and taking cohomology. We also note that there is a natural inclusion $\Lambda^2 H^0(L) \subset H^0(E^*_L \otimes L)$, see e.g. [P] section 2.1. More precisely we can show

Proposition 2.4. The linear span S equals

$$S = \mathbb{P}\Lambda^2 H^0(L) \subset \mathbb{P}H^0(E^*_L \otimes L).$$

Proof. Using the standard exact sequences and the base-point-free-pencil-trick, one easily works out that for general points $x, y \in C$

$$\mu(x,y) = \mathbb{P}\Lambda^2 H^0(L(-x-y)) \subset \mathbb{P}\Lambda^2 H^0(L) \subset \mathbb{P}H^0(E^*_L \otimes L).$$

This implies that $S \subset \mathbb{P}\Lambda^2 H^0(L)$. In order to show equality one chooses 4 general points $x_i \in C$ such that their images $C \to |L|^* = \mathbb{P}^3$ linearly span the \mathbb{P}^3. We denote by $s_i \in H^0(L)$ the global
section vanishing on the points \(x_j\) for \(j \neq i\) and not vanishing on \(x_i\). Then one checks that for any choice of the indices \(i,j,k,l\) such that \(\{i,j,k,l\} = \{1,2,3,4\}\) one has \(s_i \wedge s_j = \mu_{x_i,x_j}\). Since the 6 tensors \(s_i \wedge s_j\) are a basis of \(\Lambda^2 H^0(L)\), we obtain equality. \(\square\)

The hyperplane \(S = \mathbb{P} \Lambda^2 H^0(L) \subset \mathbb{P} H^0(E^*_{\xi} \otimes L)\) determines a unique (up to a scalar) non-zero extension class \(e \in H^0(E^*_{\xi} \otimes L)^*\) by \(S = H_e\), which in turn determines a unique stable vector bundle \(E \in \mathcal{B}_4\), which we will denote by \(E_e\).

This shows that \(\mathcal{B}_4\) is of dimension 0 and of cardinality 16.

2.2. The Raynaud bundles

In this subsection we recall the construction of the Raynaud bundles introduced in [R] as Fourier-Mukai transforms. We refer to [H] section 9.2 for the details and the proofs.

The rank-4 vector bundle \(\mathcal{O}_J(2\Theta) \otimes H^0(J, \mathcal{O}_J(2\Theta))^*\) over \(J\) admits a canonical \(J[2]\)-linearization and descends therefore under the duplication map \([2] : J \rightarrow J\), i.e., there exists a rank-4 vector bundle \(M\) over \(J\) such that

\[
[2]^* M \cong \mathcal{O}_J(2\Theta) \otimes H^0(J, \mathcal{O}_J(2\Theta))^*.
\]

Proposition 2.5. For any theta-characteristic \(\kappa\) of \(C\) there exists an isomorphism

\[
\xi_\kappa : M \xrightarrow{\sim} M^* \otimes \mathcal{O}_J(\Theta_\kappa).
\]

Moreover if \(\kappa\) is even (resp. odd), then \(\xi_\kappa\) is symmetric (resp. skew-symmetric).

Let \(\gamma_\kappa : C \rightarrow J\) be the Abel-Jacobi map defined by \(\gamma_\kappa(p) = \kappa^{-1}(p)\). We define the Raynaud bundle

\[
R_\kappa := \gamma_\kappa^* M \otimes \kappa^{-1}.
\]

Then by [R] the bundle \(R_\kappa \in \mathcal{B}_4\). Since \(\gamma_\kappa^* \mathcal{O}_J(\Theta_\kappa) = K\) we see that the isomorphism \(\xi_\kappa\) induces an orthogonal (resp. symplectic) structure on the bundle \(R_\kappa\), if \(\kappa\) is even (resp. odd). In particular the bundle \(R_\kappa\) is self-dual, i.e., \(R_\kappa = R_\kappa^*\). The pull-back \(\gamma_\kappa^*(\xi'_\kappa)\) for a theta-characteristic \(\kappa' = \kappa \alpha\) with \(\alpha \in J[2]\) gives an isomorphism

\[
R_\kappa \xrightarrow{\sim} R_\kappa^* \otimes \alpha,
\]

hence a non-zero section in \(H^0(\Lambda^2 R_\kappa \otimes \alpha)\) (resp. \(H^0(\text{Sym}^2 R_\kappa \otimes \alpha)\)) if \(h^0(\kappa \alpha) = 1\) (resp. \(h^0(\kappa \alpha) = 0\)). We deduce that there are isomorphisms

\[
(5) \quad \Lambda^2 R_\kappa = \bigoplus_{\alpha \in S(\kappa)} \alpha, \quad \text{Sym}^2 R_\kappa = \bigoplus_{\alpha \in J[2] \setminus S(\kappa)} \alpha.
\]

In particular the 16 bundles \(R_\kappa\) are non-isomorphic. Each \(R_\kappa\) is invariant under tensor product with \(J[2]\). The isomorphisms (5) can be used to prove the relation

\[
(6) \quad R_\kappa \otimes \beta = R_{\kappa \beta^2}, \quad \forall \beta \in J[4].
\]

2.3. Symplectic and orthogonal bundles

In this subsection we give a third construction of the bundles in \(\mathcal{B}_4\) as symplectic and orthogonal extension bundles. Let \(\kappa\) be a theta-characteristic.

If \(\kappa\) is odd, then \(\kappa = \mathcal{O}_C(w)\) for some Weierstrass point \(w \in C\). The construction outlined in [P] section 2.2 gives a unique symplectic bundle \(E_e \in \mathcal{B}_4\) with \(e \in H^1(\text{Sym}^2 G)_+\). We denote this bundle by \(V_\kappa\).

If \(\kappa\) is even, there is an analogue construction, which we briefly outline for the convenience of the reader. The proofs are similar to those given in [H]. Using the Atiyah-Bott-fixed-point formula one observes that among all non-trivial extensions

\[
0 \rightarrow \kappa^{-1} \rightarrow G \rightarrow \mathcal{O}_C \rightarrow 0,
\]
there are 2 extensions (up to scalar), which are e-invariant. We take one of them. Then any non-zero class $e \in H^1(\Lambda^2 G) = H^1(\kappa^{-1})$ determines an orthogonal bundle \mathcal{E}_e, which fits in the exact sequence

$$0 \rightarrow G \rightarrow \mathcal{E}_e \rightarrow G^* \rightarrow 0.$$

The composite map

$$D_\mathcal{E} : \mathbb{P}H^1(\Lambda^2 G) \rightarrow \mathcal{M}_4 \rightarrow |4\Theta|, \quad e \mapsto \theta(\mathcal{E}_e)$$

is the projectivization of a linear map

$$\widetilde{D}_\mathcal{E} : H^1(\Lambda^2 G) \rightarrow H^0(\operatorname{Pic}^1(C), 4\Theta).$$

Moreover $\operatorname{im} \widetilde{D}_\mathcal{E} \subset H^0(\operatorname{Pic}^1(C), 4\Theta)_-$, which can be seen as follows. By [Se] Thm 2 the second Stiefel-Whitney class $w_2(\mathcal{E}_e)$ of an orthogonal bundle \mathcal{E}_e is given by the parity of $h^0(\mathcal{E}_e \otimes \kappa')$ for any theta-characteristic κ'. This parity can be computed by taking the cohomology of the exact sequence $[\mathbb{P}]$ tensorized with κ' and taking into account that the coboundary map is skew-symmetric. One obtains that $w_2(\mathcal{E}_e) \neq 0$ and one can conclude the above-mentioned inclusion by [Sp] Lemma 1.4.

We now observe that by the Atiyah-Bott-fixed-point-formula $h^1(\Lambda^2 G)_+ = h^1(\Lambda^2 G)_- = 1$. By the argument given in [Sp] section 2.2 we conclude that one of the two eigenspaces $H^1(\Lambda^2 G)_ \pm$ is contained in the kernel $\ker \widetilde{D}_\mathcal{E}$. We denote the corresponding bundle \mathcal{E}_e by $V_\kappa \subset B_4$.

2.4. Three descriptions of the same bundle.

Proposition 2.6. For any theta-characteristic κ the three bundles E_κ, R_κ and V_κ coincide.

Proof. If κ is odd, this was worked out in detail in [SpI] section 8 and Theorem 29. If κ is even, the proofs are similar. \hfill \square

This proposition shows all assertions of Theorem 1.1 except reducedness of B_4.

I am grateful to Olivier Serman for giving me the following fourth description of the bundle E_κ for an even theta-characteristic κ. We recall that an even theta-characteristic κ corresponds to a partition of the set of six Weierstrass points of C into two subsets of three points, which we denote by $\{w_1, w_2, w_3\}$ and $\{w_4, w_5, w_6\}$. With this notation we have

Proposition 2.7. Let κ be an even theta-characteristic. We denote by A_κ (resp. B_κ) the unique stable rank-2 bundle with determinant κ and which contains the four 2-torsion line bundles $\mathcal{O}_C, \mathcal{O}_C(w_1 - w_2), \mathcal{O}_C(w_1 - w_3)$ and $\mathcal{O}_C(w_2 - w_3)$ (resp. $\mathcal{O}_C, \mathcal{O}_C(w_4 - w_5), \mathcal{O}_C(w_4 - w_6)$ and $\mathcal{O}_C(w_5 - w_6)$). Then the orthogonal rank-4 vector bundle E_κ is isomorphic to

$$\operatorname{Hom}(A_\kappa, B_\kappa)$$

equipped with the quadratic form given by the determinant.

We refer to [Sp] section 5.5 for the proof.

2.5. Reducedness of B_4. We denote by \mathcal{L} the determinant line bundle over the moduli space \mathcal{M}_4 and recall that the set B_4 can be identified with the base locus of the linear system $|\mathcal{L}|$. This endows the set B_4 with a natural scheme-structure.

We start with a description of the space of global sections $H^0(\mathcal{M}_4, \mathcal{L})$.

Proposition 2.8. For any theta-characteristic κ there is a section $s_\kappa \in H^0(\mathcal{M}_4, \mathcal{L})$ with zero divisor

$$\Delta_\kappa := \operatorname{Zero}(s_\kappa) = \{ E \in \mathcal{M}_4 \mid h^0(\Lambda^2 E \otimes \kappa) > 0 \}.$$

The 16 sections s_κ form a basis of $H^0(\mathcal{M}_4, \mathcal{L})$.

Proof. The Dynkin index of the second fundamental representation $\rho : \mathfrak{sl}_4(\mathbb{C}) \to \text{End}(\Lambda^2 \mathbb{C}^4)$ equals 2 (see e.g. [LS] Proposition 2.6). Moreover the bundle $\Lambda^2 E \otimes \kappa$ admits a K-valued non-degenerate quadratic form, which allows to construct the Pfaffian divisor s_κ, which is a section of \mathcal{L} (see [LS]). The space $H^0(\mathcal{M}_4, \mathcal{L})$ is a representation of level 2 of the Heisenberg group $\text{Heis}(2)$, which is a central extension of $J[2]$ by \mathbb{C}^*. One can work out that the sections s_κ generate the 16 one-dimensional character spaces for the $\text{Heis}(2)$-action on $H^0(\mathcal{M}_4, \mathcal{L})$. This shows that the sections s_κ are linearly independent.

Since $E_\kappa \in \mathcal{B}_4$, we have $E_\kappa \in \Delta_{\kappa'}$ for any theta-characteristic κ'. By the deformation theory of determinant and Pfaffian divisors (see e.g. [L], [LS]) the point $E_\kappa \in \mathcal{M}_4$ is a smooth point of the divisor $\Delta_{\kappa'} \subset \mathcal{M}_4$ if and only if the following two conditions hold

1. $h^0(\Lambda^2 E_\kappa \otimes \kappa') = 2$,
2. the natural linear form

$$\Phi_{\kappa'} : T_{E_\kappa} \mathcal{M}_4 = H^1(\text{End}_0(E_\kappa)) \longrightarrow \Lambda^2 H^0(\Lambda^2 E_\kappa \otimes \kappa')^*$$

is non-zero.

Moreover if these two conditions holds, then $T_{E_\kappa} \Delta_{\kappa'} = \ker \Phi_{\kappa'}$. The map $\Phi_{\kappa'}$ is built up as follows: the exceptional isomorphism of Lie algebras $\mathfrak{sl}_4 \cong \mathfrak{so}_6$ induces a natural vector bundle isomorphism

\begin{equation}
\text{End}_0(E_\kappa) \xrightarrow{\sim} \Lambda^2(\Lambda^2 E_\kappa).
\end{equation}

Then $\Phi_{\kappa'}$ is the dual of the linear map given by the wedge product of global sections

$$\Lambda^2 H^0(\Lambda^2 E_\kappa \otimes \kappa') \longrightarrow H^0(\Lambda^2(\Lambda^2 E_\kappa) \otimes K) = H^0(\text{End}_0(E_\kappa) \otimes K).$$

Proposition 2.9. The 0-dimensional scheme \mathcal{B}_4 is reduced.

Proof. Since E_κ is a smooth point of \mathcal{M}_4 and $\dim T_{E_\kappa} \mathcal{M}_4 = 15$, it is sufficient to show that for any theta-characteristic $\kappa' \neq \kappa$ the divisor $\Delta_{\kappa'}$ is smooth at E_κ and that the 15 hyperplanes $\ker \Phi_{\kappa'} \subset T_{E_\kappa} \mathcal{M}_4$ are linearly independent: using the isomorphism (3) we obtain that for $\kappa' \neq \kappa$

$$h^0(\Lambda^2 E_\kappa \otimes \kappa') = \sharp S(\kappa) \cap S(\kappa') = 2$$

and using the isomorphism (8) we obtain that

$$\text{End}_0(E_\kappa) = \bigoplus_{\alpha \in J[2] \setminus \{0\}} \alpha.$$

On the other hand one easily sees that if $\gamma, \delta \in J[2]$ are the two 2-torsion points in the intersection $S(\kappa) \cap S(\kappa')$, then $\kappa' = \kappa \gamma \delta$, hence $\Lambda^2 H^0(\Lambda^2 E_\kappa \otimes \kappa') \cong H^0(K \gamma \delta)$. This implies that the linear form

$$\Phi_{\kappa'} : \bigoplus_{\alpha \in J[2] \setminus \{0\}} H^1(\alpha) \longrightarrow H^0(K \gamma \delta)^* = H^1(\beta)$$

is projection onto the direct summand $H^1(\beta)$, where $\beta = \kappa^{-1} \kappa' \in J[2]$. This description of the linear forms $\Phi_{\kappa'}$ clearly shows that they are non-zero and linearly independent. \qed

This completes the proof of Theorem 1.1.
3. Proof of Corollary 1.2

Since by Theorem 1.1 \mathcal{B}_3 is a reduced 0-dimensional scheme of length 16, the degree of the theta map θ is given by the formula

$$\deg \theta + 16 = c_{15},$$

where $\frac{c_{15}}{15!}$ is the leading coefficient of the Hilbert polynomial

$$P(n) = \chi(\mathcal{M}_4, \mathcal{L}^n) = \frac{c_{15}}{15!} n^{15} + \text{lower degree terms}. $$

In order to compute the polynomial P we write

$$P(X) = \sum_{k=0}^{15} \alpha_k Q_k(X),$$

with $Q_k(X) = \frac{1}{k!} (X+7)(X+6) \cdots (X+8-k)$ and $Q_0(X) = 1$. Note that $\deg Q_k = k$ and that $c_{15} = \alpha_{15}$. The canonical bundle of \mathcal{M}_4 equals \mathcal{L}^{-8}. By the Grauert-Riemenschneider vanishing theorem we obtain that $h^i(\mathcal{M}_4, \mathcal{L}^n) = 0$ for any $i \geq 1$ and $n \geq -7$. Hence $P(n) = h^0(\mathcal{M}_4, \mathcal{L}^n)$ for $n \geq -7$. Moreover $P(n) = 0$ for $n = -7, -6, \ldots, -1$ and $P(0) = 1$. The values $P(n)$ for $n = 1, 2, \ldots, 8$ can be computed by the Verlinde formula and with the use of MAPLE. They are given in the following table.

<table>
<thead>
<tr>
<th>n</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>$P(n)$</td>
<td>16</td>
<td>140</td>
<td>896</td>
<td>4680</td>
<td>21024</td>
<td>83628</td>
<td>300080</td>
<td>984539</td>
</tr>
</tbody>
</table>

Using the expression (9) of P one straightforwardly deduces the coefficients α_k by increasing induction on k: $\alpha_k = 0$ for $k = 0, 1, \ldots, 6$ and the values α_k for $k = 7, \ldots, 15$ are given in the following table.

<table>
<thead>
<tr>
<th>k</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td>α_k</td>
<td>1</td>
<td>8</td>
<td>32</td>
<td>96</td>
<td>214</td>
<td>328</td>
<td>324</td>
<td>184</td>
<td>46</td>
</tr>
</tbody>
</table>

Hence $\deg \theta = \alpha_{15} - 16 = 30$.

References

Département de Mathématiques, Université de Montpellier II - Case Courrier 051, Place Eugène Bataillon, 34095 Montpellier Cedex 5, France
E-mail address: pauly@math.univ-montp2.fr