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Abstract

The Choquet integral w.r.t. a capacity can be seen in the finite case as a
parsimonious linear interpolator between vertices of [0, 1]n. We take this basic fact
as a starting point to define the Choquet integral in a very general way, using the
geometric realization of lattices and their natural triangulation, as in the work of
Koshevoy.

A second aim of the paper is to define a general mechanism for the bipolarization
of ordered structures. Bisets (or signed sets), as well as bisubmodular functions,
bicapacities, bicooperative games, as well as the Choquet integral defined for them
can be seen as particular instances of this scheme.

Lastly, an application to multicriteria aggregation with multiple reference levels
illustrates all the results presented in the paper.
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1 Introduction

Capacities and the Choquet integral [6] have become fundamental concepts in decision
making (see, e.g., the works of Schmeidler [22], Murofushi and Sugeno [17], and Koshevoy
[14]).

An interesting but not so well known fact is that in the finite case, the Choquet integral
can be obtained as a parsimonious linear interpolation, supposing that values on the
vertices of the hypercube [0, 1]n are known. The interpolation formula was discovered by
Lovász [15], considering the problem of extending the domain of pseudo-Boolean functions
to R

n. Later, Marichal [16] remarked that this formula was precisely the Choquet integral
(see also Grabisch [8]).

The idea of considering the Choquet integral as a parsimonious linear interpolator
could serve as a basic principle for extending the notion of Choquet integral to more
general frameworks. An example of this has been done by the authors in [10], considering
multiple reference levels in a context of multicriteria aggregation.

Another remarkable example of generalization of the Choquet integral is the one
for bicapacities, proposed by the authors [11, 12]. As this paper will make it clear,
bicapacities are an example of concept based on the of bipolarization of a partially ordered
set, in this case Boolean lattices. Specifically, take a finite set N and the set 2N of all its
subsets ordered by inclusion: we obtain a Boolean lattice, and a capacity is an isotone
real-valued mapping on 2N . Introducing Q(N) := {(A,B) ∈ 2N × 2N | A ∩ B = ∅},
a bicapacity is a real-valued mapping on Q(N), satisfying some monotonicity condition.
Observe that Q(N) could be denoted by 3N as well: (A,B) ∈ Q(N) can be considered as
a function ξ of {−1, 0, 1}N , where ξ(i) = 1 if i ∈ A, ξ(i) = −1 if i ∈ B, and 0 otherwise.
Then the term “bipolarization” becomes clear, since 2N ≡ {0, 1}N has one “pole” (the
value 1, and 0 is the origin or neutral value), and {−1, 0, 1}N has 2 poles, namely −1 and
1, around the neutral value 0.

The set 3N and functions defined on it are not new in the literature. To the knowledge
of the authors, it has been introduced approximately at the same time and independently
by Chandrasekaran and Kabadi [5], Bouchet [4], Qi [20], and Nakamura [19] in the field
of matroid theory and optimization, and later well developed by Ando and Fujishige [1].
They use the term biset or signed sets for elements of 3N , and bisubmodular functions
for bicapacities (with some more restrictions). In the field of cooperative game theory,
Bilbao has introduced bicooperative games [2], which corresponds to bicapacities without
the monotonicity condition. Other remarkable works on bicapacities and bicooperative
games include the one of Fujimoto, who defined the Möbius transform of bicapacities
under the name of bipolar Möbius transform [7].

The aim of this paper is twofold: First to define the Choquet integral in a very general
way, as a parsimonious linear interpolation. This is done through the concept of geometric
realization of a distributive lattice and its natural triangulation. Second, to provide a
general mechanism for the bipolarization of a poset, and to extend the previous concepts
(geometric realization, Choquet integral, etc.) to the bipolarized structure. Then, all
concepts around bisets, bicapacities, etc., are recovered as a particular case.

Our work has been essentially inspired and motivated by Koshevoy, who used the
geometric realization of a lattice and its natural triangulation [14], and by Fujimoto [7],
who first remarked the inadequacy of our original definition of the Möbius transform for
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bicapacities in [11], and proposed the bipolar Möbius transform.
Section 2 introduces necessary material, in particular geometric realizations, natural

triangulations and interpolation. Section 3 is the core section of the paper, which presents
the concept of bipolarization, then the bipolar version of the geometric realization, natural
triangulations and interpolation. Lastly, Section 4 gives some examples, and develops the
particular case of the product of linear lattices, which corresponds to an application in
multicriteria aggregation with reference levels. We show that results obtained previously
by the authors in [10] are recovered.

2 Preliminaries

In this section, we consider a finite index set N := {1, . . . , n}.

2.1 Capacities and bicapacities

We recall from Rota [21] that, given a locally finite poset (X,≤) with bottom element,
the Möbius function is the function µ : X × X → R which gives the solution to any
equation of the form

g(x) =
∑

y≤x

f(y), (1)

for some real-valued functions f, g on X, by

f(x) =
∑

y≤x

µ(y, x)g(y). (2)

Function f is called the Möbius transform (or inverse) of g.

Definition 1 (i) A function ν : 2N → R is a game if it satisfies ν(∅) = 0.

(ii) A game which satisfies ν(A) ≤ ν(B) whenever A ⊆ B (monotonicity) is called
a capacity [6] or fuzzy measure [23]. The capacity is normalized if in addition
ν(N) = 1.

Unanimity games are capacities of the type

uA(B) :=

{
1, if B ⊇ A

0, else

for some A ⊆ N,A 6= ∅. It is well known that the set of unanimity games is a basis for
all games, whose coordinates in this basis are exactly the Möbius transform of the game.

Definition 2 Let us consider f : N → R+. The Choquet integral of f w.r.t. a capacity
ν is given by

∫
f dν :=

n∑

i=1

[f(π(i)) − f(π(i+ 1))]ν({π(1), . . . , π(i)}),

where π is a permutation on N such that f(π(1)) ≥ · · · ≥ f(π(n)), and f(π(n+1)) := 0.
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The above definition is valid if ν is a game. For any {0, 1}-valued capacity ν on 2N we
have (see, e.g., [18]): ∫

f dν =
∨

A|ν(A)=1

∧

i∈A

f(i). (3)

The expression of the Choquet integral w.r.t. the Möbius transform of ν (denoted by m)
is ∫

f dν =
∑

A⊆N

m(A)
∧

i∈A

f(i). (4)

We introduce Q(N) := {(A,B) ∈ 2N × 2N | A ∩ B = ∅}.

Definition 3 (i) A mapping v : Q(N) → R such that v(∅,∅) = 0 is called a bicoop-
erative game [2].

(ii) A bicooperative game v such that v(A,B) ≤ v(C,D) whenever (A,B), (C,D) ∈
Q(N) with A ⊆ C and B ⊇ D (monotonicity) is called a bicapacity[9, 11]. More-
over, a bicapacity is normalized if in addition v(N,∅) = 1 and v(∅, N) = −1.

Definition 4 Let v be a bicapacity and f be a real-valued function on N . The (general)
Choquet integral of f w.r.t v is given by

∫
f dv :=

∫
|f | dνN+

f

where νN+
f

is a game on N defined by

νN+
f
(C) := v(C ∩N+

f , C ∩N−
f ), ∀C ⊆ N

and N+
f := {i ∈ N | f(i) ≥ 0}, N−

f = N \N+
f .

Note that the definition remains valid if v is a bicooperative game.

Considering on Q(N) the product order

(A,A′) ⊆ (B,B′) ⇔ A ⊆ B and A′ ⊆ B′,

the Möbius transform b of a bicapacity v is the solution of:

v(A1, A2) =
∑

(B1,B2)⊆(A1,A2)

b(B1, B2)

=
∑

B1⊆A1
B2⊆A2

b(B1, B2).

This gives:

b(A1, A2) =
∑

B1⊆A1
B2⊆A2

(−1)|A1\B1|+|A2\B2|v(B1, B2)
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(see Fujimoto [7]). Unanimity games are then naturally defined by

u(A1,A2)(B1, B2) :=

{
1, if (B1, B2) ⊇ (A1, A2)

0, else.

and form a basis of bicooperative games.
The expression of the Choquet integral in terms of b is given by

∫
f dv =

∑

(A1,A2)∈Q(N)

b(A1, A2)
[ ∧

i∈A1

f+(i) ∧
∧

j∈A2

f−(j)
]
, (5)

with f+ := f ∨ 0 and f− := (−f)+.

2.2 Lattices, geometric realizations, and triangulation

A lattice is a set L endowed with a partial order ≤ such that for any x, y ∈ L their
least upper bound x ∨ y and greatest lower bound x ∧ y always exist. For finite lattices,
the greatest element of L (denoted ⊤) and least element ⊥ always exist. x covers y

(denoted x ≻ y) if x > y and there is no z such that x > z > y. A sequence of elements
x ≤ y ≤ · · · ≤ z of L is called a chain from x to z, while an antichain is a sequence of
elements such that it contains no pair of comparable elements. A chain from x to z is
maximal if no element can be added in the chain, i.e., it has the form x ≺ y ≺ · · · ≺ z.

The lattice is distributive if ∨,∧ obey distributivity. An element j ∈ L is join-
irreducible if it cannot be expressed as a supremum of other elements. Equivalently, j
is join-irreducible if it covers only one element. Join-irreducible elements covering ⊥ are
called atoms, and the lattice is atomistic if all join-irreducible elements are atoms. The
set of all join-irreducible elements of L is denoted J (L).

For any x ∈ L, we say that x has a complement in L if there exists x′ ∈ L such that
x ∧ x′ = ⊥ and x ∨ x′ = ⊤. The complement is unique if the lattice is distributive.

An important property is that in a distributive lattice, any element x can be written
as an irredundant supremum of join-irreducible elements in a unique way. We denote
by η(x) the (normal) decomposition of x, defined as the set of join-irreducible elements
smaller or equal to x, i.e., η(x) := {j ∈ J (L) | j ≤ x}. Hence

x =
∨

j∈η(x)

j

(throughout the paper, j, j′, . . . will always denote join-irreducible elements). Note that
this decomposition may be redundant.

We can rephrase differently the above result in several ways, which will be useful for
the sequel. Q ⊆ L is a downset of L if x ∈ Q, y ∈ L and y ≤ x imply y ∈ Q. For any
subset P of L, we denote by O(P ) the set of all downsets of P . Then the mapping η is
an isomorphism of L onto O(J (L)) (Birkhoff’s theorem [3]). Also,

η(x ∨ y) = η(x) ∪ η(y), η(x ∧ y) = η(x) ∩ η(y) (6)

if L is distributive. Next, downsets of some partially ordered set P correspond bijectively
to nonincreasing mappings from P to {0, 1}. Let us denote by D(P ) the set of all
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nonincreasing mappings from P to {0, 1}. Then Birkhoff’s theorem can be rephrased as
follows: any distributive lattice L is isomorphic to D(J (L)). Finally, note that a mapping
of D(P ) can be considered as a vertex of [0, 1]|P |. In summary, we have:

x ∈ L↔ η(x) ∈ O(J (L)) ↔ 1η(x) ∈ D(J (L)) ↔ (1η(x), 0η(x)c) ∈ [0, 1]|J (L)| (7)

where the notation (1A, 0Ac) denotes a vector whose coordinates are 1 if in A, and 0
otherwise. All arrows represent isomorphisms, the leftmost one being an isomorphism if
L is distributive.

We introduce now the notion of geometric realization of a lattice, and its natural
triangulation (see Koshevoy [14] for more details). For any partially ordered set P ,
we define C(P ) as the set of nonincreasing mappings from P to [0, 1]. It is a convex
polyhedron, whose set of vertices is D(P ).

Definition 5 The geometric realization of a distributive lattice L is the set C(J (L)).

The natural triangulation of C(J (L)) consists in partitioning C(J (L)) into simplices
whose vertices are in D(J (L)). These simplices correspond to maximal chains of D(J (L)).
The following proposition summarizes all what we need in the sequel.

Proposition 1 Suppose that L is distributive, with n join-irreducible elements. Consider
any maximal chain C := {1∅ = 0 ≺ 1X1 ≺ · · · ≺ 1X|J (L)|

= 1}. Then

(i) The simplex σ(C) is n-dimensional, and contains vertices (0, . . . , 0) and (1, . . . , 1)
in [0, 1]n.

(ii) The sequence X1, . . . , Xn induces a permutation π : {1, . . . , n} → J (L) such that
Xi = {π(1), . . . , π(i)}, i = 1, . . . , n, and

f(j) =
n∑

i=1

αi1Xi
(j) =

∑

Xi∋j

αi =
n∑

i=π−1(j)

αi, ∀j ∈ J (L). (8)

Conversely, a permutation π induces a maximal chain if and only if it fulfills the
condition

∀j, j′ ∈ J (L), j ≤ j′ ⇒ π−1(j) ≤ π−1(j′).

(iii) The solution of (8) is

αi = f(π(i)) − f(π(i+ 1)), i = 1, . . . , n− 1, and αn = f(π(n)), (9)

and α0 = 1 −
∑n

i=1 αi = 1 − f(π(1)). In addition, f(π(1)) ≥ f(π(2)) ≥ · · · ≥
f(π(n)).

Definition 6 For any functional F : D(J (L)) → R on a distributive lattice L, its
natural extension to the geometric realization of L is defined by:

F (f) :=

p∑

i=0

αiF (1Xi
)

for all f ∈ int(σ(C)), with C being a chain {1X0 < 1X1 < · · · < 1Xp
} in D(J (L)), and

σ(C) its convex hull in C(J (L)), with f =
∑p

i=0 αi1Xi
.
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The following proposition readily follows from Proposition 1 and the above definition.

Proposition 2 Let L be a distributive lattice, with n join-irreducible elements, and any
functional F : D(J (L)) → R. Consider any maximal chain C := {1∅ = 0 ≺ 1X1 ≺ · · · ≺
1X|J (L)|

= 1}.

(i) For any f ∈ σ(C),

F (f) =

n∑

i=1

[f(π(i)) − f(π(i+ 1))]F (1{π(1),...,π(i)}) (10)

with f(π(n+ 1)) := 0.

(ii) F is linear in each simplex σ(C), i.e., F (f + g) = F (f) + F (g) provided that
f, g, f + g belongs to the same σ(C). Moreover, F is linear in F , in the sense that
F +G(f) = F (f) +G(f) for any f .

Example 1: If L is the Boolean lattice 2N , with N := {1, . . . , n}, then
J (L) = N (atoms). We have D(J (L)) = {x : N → {0, 1}, x nonincreasing},
but since N is an antichain, there is no restriction on x and D(J (L)) =
{0, 1}N , i.e., it is the set of vertices of [0, 1]n. Similarly, C(J (L)) = [0, 1]N ,
which is the hypercube itself.

Consider now a maximal chain in D(J (L)), denoted by C := {1A0 < 1A1 <

· · · < 1An
}, with ∅ =: A0 ⊂ A1 ⊂ · · · ⊂ An := N . It corresponds to a

permutation π on N , with Ai = {π(1), . . . , π(i)}. Since J (L) is an antichain,
conversely any permutation corresponds to a maximal chain. Using (9), we
get

F (f) =
n∑

i=1

αiF (1Ai
)

=
n∑

i=1

[f(π(i)) − f(π(i+ 1))]F (1{π(1),...,π(i)}),

with the convention f(π(n + 1)) := 0. Putting µ(A) := F (1A), we recognize
the Choquet integral

∫
f dν (see Definition 2). �

This example shows that the Choquet integral is the natural extension of capacities.
Hence, by analogy, F (f) could be called the Choquet integral of f w.r.t. F . Moreover,
using Remark 1, we could consider F as a game or capacity defined over a sublattice of
the Boolean lattice 2n.

3 Bipolar structures

3.1 Bipolar extension of L

Definition 7 Let us consider (L,≤) an inf-semilattice with bottom element ⊥. The

bipolar extension L̃ of L is defined as follows:

L̃ := {(x, y) | x, y ∈ L, x ∧ y = ⊥},

which we endow with the product order ≤ on L2.
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Remark that L̃ is a downset of L2. The following holds.

Proposition 3 Let (L,≤) be an inf-semilattice.

(i) (L̃,≤) is an inf-semilattice whose bottom element is (⊥,⊥), where ≤ is the product
order on L2.

(ii) The set of join-irreducible elements of L̃ is

J (L̃) = {(j,⊥) | j ∈ J (L)} ∪ {(⊥, j) | j ∈ J (L)}.

(iii) The normal decomposition writes

(x, y) =
∨

j≤x,j∈J (L)

(j,⊥) ∨
∨

j≤y,j∈J (L)

(⊥, j).

Proof: (i) Let us consider (x, y), (z, t) ∈ L2. Then (x, y) ∧ (z, t) = (x ∧ z, y ∧ t) is the
greatest lower bound of (x, y) and (z, t) for the product order. Suppose x ∧ y = ⊥ and
z ∧ t = ⊥. Then (x ∧ z) ∧ (y ∧ t) = ⊥ too, which proves that the greatest lower bound

always exists in L̃.
(ii) clear since these are the join-irreducible element of L2, and they all belong to L̃.
(iii) clear from (ii). �

We consider now the Möbius function over L̃. The aim is to solve

f(x, y) =
∑

(x′,y′)≤(x,y),(x′,y′)∈L̃

g(x′, y′), ∀(x, y) ∈ L̃, (11)

where f, g are real-valued functions on L̃. The solution is given through the Möbius
function on L̃:

g(x, y) =
∑

(z,t)≤(x,y)

(z,t)∈L̃

f(z, t)µL̃((z, t), (x, y)). (12)

The following holds.

Proposition 4 The Möbius function on L̃ is given by:

µ
L̃
((z, t), (x, y)) = µL(z, x)µL(t, y).

Proof: Let us define h(x′, y) :=
∑

y′≤y
x′∧y′=⊥

g(x′, y′) for a given x′ ∈ L such that x′∧y = ⊥.

Since y′ ≤ y, x′ ∧ y = ⊥ implies x′ ∧ y′ = ⊥ too. Hence:

h(x′, y) =
∑

y′≤y

g(x′, y′). (13)

By a similar argument, note that (11) can be rewritten as

f(x, y) =
∑

x′≤x

∑

y′≤y

g(x′, y′). (14)
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Putting (13) in (14) gives

f(x, y) =
∑

x′≤x

h(x′, y). (15)

Applying Möbius inversion to (13) and (15) gives

g(x, y) =
∑

t≤y

µL(t, y)h(x, t), (16)

for some fixed x, x ∧ y = ⊥, and

h(x, y) =
∑

z≤x

µL(z, x)f(z, y) (17)

for some fixed y, x ∧ y = ⊥. Using (17) into (16) leads to, for (x, y) ∈ L̃:

g(x, y) =
∑

t≤y

µL(t, y)
∑

z≤x

µL(z, x)f(z, y)

=
∑

(z,t)≤(x,y)

µL(z, x)µL(t, y)f(z, y).

Note that in the last equation (z, t) ∈ L̃ since z ≤ x, t ≤ y and x∧y = ⊥ imply z∧t = ⊥.
Comparing the above last equation with (12) gives the desired result. �

Note that as usual, the set of functions u(x,y) defined by

u(x,y)(z, t) =

{
1, if (z, t) ≥ (x, y)

0, otherwise
(18)

forms a basis of the functions on L̃.

Theorem 1 Let L be a finite distributive lattice, and c(L) be the set of its complemented
elements. Then, for any x ∈ c(L), its complement being denoted by x′, the interval L(x)

of L̃ defined by
L(x) := [(⊥,⊥), (x, x′)]

and endowed with the product order of L2 is isomorphic to L, by the order isomorphism
φx : L(x) → L, (y, z) 7→ y∨z. The inverse function φ−1

x is given by φ−1
x (w) = (w∧x, w∧

x′).
Moreover, the join-irreducible elements of L(x) are the image of those of L by φ−1

x ,
i.e.:

J (L(x)) = {(j ∧ x, j ∧ x′) | j ∈ J (L)}.

Proof: Take x ∈ c(L) and show that φx is an order isomorphism between L(x) and L.
First remark that if y, z ∈ L, then y∨z ∈ L since L is a lattice. Also for any (y, z) ∈ L(x),
since y ≤ x, we have η(y) ⊆ η(x), and similarly η(z) ⊆ η(x′).

Let us show that φx is a bijection. Observe that since x ∧ x′ = ⊥ and x ∨ x′ = ⊤,
we have η(x) ∩ η(x′) = ∅ and η(x) ∪ η(x′) = J (L) by (6), i.e., x and x′ partition the
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join-irreducible elements of L. It follows that any w ∈ L can be written uniquely as
w = y ∨ z, with y, z ∈ L defined by

η(y) = η(w) ∩ η(x), η(z) = η(w) ∩ η(x′). (19)

Then (y, z) ∈ L(x) since η(y) ⊆ η(x) and η(z) ⊆ η(x′). The expression of the inverse
isomorphism φ−1

x (w) = (w ∧ x, w ∧ x′) is clear from (19) and (6).
Take (y, z) ≤ (y′, z′). This means y ≤ y′ and z ≤ z′, hence y∨ z ≤ y′∨ z′. Conversely,

take w ≤ w′. We have y = w ∧ x ≤ w′ ∧ x = y′ and similarly for z = w ∧ x′. Hence φx is
an order isomorphism.

Finally, since φx is an order isomorphism, the two lattices L and L(x) have the same
structure, and hence the same join-irreducible elements. �

Remark that in any finite lattice, ⊥ and ⊤ are complemented elements, and L(⊤) = L,
L(⊥) = L∗, where L∗ is the dual of L (i.e., L with the reverse order). An interesting

question is whether the union of all L(x), x ∈ c(L), is equal to L̃.

Theorem 2 Let L be a finite distributive lattice. Then the bipolar extension L̃ can be
written as:

L̃ =
⋃

x∈c(L)

L(x)

if and only if J (L) has all its connected components with a single bottom element.

Proof: Take (y, z) ∈ L̃, i.e., y, z ∈ L and η(y) ∩ η(z) = ∅. To find x ∈ c(L) such that
(y, z) ∈ L(x) is equivalent to satisfy the conditions

(i) J (L) \ η(x) is a downset (x is complemented)

(ii) η(x) ⊇ η(y), and η(x) ∩ η(z) = ∅ ((y, z) belongs to L(x)).

Consider J (L). Its Hasse diagram is formed of connected components, say J1, . . . , Jl.
Remark that in a given connected component Jk, it is not possible to partition it into
downsets. Indeed, suppose that Jk = D1 ∪ D2, with D1, D2 two disjoint nonempty
downsets. Since Jk is connected, each x ∈ Jk is comparable with another y ∈ Jk.
Hence, by nonemptiness assumption, there exists x1 ∈ D1 which is comparable with
some x2 ∈ D2, i.e., either x1 ≤ x2 or the converse. But then x1 ∈ D2 (or x2 ∈ D1), which
contradicts the fact they are disjoint. This proves that complemented elements x ∈ L are
such that

η(x) = ∪k∈K(x)Jk (20)

for some index set K(x) ⊆ {1, . . . , l}.

Take some (y, z) ∈ L̃ and suppose that η(y) ⊆ ∪k∈K(y)Jk and η(z) ⊆ ∪k∈K(z)Jk.
Suppose that all Jk’s have a single bottom element ⊥k. Then necessarily, K(y)∩K(z) =
∅, otherwise η(y) ∩ η(z) = ∅ would not be true. Then it suffices to take K(x) := K(y),
K(x′) = {1, . . . , l} \K(x) and the conditions (i) and (ii) above are satisfied. Conversely,
assume that there exist some connected component Jk with two bottom elements, say ⊥k

and ⊥′
k. Consider y, z such that η(y) = ⊥k and η(z) = ⊥′

k. Then (y, z) ∈ L̃, but due to
(20), no x can satisfy condition (ii) above. �
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Example 1 (ctd): Consider L = 2N . Then L̃ = Q(N). Since 2N is
Boolean, any element A ⊆ N is complemented (A′ = Ac), and 2N(A) =
[(∅,∅), (A,Ac)]. Obviously the conditions of Theorem 2 are satisfied, thus

Q(N) =
⋃

A⊆N

[(∅,∅), (A,Ac)].

This important result shows that L̃ is composed by “tiles”, all identical to L (note however
that the union is not disjoint). This suggests the following definition.

Definition 8 Let L be a finite distributive lattice, and L̃ its bipolar extension. L̃ is said
to be a regular mosaic if J (L) has all its connected components with a single bottom
element.

There are two important particular cases of regular mosaics:

(i) L is a product of m linear lattices (totally ordered). Then

c(L) = {(⊤A,⊥Ac) | A ⊆ {1, . . . , m}}

where (⊤A,⊥Ac) has coordinate number i equal to ⊤i if i ∈ A, and ⊥i otherwise.
Also, (⊤A,⊥Ac)′ = (⊥A,⊤Ac). This case covers Boolean lattices (case of capacities),
and lattices of the form km, which we will address in Section 4.

(ii) J (L) has a single connected component with one bottom element. Then L̃ contains

only elements of the form (y,⊥) or (⊥, z), i.e., L̃ = L(⊥) ∪ L(⊤).

The following example shows a case where L̃ is not a regular mosaic.

Example 2: we consider L and J (L) given on Figure 1. Obviously, J (L)
does not satisfy the condition for producing a regular mosaic, and as it can
be seen on Fig. 2, the bipolar structure cannot be obtained as a replication
of L.

a

b

c

J (L)
∅

abc

a c

ac

O(J (L)) ≡ D(J (L))

Figure 1: A lattice L and the associated J (L). In grey, the complemented elements

11



(∅, ∅)

(abc, ∅)

(a, ∅) (c, ∅)

(ac, ∅)

(∅, abc)

(∅, c) (∅, a)

(∅, ac)

⋃
x∈c(L) L(x)

(a, c) (c, a)
(∅, ∅)

(abc, ∅)

(a, ∅) (c, ∅)

(ac, ∅)

(∅, abc)

(∅, c) (∅, a)

(∅, ac)

L̃

Figure 2: Left: bipolar structure computed as a replication of L. Right: the true bipolar
structure

3.2 Bipolar geometric realization

Since L̃ is not a distributive lattice, it is not possible to define its geometric realization
in the sense of Def. 5. Assuming that L̃ is a regular mosaic, we propose the following
definition.

Definition 9 Let L̃ be a regular mosaic, and x ∈ c(L). We consider the mappings
ξx : J (L) → {−1, 0, 1} such that

(i) |ξx| is nonincreasing

(ii) ξx(j) ≥ 0 if j ∈ η(x)

(iii) ξx(j) ≤ 0 if j ∈ η(x′).

The set of such functions is denoted by Dx(J (L)). Similarly, we introduce

Cx(J (L)) := {fx : J (L) → [−1, 1] such that |fx| is nonincreasing,

fx(j) ≥ 0 if j ∈ η(x), fx(j) ≤ 0 if j ∈ η(x′)}. (21)

Then the bipolar geometric realization of L is

|̃L| :=
⋃

x∈c(L)

Cx(J (L)).

Proposition 5 For any x ∈ c(L), Dx(J (L)) is the set of vertices of Cx(J (L)).

Proof: It is plain that any ξx is a vertex of Cx(J (L)). Conversely, assume fx is a vertex
such that for some j ∈ J (L), fx(j) = α > 0 (or < 0). Then we define

f+(j) := fx(j) + ǫ, f−(j) := fx(j) − ǫ,

and f+ = f− = fx elsewhere, choosing 0 < ǫ < α small enough so that |f+|, |f−| remain
nonincreasing. Then f+, f− belong to Cx(J (L)), and fx = 1

2
(f+ +f−), which proves that

fx is not a vertex. �
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Proposition 6 Let x ∈ c(L). There is a bijection ψx : Dx(J (L)) → L(x) defined by
ψx(ξ) := (yξ, zξ) with

η(yξ) = {j ∈ J (L) | ξ(j) = 1}, η(zξ) = {j ∈ J (L) | ξ(j) = −1}, (22)

and the inverse function is defined by ψ−1
x (y, z) := ξ(y,z) with

ξ(y,z)(j) :=





1, if j ∈ η(y)

−1, if j ∈ η(z)

0, otherwise,

(23)

for any j ∈ J (L), or in more compact form

ξ(y,z) = 1η(y) − 1η(z).

Proof: Since |ξ| is nonincreasing, {j ∈ J (L) | ξ(j) = 1} and {j ∈ J (L) | ξ(j) = −1}
are downsets. Hence yξ, zξ are well-defined, and by construction (yξ, zξ) ∈ L(x).

Let us show that |ξ(y,z)| is nonincreasing. Assume ξ(y,z)(j) = 1 or −1. Then j ∈
η(y) ∪ η(z). Since these are downsets, any j′ ≤ j belongs also to η(y) ∪ η(z). Assume
ξ(y,z)(j) = 0, i.e., j 6∈ η(y) ∪ η(z). Then j′ ≥ j cannot belong to η(y) ∪ η(z) since they
are downsets, hence ξ(y,z)(j

′) = 0 .
Finally, ψx is one-to-one because L is distributive, and so is L(x) (Birkhoff’s theorem).

�

Example 1 (ctd): Consider L = 2N , and some N+ ⊆ N , N− := N \ N+.
Then

DN+(N) =
{
ξN+ : N → {−1, 0, 1} such that (ξN+)|N+ ≥ 0, (ξN+)|N− ≤ 0

}
.

Moreover, ψN+(ξN+) = ({j ∈ N | ξN+(j) = 1}, {j ∈ N | ξN+(j) = −1}).

Figure 3 should make things clear for notions introduced till this point. Observe that
functions ξx ∈ Dx(J (L)) corresponds to a subset of points of [−1, 1]|J (L)| of the form
(1A, (−1)B, 0(A∪B)c), with A ⊆ η(x) and B ⊆ η(x′), and that Cx(J (L)) is the convex hull
of these points.

We end this section by addressing the natural triangulation of the bipolar geomet-
ric realization. Let us consider some f in C(J (L)), assuming f =

∑p
i=0 αi1Xi

, with
1X0 , . . . , 1Xp

forming a chain in D(J (L)). Given x ∈ c(L), let us define the correspond-
ing fx in Cx(J (L)) as follows:

fx :=

p∑

i=0

αiψ
−1
x (φ−1

x (η−1(Xi)))

=

p∑

i=0

αi(1Xi∩η(x) − 1Xi∩η(x′)).

13



L O(J (L)) D(J (L)) ext([0, 1]|J (L)|) C(J (L))

L(x) Dx(J (L)) ter([−1, 1]|J (L)|) Cx(J (L))

φx φ−1
x | · | | · | | · |

η 1η

convex hull

vertices

ψx

ψ−1
x

convex hull

vertices

∈

t η(t)

∈

1η(t)

∈

(1η(t), 0η(t)c ) f =
∑

i αi1Xi

∈

t = y ∨ z 1η(y)∪η(z)

(y, z)

∈

1η(y) − 1η(z)

∈

(1η(y),−1η(z), 0(η(y)∪η(z))c )

fx =
∑

i αi(1Xi∩η(x) − 1Xi∩η(x′))y = t ∧ x, z = t ∧ x′ 1η(t)∩η(x) − 1η(t)∩η(x′)

Figure 3: Relations among various concepts introduced. | · | indicates absolute value, and
ter() indicates vectors whose components are −1, 1 or 0.

Explicitely, this gives, for any j ∈ J (L):

fx(j) =

{∑
i|j∈Xi

αi, if j ∈ η(x)

−
∑

i|j∈Xi
αi, if j ∈ η(x′).

Hence |fx| takes value 1 on X0, 1 − α0 on X1 \X0, etc., and is nonincreasing.
Remark that |fx| = f if f ∈ C(J (L)), and |f |x = f if f ∈ Cx(J (L)).

3.3 Natural interpolation on bipolar structures

Again we suppose that L̃ is a regular mosaic. Assume F :
⋃

x∈c(L) Dx(J (L)) → R is

given. We want to define the extension F of this functional on the bipolar geometric

realization |̃L|.

Let us take f ∈ |̃L| =
⋃

x∈c(L) Cx(J (L)). First, we must choose x ∈ c(L) such that f

belongs to Cx(J (L)) (x is not unique in general since in the definition of |̃L| the union is
not disjoint (see Def. 9)). Defining

J (L)+ := {j ∈ J (L) | f(j) ≥ 0}, J (L)− := J (L) \ J (L)+,

it suffices to take x, x′ defined by

η(x) :=
⋃

k∈K

Jk, η(x′) := J (L) \ η(x)

with K the smallest one such that J (L)+ ⊆
⋃

k∈K Jk (using notations of proof of Theo-
rem 2). Now, consider |f |, which belongs to C(J (L)), and its expression using the natural

14



triangulation:

|f | =

p∑

i=0

αi1Xi

with 1X0 , . . . , 1Xp
a chain in D(J (L)). Then we have |f |x = f , and we propose the

following definition.

Definition 10 Assume L̃ is a regular mosaic. For any functional F :
⋃

x∈c(L) Dx(J (L)) →

R, its natural extension to the bipolar geometric realization of L̃ is defined by:

F (f) :=

p∑

i=0

αiFx(1Xi
)

for all f ∈ Cx(J (L)), letting |f | :=
∑p

i=0 αi1Xi
for some chain {1X0 < 1X1 < · · · < 1Xp

}
in D(J (L)), and Fx : D(J (L)) → R defined by:

Fx(1Xi
) := F (1Xi∩η(x) − 1Xi∩η(x′)).

Example (end): Let us take once more L = 2N . For a given f , we define
N+ := {j ∈ N | f(j) ≥ 0} and N− := N \N+, we have:

F (f) =
n∑

i=1

αiFN+(1Xi
) =

n∑

i=1

[
|f(π(i))| − |f(π(i+ 1))|

]
F (1Xi∩N+ − 1Xi∩N−),

where we have used (9). Putting v(A,B) := F (1A − 1B), we recognize the
Choquet integral for bicapacities (see Definition 4). �

Remark 1: Definition 10 can be written equivalently as F (f) = Fx(|f |),

making clear the relation between the functional on L and on L̃.

Lastly, we address the problem of expressing F in terms of the Möbius transform
of F , using Prop. 4. For this purpose, it is better to turn a given functional F on⋃

x∈c(L) Dx(J (L)) into its equivalent form F̃ defined on L̃, thanks to the mappings ψx,

x ∈ c(L). Doing so, we can use Prop. 4 and (12), and get the Möbius transform of F̃ ,
which we denote by m̃:

m̃(x, y) =
∑

(z,t)≤(x,y)

(z,t)∈L̃

F̃ (z, t)µL(z, x)µL(t, y), ∀(x, y) ∈ L̃.

We need the following result, which is a generalization of (3).

Lemma 1 Let f ∈ C(J (L)) and F : D(J (L)) → {0, 1} being nondecreasing and 0-1
valued. Then

F (f) =
∨

T⊆J (L)
F (1T )=1

∧

j∈T

f(j).
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Proof: (adaptation from [18]) Using notations of Proposition 1, define i0 ∈ J (L) such
that

f(π(i0)) =
∨

T⊆J (L)
F (1T )=1

∧

j∈T

f(j).

Assume for simplicity that f(π(1)) > f(π(2)) > · · · > f(π(n)), and let us show that

F (1{π(1),...,π(i)}) =

{
1, if i ≥ i0

0, else.

Assume i ≥ i0. Then for any T ⊆ J (L) such that F (1T ) = 1, we have f(π(i)) ≤ ∧j∈Tf(j).
This inequality implies that T ⊆ {π(1), . . . , π(i)}, and hence by monotonicity of F , we
get F (1{π(1),...,π(i)}) = 1. Now suppose i < i0. If F (1π(1),...,π(i)) = 1, it follows that
f(π(i)) > f(π(i0)) ≥ ∧i

j=1f(π(j)) = f(π(i)), a contradiction. Hence F (1{π(1),...,π(i)}) = 0.
Using this result in (10) gives the desired result. �

The following is a generalization of (5).

Proposition 7 With the above notations, for any f ∈ |̃L| and any F on
⋃

x∈c(L) Dx(J (L)),
the following holds:

F (f) =
∑

(s,t)∈L̃

m̃(s, t)
[ ∧

j∈η(s)

f+(j) ∧
∧

j∈η(t)

f−(j)
]
,

with f+ = f ∨ 0, f− = (−f)+.

Proof: Taking F̃ := u(s,t) given by (18), we have by Definition 10

F (f) = Fx(|f |)

with F̃x(y) = u(s,t)(y ∧ x, y ∧ x′) a nondecreasing 0-1 valued function, with value 1 iff
y ∧ x ≥ s and z ∧ x′ ≥ t. Since L is distributive, this condition writes [η(y)∩ η(x) ⊇ η(s)
and η(z)∩η(x′) ⊇ η(t)], which in turn is equivalent to [η(y) ⊇ η(s)∪η(t) and η(s) ⊆ η(x)
and η(t) ⊆ η(x′)] since x, x′ are complemented. Hence, applying the above lemma, we
get:

Fx(|f |) =
∨

y≥s∨t
s≤x
t≤x′

∧

j∈η(y)

|f(j)|

=
∧

j∈η(s)

f+(j) ∧
∧

j∈η(t)

f−(j).

Using linearity of Fx versus Fx (see Proposition 2 (ii)) and the decomposition of any F̃
in the basis of functions u(x,y), the result is proved. �
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4 Application: k-ary bicapacities and Choquet inte-

gral

This section is dedicated to the study of the lattice L := kn. We set N := {1, . . . , n}.
Elements of L are thus vectors in {0, 1, . . . , k− 1}n. For commodity (lA, l

′
−A) denotes the

element t of L with ti = l if i ∈ A and l′ otherwise, and we put M := n(k − 1).
We begin by giving a motivation of this study rooted in multicriteria decision making.

4.1 Multicriteria aggregation with reference levels

Let us consider N as the set of criteria. In the terminology of multicriteria decision
making, an act or option is a mapping f : N → R, and f(i) is the score of option f

on criteria i. We may introduce reference levels for scores, and be interested into the
overall score of an option taking values only in the set of reference values (such options
are called pure, or prototypical). Since these options are prototypical, the decision maker
is able to assess their overall scores. The question arises then to compute the overall
score of an option being not pure. Using our framework, there are basically two ways
of answering this question. We put L := kn, where k is the number of reference levels,
labelled {0, 1, . . . , k− 1}. Observe that join-irreducible elements are of the form (li, 0−i),
for any l ∈ {1, . . . , k − 1} and i ∈ N (see below).

The first way is to say that non-pure options belong to a level only to some degree
that can be different from the complete membership and the complete non-membership.
Thus, as in Fuzzy Set Theory [24], a membership degree is associated to each level and
each criterion, i.e., to each join-irreducible element. From a knowledge of these degrees,
it is possible to interpolate between the values known for pure options.

More precisely, an option is an element of C(J (L)). A degree in [0, 1] is thus associated
to all join-irreducible elements. It can be interpreted as a membership degree to the class
of levels lower or equal to the join-irreducible element. Hence if an option belongs at a
given degree δ to a join-irreducible element, it necessarily belongs to a degree greater or
equal to δ to less preferred join-irreducible elements. This explains why options shall be
non-increasing functions on J (L).

The second way is to map the lattice onto a subset of R
n such that the Pareto order

on R
n corresponds precisely to the order relation on the lattice kn. For this, we map

each reference level on R: ρ0 < · · · < ρk−1, which represent the score assigned to each
level. The lattice corresponds to the nodes of a rectangular mesh in R

n composed of the
k reference levels for each criterion. The generalized capacity gives the value associated
to these nodes (i.e., the pure options). The non-pure options are any point inside the
mesh. The problem becomes thus an interpolation problem in R

n.
Consider thus an option x ∈ [ρ0, ρk−1]

n and a generalized capacity F : D(J (L)) → R.
Let I(x) ∈ {1, . . . , k}n such that for any i ∈ N

ρIi(x)−1 ≤ xi ≤ ρIi(x).

Define Φ : [ρ0, ρk−1]
n → [0, 1]n as

Φi(x) :=
xi − ρIi(x)−1

ρIi(x) − ρIi(x)−1

.
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Define a capacity vx on N by

vx(S) := F
(
1⋃

i∈N

{
(1i,0−i),...,((Ii(x)−1)i,0−i)

}
∪

⋃
i∈S((Ii(x))i,0−i)

)

for all S ⊆ N . It corresponds to the value on the 2n nodes of the mesh just around x.
One may have vx(∅) 6= 0. Let v′x(S) = vx(S)− vx(∅) and η a permutation on N such that
Φη(1)(x) ≥ · · · ≥ Φη(n)(x).

vx(∅) + Cv′x
(Φ(x)) = vx(∅) +

n∑

i=1

(Φη(i)(x) − Φη(i+1)(x)) (vx({η(1), . . . , η(i)}) − vx(∅))

= vx(∅) (1 − Φη(1)(x)) +

n∑

i=1

(Φη(i)(x) − Φη(i+1)(x)) vx({η(1), . . . , η(i)}).

(24)

4.2 The unipolar case

The set J (L) of join-irreducible elements is

J (L) =
{

(li, 0−i) | l ∈ {1, . . . , k − 1}, i ∈ N
}
.

It is a poset with n connected components, each of them being the linear lattice
{1, . . . k − 1}.

Let us consider f an element of C(J (L)). We set for commodity f l
i := f(li, 0−i).

The natural triangulation of C(J (L)) is done through chains in D(J (L)), and maximal
chains correspond to some permutations on J (L) (see Proposition 1). For commodity
to each permutation π : {1, . . . ,M} → J (L) we assign two functions λ : {1, . . . ,M} →
{1, . . . , k − 1} and θ : {1, . . . ,M} → {1, . . . , n} such that π(i) = (λ(i)θ(i), 0−θ(i)), for all
i ∈ {1, . . . ,M}.

Applying Proposition 1 again, we know that for any element f of a simplex of C(J (L))
corresponding to a permutation π on J (L), we have

f
λ(1)
θ(1) ≥ f

λ(2)
θ(2) ≥ · · · ≥ f

λ(M)
θ(M)

and
f(lp, 0−p) =

∑

i∈{1,...,M}

αi1Xi
(lp, 0−p)

where Xi := {(λ(1)θ(1), 0−θ(1)), . . . , (λ(i)θ(i), 0−θ(i))}, αi = f
λ(i)
θ(i) − f

λ(i+1)
θ(i+1) for

i ∈ {1, . . . ,M − 1}, and αM = f
λ(M)
θ(M) .

A k-ary capacity is a function F : D(J (L)) → R. Applying Proposition 2 the natural
extension of f ∈ C(J (L)) w.r.t. F is

F (f) =

M∑

i=1

[
f

λ(i)
θ(i) − f

λ(i+1)
θ(i+1)

]
× F

(
1{(λ(1)θ(1) ,0−θ(1)),...,(λ(i)θ(i) ,0−θ(i))}

)
,

with f
λ(M+1)
θ(M+1) := 0. This could be considered as the Choquet integral of f w.r.t F .
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To recover the interpolation formula (24) of Section 4.1, we consider a particular class
of elements f in C(J (L)) satisfying for all i ∈ N

f 1
i = · · · = f

Ji(f)−1
i = 1

f
Ji(f)
i = zi

f
Ji(f)+1
i = · · · = fk−1

i = 0,

for some given integers J1(f), . . . , Jn(f) in {1, . . . , k − 1}, and real numbers z1, . . . , zn ∈
[0, 1].

Let us denote by σ a permutation on N such that

zσ(1) ≥ · · · ≥ zσ(n).

Remark that f belongs to all M-dimensional simplices of C(J (L)) whose corresponding
permutation satisfy:

∀i ∈ {1, . . . , qf}, f
λ(i)
θ(i) = 1

∀i ∈ {qf + 1, . . . , qf + n}, f
λ(i)
θ(i) = zσ(i−qf )

∀i ∈ {qf + n+ 1, . . .M}, f
λ(i)
θ(i) = 0

where qf =
∑

i∈N(Ji(f)−1). Hence, f belongs to the interior of a n-dimensional simplex
corresponding to the chain

1X
qf
< 1X

qf ∪{((Jσ(1)(f))σ(1),0−σ(1))} < · · · < 1X
qf ∪{((Jσ(1)(f))σ(1) ,0−σ(1)),...,((Jσ(n)(f))σ(n),0−σ(n))},

with Xqf := {(li, 0−i) | 1 ≤ li ≤ Ji(f) − 1}. Then

F (f) = (1−zσ(1))F (1X
qf

)+

n∑

i=1

(zσ(i)−zσ(i+1))F (1X
qf ∪{((Jσ(1)(f))σ(1),0−σ(1)),...,((Jσ(i)(f))σ(i),0−σ(i))})

(25)
with zσ(n+1) := 0. Let x ∈ [ρ0, ρk−1]

n defined by

xi := ρJi(f)−1 + (ρJi(f) − ρJi(f)−1) × zi .

Then expression (24) and (25) lead to exactly the same value since J(f) = I(x), σ = η,
z = Φ(x) and

vx(S) := F (1X
qf ∪

⋃
i∈S((Ji(f))i,0−i)) .

4.3 The bipolar case

The bipolarization of L is

L̃ =
{

(x, y) ∈ kn × kn | ∀i ∈ N, xi 6= 0 ⇒ yi = 0, and yi 6= 0 ⇒ xi = 0
}
.

Moreover, the set of complemented elements is

c(L) =
{

((k − 1)A, 0−A) | A ⊆ N
}
,
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and ((k−1)A, 0−A)′ = (0A, (k−1)−A). Note that L̃ is a regular mosaic, hence Theorem 2
applies and L̃ is the union of all L(x), with x ∈ c(L), and

L((k−1)A, 0−A) =
{(

(xA, 0−A), (0A, y−A)
)
| x ∈ {0, . . . , k−1}|A|, y ∈ {0, . . . , k−1}n−|A|

}
.

Let f ∈ C((k−1)A,0−A)(J (L)), and f l
i := f(li, 0−i). We have f l

i ≥ 0 if i ∈ A and f l
i ≤ 0 if

i 6∈ A.
We consider a simplex of C((k−1)A ,0−A)(J (L)) containing f , whose corresponding per-

mutation is π : {1, . . . ,M} → J (L), and we define as in Section 4.2 the functions
λ : {1, . . . ,M} → {1, . . . , k − 1}, and θ : {1, . . . ,M} → {1, . . . , n}. Then

∣∣∣fλ(1)
θ(1)

∣∣∣ ≥
∣∣∣fλ(2)

θ(2)

∣∣∣ ≥ · · · ≥
∣∣∣fλ(M)

θ(M)

∣∣∣

and ∣∣f(lp, 0−p)
∣∣ =

∑

i∈{1,...,M}

αi 1Xi
(lp, 0−p)

where Xi := {(λ(1)θ(1), 0−θ(1)), . . . , (λ(i)θ(i), 0−θ(i))}, αi =
∣∣∣fλ(i)

θ(i)

∣∣∣ −
∣∣∣fλ(i+1)

θ(i+1)

∣∣∣ for

i ∈ {1, . . . ,M − 1}, and αM =
∣∣∣fλ(M)

θ(M)

∣∣∣.
A k-ary bicapacity is a function F : ∪A⊆ND((k−1)A,0−A)(J (L)) → R.

The natural extension F (f) is:

F (f) =

M∑

i=1

(∣∣∣fλ(i)
θ(i)

∣∣∣ −
∣∣∣fλ(i+1)

θ(i+1)

∣∣∣
)
×

F
(
1⋃

q∈{1,...,i}
θ(q)∈A

(λ(q)θ(q) ,0−θ(q)) − 1⋃
q∈{1,...,i}
θ(q)6∈A

(λ(q)θ(q) ,0−θ(q))

)
,

with f
λ(M+1)
θ(M+1) := 0. As before, this could be considered as the Choquet integral of f w.r.t.

F .
We consider now a particular class of elements f in C(J (L)) satisfying for all i ∈ N

|f 1
i | = · · · = |f

Ji(f)−1
i | = 1

|f
Ji(f)
i | = zi

|f
Ji(f)+1
i | = · · · = |fk−1

i | = 0,

for some given integers J1(f), . . . , Jn(f) in {1, . . . , k − 1}, and real numbers z1, . . . , zn ∈
[0, 1]. Let us denote by σ a permutation on N such that

zσ(1) ≥ · · · ≥ zσ(n).

Remark that f belongs to all M-dimensional simplices of C(J (L)) whose corresponding
permutation satisfy:

∀i ∈ {1, . . . , qf}, f
λ(i)
θ(i) = 1 if θ(i) ∈ A, and − 1 otherwise

∀i ∈ {qf + 1, . . . , qf + n}, f
λ(i)
θ(i) = zσ(i−qf ) if θ(i) ∈ A, and − zσ(i−qf ) otherwise

∀i ∈ {qf + n+ 1, . . .M}, f
λ(i)
θ(i) = 0
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where qf =
∑

i∈N (Ji(f) − 1). Then

F (f) = (1 − zσ(1))V (∅) +

n∑

i=1

(zσ(i) − zσ(i+1))V ({σ(1), . . . , σ(i)}), (26)

with zσ(n+1) := 0, and

V (S) := F
(
1(

X
qf ∪

⋃
i∈S((Ji(f))i,0−i)

)
∩J (L)+

− 1(
X

qf ∪
⋃

i∈S((Ji(f))i,0−i)
)
∩J (L)−

)
,

with Xqf := {(li, 0−i) | 1 ≤ li ≤ Ji(f) − 1}.
The positive part of the scale is represented by the positive levels ρ0, . . . ρk−1. The

negative part of the scale is represented by the negative levels ρ−k+1, . . . , ρ0. Hence
ρ0 = 0 is the neutral element demarcarting between attractive and repulsive values. Let
x ∈ [ρ−k+1, ρk−1]

n defined by

xi :=

{
ρJi(f)−1 + (ρJi(f) − ρJi(f)−1) × zi if i ∈ A

ρ−Ji(f)+1 + (ρ−Ji(f) − ρ−Ji(f)+1) × zi if i 6∈ A

Then proceeding as in Section 4.1, it is easy to see that (26) corresponds exactly to the
Choquet integral for k-ary bicapacities defined in [10].

4.4 Example

We end this section by illustrating the above results with k = 3 and n = 2. Clearly, the
case k = 2 was already well described (capacities and bicapacities).

Elements in L := 32 are denoted by pairs (l1, l2), with li ∈ {0, 1, 2}, i = 1, 2. We
have four join-irreducible elements (1, 0), (2, 0), (0, 1), (0, 2). Let us consider the following
function f in C(J (L)):

f(1, 0) = 0.5, f(2, 0) = 0.1, f(0, 1) = 0.3, f(0, 2) = 0.2.

Note that f is indeed nonincreasing on J (L). The associated permutation is

π(1) = (1, 0), π(2) = (0, 1), π(3) = (0, 2), π(4) = (2, 0),

and the corresponding maximal chain is (expressed in L for simplicity)

(0, 0) < (1, 0) < (1, 1) < (1, 2) < (2, 2).

(see Fig. 4 for a diagram of L, and the maximal chain in bold) Supposing F being defined
on L, the Choquet integral of f w.r.t. F is given by

F (f) = [f(1, 0) − f(0, 1)]F (1, 0) + [f(0, 1) − f(0, 2)]F (1, 1)

+ [f(0, 2) − f(2, 0)]F (1, 2) + f(2, 0)F (2, 2).

Let us turn to the bipolar case. To avoid a heavy notation, elements of L̃ are denoted
by (ij, kl) instead of ((i, j), (k, l)). The set of complemented elements together with their
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complemented elements is

A = ∅ : (0, 0) ↔ (2, 2)

A = {1} : (2, 0) ↔ (0, 2)

A = {2} : (0, 2) ↔ (2, 0)

A = {1, 2} : (2, 2) ↔ (0, 0)

Then L̃ = L(0, 0) ∪ L(2, 0) ∪ L(0, 2) ∪ L(2, 2), with

L(0, 0) = {(00, kl) | k, l ∈ {0, 1, 2}}

L(2, 0) = {(i0, 0l) | i, l ∈ {0, 1, 2}}

L(0, 2) = {(0j, k0) | j, k ∈ {0, 1, 2}}

L(2, 2) = {(ij, 00) | i, j ∈ {0, 1, 2}}.

Consider the function f defined by

f(1, 0) = 0.5, f(2, 0) = 0.1, f(0, 1) = −0.3, f(0, 2) = −0.2.

Then A = {1}, f ∈ C(2,0)(J (L)), and the permutation π is the same as above. Now,

assuming F defined on L̃ is given,

F (f) = [|f(1, 0)| − |f(0, 1)|]F (10, 00) + [|f(0, 1)| − |f(0, 2)|]F (10, 01)

+ [|f(0, 2)| − |f(2, 0)|]F (10, 02) + |f(2, 0)|F (20, 02).

Fig. 4 shows the bipolar extension L̃, the part L(2, 0) used for f is in grey, and the
maximal chain is in bold.

(1, 1)

(1, 0)

(0, 0)

(0, 1)

(2, 0) (0, 2)

(2, 1) (1, 2)

(2, 2)

L = 32
(00, 22)

(00, 20)

(02, 20)

(02, 00)

(22, 00)

(20, 00)

(20, 02)

(00, 02)

(00, 00)

(10, 01)

(10, 00)

(20, 01)

(10, 02) (00, 01)

L = 3̃2

Figure 4: The lattice L = 32 and its bipolar extension. In bold the maximal chain
corresponding to f

5 Concluding remarks

We have provided a general scheme for the bipolarization of a class of posets, precisely of
inf-semilattices. The bipolarization is particularly simple in the case of a finite distributive
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lattice L, where all connected components of the poset of join-irreducible elements have
a least element (this is the case, e.g., for Boolean lattices and products of linear lattices).
In this case, the bipolarization of L is made from copies of L, and is called for this reason
a regular mosaic.

Using the concepts of geometric realization of a distributive lattive and of natural
triangulation, we have provided a general interpolation scheme on bipolar structures,
which can be considered as a general definition of the Choquet integral.

We have applied our general scheme to multicriteria decision making, where we have
shown that our model reduces to the Choquet integral for k-ary capacities, in the special
case where the scores assigned to levels for each criterion are either 0 or 1, except on one
level. We have also provided an interpretation pertaining to fuzzy set theory when no
such restriction exists on the scores.
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