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In this paper we propose a generalization of the concept of symmetric fuzzy measure
based in a decomposition of the universal set in what we have called subsets of indiffe-
rence. Some properties of these measures are studied, as well as their Choquet integral.
Finally, a degree of interaction between the subsets of indifference is defined.
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1. Introduction

Fuzzy measures are a generalization of probability measures for which additivity

is removed and monotonicity is imposed instead. These measures have become a

powerful tool in Decision Theory (see e.g. 12, the work of Schmeidler 21 and 3);

moreover, the Choquet Expected Utility model generalizes the Expected Utility

one, and this model offers a simple theoretical foundation for explaining phenomena

that cannot be accounted for in the framework of Expected Utility Theory, as the

well known Ellsberg’s and Allais’ paradoxes (see 3 for a survey about this topic).

However, the richness of fuzzy measures has its counterpart in the complexity.

If we deal with a space of n elements, a probability measure only needs n − 1

coefficients, while a fuzzy measure needs 2n − 2. In an attempt to decrease the

exponential complexity of fuzzy measures in practical applications, Grabisch has

1



2 p-symmetric fuzzy measures

introduced in 11 the concept of k-order additive measures or k-additive measures

for short; k-additive measures are defined from the Möbius transform, and they can

be represented by a limited set of coefficients, at most
∑k

i=1

(

n
i

)

. A characterization

of k-additive measures based in Choquet Expected Utility Model can be found in
15.

On the other hand, it is a well known fact that an OWA operator 26 is a discrete

Choquet integral with respect to a symmetric fuzzy measure. Hence, Choquet

integral generalizes OWA operators and, as before, the richness of Choquet integral

is paid by the complexity. Our goal is to introduce a concept, similar to k-additive

measures, bridging the gap between symmetric fuzzy measures and general fuzzy

measures. We propose a definition of p-symmetry based in what we will call subsets

of indifference, and we study some of their properties.

Of course, Choquet integral with respect to a p-symmetric fuzzy measure ge-

neralizes the concept of OWA. Another generalization of OWA operators can be

found in 2, in which it is defined the so-called double aggregation operators as an

aggregation of two other aggregation operators.

The paper is organized as follows: In Section 2, we recall some basic concepts.

Next, in Section 3, we give the definition of p-symmetric measures and study some

of their properties. In Section 4, we study the expressions of p-symmetric measures

for other representations of fuzzy measures. In Section 5 we deal with the Choquet

integral of p-symmetric measures; in this section we also define a degree of inter-

action and study its relationship with the decomposition of Choquet integral. We

finish with the conclusions and open problems.

2. Notations and basic concepts

In the sequel, we will consider a finite universal set of n elements, denoted

X = {x1, ..., xn}. Subsets of X are denoted with capital letters A, B, and so on,

and also by A1, ..., Ap. The set of all subsets of X is denoted P(X). Finally,
∧

(resp.
∨

) denotes the min (resp. max) operation.

In order to be self-contained, let us now give some definitions:

Definition 1 24 A (discrete) fuzzy measure on X is a set function µ : P(X) 7→

[0, 1] satisfying

(i) µ(∅) = 0, µ(X) = 1 (boundary conditions).

(ii) A ⊂ B implies µ(A) ≤ µ(B) (monotonicity).

To any fuzzy measure, we can assign another one, called dual measure whose

definition is the following:

Definition 2 Consider (X,X ) a measurable space and let µ be a fuzzy measure

over X; we define the dual or conjugate measure of µ as the fuzzy measure µ̄

given by µ̄(A) = 1 − µ(Ac), where Ac = X\A.

Other alternative representations of fuzzy measures are given by the Möbius

transform and the Shapley interaction.
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Definition 3 20 Let µ be a fuzzy measure on X. The Möbius transform of µ is

defined by

m(A) :=
∑

B⊂A

(−1)|A\B|µ(B), ∀A ⊂ X. (1)

In the Theory of Cooperative Games, the Möbius transform is interpreted as

the importance of each subset by itself, without considering its parts. In this sense,

this transformation is called dividend 7.

When m is given, it is possible to recover the original µ by the so-called Zeta

transform (see 4):

µ(A) =
∑

B⊂A

m(B). (2)

We can define m for any set function, not limited to fuzzy measures. In order

to m being the Möbius transform of a fuzzy measure we need to impose some

monotonicity constraints. These constraints are given in the following proposition:

Proposition 1 4 A set of 2n coefficients m(A), A ⊂ X corresponds to the

Möbius representation of a fuzzy measure if and only if

(i) m(∅) = 0,
∑

A⊂X

m(A) = 1,

(ii)
∑

xi∈B⊂A

m(B) ≥ 0, ∀A ⊂ X, ∀xi ∈ A.

¿From Möbius transform, we can derive the definition of belief function, given

by Dempster 6 and Shafer 22:

Definition 4 A fuzzy measure µ is a belief function if m(A) ≥ 0, ∀A ⊂ X.

Shapley interaction is another equivalent representation of fuzzy measures.

Definition 5 10 Let µ be a fuzzy measure on X. The Shapley interaction index

of A ⊂ X, is defined by:

Iµ(A) =
∑

B⊂X\A

(n − b − a)!b!

(n − a + 1)!

∑

C⊂A

(−1)a−cµ(B ∪ C),

with a = |A|, b = |B|, c = |C|.

Shapley interaction for singletons is just the Shapley value of a game 23, and it

recovers the interaction index of Murofushi and Soneda 16 for pairs.

I and m are related through the following formulas:

I(A) =
∑

B⊂X\A

1

|B| + 1
m(A ∪ B), ∀A ⊂ X. (3)

m(A) =
∑

B⊂X\A

B|B|I(B ∪ A), ∀A ⊂ X, (4)

where Bk denotes the Bernoulli numbers defined by recurrence through B0 = 1 and

Bk = −
∑k−1

l=0
Bl

k−l+1

(

k
l

)

.
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Definition 6 5 The Choquet integral∗of a measurable function f : X 7→ R
+ is

defined by

Cµ(f) :=

∫ ∞

0

µ({x|f(x) ≥ α})dα.

For simple functions the expression reduces to:

Cµ(f) :=

n
∑

i=1

(f(x(i)) − f(x(i−1)))µ(Bi),

where parenthesis mean a permutation such that 0 = f(x(0)) ≤ f(x(1)) ≤ ... ≤

f(x(n)) and Bi = {x(i), ..., x(n)}. Another equivalent expression for simple functions

is

Cµ(f) :=

n
∑

i=1

f(x(i))(µ(Bi) − µ(Bi+1))

with Bn+1 = ∅.

Choquet integral in terms of m is given by:

Theorem 1 4 The Choquet integral Cµ : [0, 1]n 7→ R
+ can be written as

Cµ(f) =
∑

T⊂X

m(T )

[

∧

xi∈T

f(xi)

]

, f ∈ [0, 1]n. (5)

Definition 7 26 An ordered weighted averaging operator (OWA) is an ope-

rator defined by

OWAw(f) =

n
∑

i=1

wif(x(i)),

where w is the weight vector, w = (w1, ..., wn) ∈ [0, 1]n and such that
∑n

i=1 wi = 1.

Definition 8 A fuzzy measure is said to be symmetric if it satisfies

|A| = |B| ⇒ µ(A) = µ(B), ∀A, B ⊂ X.

It can be proved (see 9 and 18) that:

Proposition 2 Let µ be a fuzzy measure on X. Then, the following statements

are equivalent:

1. There exists w ∈ [0, 1]n,
∑n

i=1 wi = 1, such that Cµ = OWAw.

2. µ is a symmetric fuzzy measure.

Choquet integral model can be regarded as the generalization of a linear model

in the sense that (C)
∫

f dµ + (C)
∫

g dµ = (C)
∫

(f + g) dµ for a pair of comonotone

functions 13. The expressive power of Choquet integral is much higher than that

of a linear model. However, as it can be seen from Definition 6, Choquet integral

∗If X is continuous, the measurability is needed. Let (X,X ) be a measurable space. We say a
mapping f is a measurable function if {x| f(x) ≥ α} is in the σ-algebra X for any α ≥ 0.
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model is difficult to handle. These are the reasons for which it has been proposed a

hierarchical Choquet integral model, that allows to compute Choquet integral from

combinations of other Choquet integrals. The underlying idea here is to be able to

decompose the integral into a sum of other integrals over smaller referential sets.

Definition 9 19 Let (X,X ) be a measurable space. An interadditive partition

of X is a finite measurable partition Q of X such that for every A ∈ X

µ(A) =
∑

P∈Q

µ(P ∩ A).

Then, the following holds.

Proposition 3 19 Let (X,X ) be a measurable space and Q be a finite measur-

able partition of X. Then, Q is an interadditive partition if and only if for every

measurable function f

(C)

∫

X

fdµ =
∑

P∈Q

(C)

∫

P

fdµ. (6)

A more general hierachical Choquet integral model based in what is called

inclusion-exclusion coverings appears in 25.

3. p-symmetric measures

Let us consider an OWA operator. If we look at the definition, we can see that

only the order in the scores is important, i.e. we are interested in the scores, but we

do not care about which criterium each score has been obtained. Mathematically,

this means that the fuzzy measure defining the OWA operator only depends on the

cardinality of the subsets, and not in the elements of the subset themselves.

Thus, all criteria have the same importance or, in other words, we have a “subset

of indifference” (X itself). Then, it makes sense to define 2-symmetric measures as

those measures for which we have two subsets of indifference, 3-symmetric measures

as those with three subsets of indifference, and so on. Let us now translate this idea.

Definition 10 Given two elements xi, xj of the universal set X, we say that xi

and xj are indifferent elements if and only if

∀A ⊂ X\{xi, xj}, µ(A ∪ xi) = µ(A ∪ xj).

This definition translates the idea that we do not care about which element, xi

or xj , is in the coalition; that is, we are indifferent between xi and xj . This concept

can be generalized for subsets of more than two elements, as shown in the following

definition:

Definition 11 Given a subset A of X, we say that A is a set of indifference if

and only if

∀B1, B2 ⊂ A, |B1| = |B2|, ∀C ⊂ X\A, µ(B1 ∪ C) = µ(B2 ∪ C).
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It is easy to see the following:

Lemma 1 Given A ⊂ X, A is a set of indifference if and only if

∀B1, B2 ⊂ A, |B1| = |B2|, ∀C ⊂ X\{B1 ∪ B2}, µ(B1 ∪ C) = µ(B2 ∪ C).

Proof: For C ⊂ X\A, we have, applying Definition 11, µ(C ∪B1) = µ(C ∪B2).

Let us consider C ⊂ X\(B1 ∪ B2) but C 6⊂ X\A. Then, ∃D ⊂ A\(B1 ∪ B2)

such that C = D ∪ C′, with C′ ⊂ X\A. Thus, by Definition 11,

µ(C ∪ B1) = µ(C′ ∪ D ∪ B1) = µ(C′ ∪ D ∪ B2) = µ(C ∪ B2),

and therefore the result holds.

Another property of sets of indifference is:

Lemma 2 If A is a set of indifference and A′ ⊂ A, then A′ is itself a set of

indifference.

Example 1 Consider A, a set of indifference. Then, taking C = ∅, we obtain

µ(xi) = µ(xj), ∀xi, xj ∈ A.

µ(xi, xj) = µ(xk, xl), ∀xi, xj , xk, xl ∈ A,

and so on.

An example of sets of indifference are null sets, defined in 1 and 17:

Definition 12 A subset A ⊂ X is called a null set with respect to µ if

µ(A ∪ B) = µ(B), ∀B ⊂ X\A.

A consequence of Definition 11 is:

Lemma 3 A null set is a set of indifference.

Proof: Let A be a null set. Then, µ(A ∪ B) = µ(B), ∀B ⊂ X. Let us consider

now A1, A2 ⊂ A, |A1| = |A2|. For B ⊂ X\A

µ(B) ≤ µ(A1 ∪ B) ≤ µ(A ∪ B) = µ(B).

µ(B) ≤ µ(A2 ∪ B) ≤ µ(A ∪ B) = µ(B).

Then, µ(A1 ∪ B) = µ(B) = µ(A2 ∪ B) and hence, A is a set of indifference.

We are now able to define p-symmetric fuzzy measures (p-symmetric measures

for short). We start with 2-symmetric measures.

Definition 13 Given a fuzzy measure µ, we say that µ is a 2-symmetric mea-

sure if and only if there exists a partition of the universal set {A, Ac}, A, Ac 6= ∅

such that both A and Ac are sets of indifference and X is not a set of indifference.

For the general case we have:
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Definition 14 Given two partitions {A1, ..., Ap}, {B1, ..., Br} of a referential X,

we say {A1, ..., Ap} is coarser than {B1, ..., Br} if the following holds:

∀Ai, ∃Bj such that Bj ⊂ Ai.

Definition 15 Given a fuzzy measure µ, we say that µ is a p-symmetric measure

if and only if the coarsest partition of the universal set in sets of indifference is

{A1, ..., Ap}, Ai 6= ∅, ∀i ∈ {1, ..., p}.

Note that by Lemma 2 we need to work with the coarsest partition. Otherwise,

a p-symmetric measure would be also a p′-symmetric measure for any p′ > p.

For the 2-symmetric case, we will use both {A1, A2} and {A, Ac} for denoting

the partition of X in sets of indifference.

With these definitions, a symmetric measure is just a 1-symmetric measure.

Example 2 Consider the 2-symmetric case. Consider the partition given by

A = {x1, ..., xk}, Ac = {xk+1, ..., xn}, with A, Ac two sets of indifference. Then, in

order to define the fuzzy measure we just need to know

µ(x1), µ(xk+1), for singletons.

µ(x1, x2), µ(xk+1, xk+2), µ(x1, xk+1), for sets of two elements,

and so on.

Then, it suffices to know the cardinality and the number of elements of A in the

subset.

Remark 1 It is important to note that, in order to define a p-symmetric mea-

sure, we need to know which are the sets of indifference partitioning the universal

set. For symmetric measures, we have only one set of indifference (X) and thus

we omit it, but a symmetric measure is a very particular measure and this does not

hold for the general p-symmetric case.

Let us now propose a situation in which p-symmetric measures may appear:

Example 3 Suppose that a jury of four members is evaluating some students.

Moreover, suppose that two members of the jury are mathematicians M1, M2 and

the other two are physicists P1, P2. Suppose also that we do not have informa-

tion about which one of the two mathematicians is the best, nor for the physi-

cists. However, let us suppose that, for us, the marks in Mathematics are more

important than those in Physics. The fuzzy measure could be defined as follows:

µ(Mi) = 0.3, µ(Pi) = 0.2, i = 1, 2 as the marks in Mathematics are more im-

portant than the marks in Physics. Now, for pairs, we can define µ(M1, M2) =

0.5, µ(P1, P2) = 0.3, µ(Mi, Pj) = 0.8. This is due to the fact that a student should

be considered better (in the sense of more complete) if he obtains a good evaluation

for both subjects than in the case in which he is very good in just one of them.

Finally, we can define µ(M1, M2, Pi) = 0.9, µ(P1, P2, Mi) = 0.85, µ(X) = 1.

In this example, we have two sets of indifference, one for the mathematicians

and another one for the physicists, and µ is a 2-symmetric measure. These subsets
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model the fact that we are not able to distinguish between the mathematicians nor

between the physicists. Then, for example, the coalition between a physicist and

a mathematician has always the same importance for us, regardless which is the

mathematician and the physicist in it.

Example 4 Consider a finite referential set X on which a probability measure

has been defined. However, suppose that we only know the probability values on

some subsets of X, namely B1, ..., Bp. Then, we have a set of coherent probabilities

with this information. The lower bound of this set is given by

µ(A) =
∑

Bi⊂A

P (Bi),

and similarly, the upper bound is the corresponding dual measure. This concepts

has been introduced by De Finetti in 8.

Let us suppose now that sets B1, ..., Bp determines a partition on X. Then, it

is easy to see that the corresponding measure µ is at most a p-symmetric measure,

where sets of indifference are B1, ..., Bp. Indeed, the p-symmetric measure is given

by

µ(i1, ..., ip) =







0 if ik < |Bk|, ∀k
P (Bir

) if ir = |Br|, ik < |Bk|, ∀k 6= r
... ...

Example 5 Consider the 2-step Choquet integral defined in 14. Proposition 2

speaks about 2-step Choquet integral with second step based on additive measures

which can be represented as a single Choquet integral with respect to a fuzzy mea-

sure; now, if the first steps are OWA operators, i.e. Choquet integral with respect

to 1-symmetric fuzzy measures µ1, .., µp with disjoint supports, we have that the

corresponding µ in Choguet integral representation is a p-symmetric measure.

In the following, as we only need to know the number of elements of each set of

indifference that belong to a given subset C of the universal set X , when dealing with

a p-symmetric measure defined by the partition {A1, ..., Ap}, we use the notation

C ≡ (c1, ..., cp), where ci is the number of elements of Ai in C. Then, we can

identify the different subsets with p-dimensional vectors whose i-th coordinate is

an integer number from 0 to |Ai|. Hence, the number of different subsets C is

(|A1| + 1) × ... × (|Ap| + 1), and this is the number of necessary values that we

need to know to completely determine the p-symmetric fuzzy measure. Moreover,

as µ(0, ..., 0) = 0, µ(|A1|, ...., |Ap|) = 1, it follows that we only need to determine

(|A1| + 1) × ... × (|Ap| + 1) − 2 values. This is written in next proposition:

Proposition 4 Let µ be a p-symmetric measure with respect to the partition

{A1, ..., Ap}. Then, the number of values that are needed in order to determine µ is
[

(|A1| + 1) × · · · × (|Ap| + 1)
]

− 2.

Example 6 Consider the special 2-symmetric case in which A = {x1}. Then,

in order to define the fuzzy measure, we just need to know

µ(x1), µ(x2), µ(x1, x2), µ(x2, x3), ..., µ(x1, ..., xn−1), µ(x2, ..., xn),
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or, in the notation proposed before

µ(1, 0), µ(0, 1), ..., µ(1, n− 2), µ(0, n− 1),

i.e. 2n− 2 values.

Remark 2 Note that the number of different subsets depends not only on the

degree of symmetry, but also on the sets of indifference that determine the partition

of X. In Example 6, we only needed 2n − 2 coefficients. However, if we take

n = 6, |A1| = 3, |A2| = 3, by Proposition 4, we need 4*4-2=14 coefficients.

As a consequence of Proposition 4, a p-symmetric fuzzy measure can be repre-

sented in a (|A1|+1)×...×(|Ap|+1) matrix M such that M[c1, ..., cp] = µ(c1, ..., cp).

Let us see some special cases as examples:

• If we have a 1-symmetric measure, we just need to know a (n+1)-dimensional

vector ~v such that ~v(i) = µ(i), where µ(0) = 0 and µ(n) = 1.

• If we have a 2-symmetric measure, we obtain a (|A| + 1) × (|Ac| + 1) matrix.














µ(0, 0) µ(0, 1) . . . µ(0, |A2| − 1) µ(0, |A2|)
µ(1, 0) µ(1, 1) . . . µ(1, |A2| − 1) µ(1, |A2|)

...
...

. . .
...

...
µ(|A1| − 1, 0) µ(|A1| − 1, 1) . . . µ(|A1| − 1, |A2| − 1) µ(|A1| − 1, |A2|)

µ(|A1|, 0) µ(|A1|, 1) . . . µ(|A1| − 1, |A2| − 1) µ(|A1|, |A2|)















• In the extreme case of a n-symmetric measure, we obtain a 2× ...× 2 matrix,

i.e. we need 2n coefficients (two of them are µ(∅) and µ(X)).

We finish this section with the following result related to dual measures.

Lemma 4 Let µ be a p-symmetric measure with respect to a partition {A1, ..., Ap}.

Then, µ̄ is also a p-symmetric measure with respect to the same partition.

Proof: Let us consider a p-symmetric measure µ with respect to the partition

{A1, ..., Ap}. To show that µ̄ is another p-symmetric measure, it suffices to note that

µ̄(i1, ..., ip) = 1 − µ(|A1| − i1, ..., |Ap| − ip),

whence the result holds.

4. Other representations of a p-symmetric measure

In this section, we deal with the problem of obtaining the different represen-

tations of a fuzzy measure in the special case of p-symmetric measures. More

concretely, we obtain the Möbius transform and the Shapley interaction.

Let us start with the Möbius transform.

Proposition 5 Let µ be a p-symmetric measure associated to the partition

{A1, ..., Ap}. Then, for B ≡ (b1, ..., bp) ⊂ X, we have

m(b1, ..., bp) =
∑

i1≤b1,...,ip≤bp

(−1)b1+...+bp−i1−...−ip

(

b1

i1

)

...

(

bp

ip

)

µ(i1, ..., ip).
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Proof: Consider B ≡ (b1, ..., bp). Then, the number of subsets of B with i1
elements of A1, i2 elements of A2..., ip elements of Ap is

(

b1

i1

)

...

(

bp

ip

)

,

and we know that they have all the same measure.

Now, as

m(B) =
∑

C⊂B

(−1)|B|−|C|µ(C),

by (1), we obtain

m(b1, ..., bp) =
∑

i1≤b1,...,ip≤bp

(−1)b1+...+bp−i1−...−ip

(

b1

i1

)

...

(

bp

ip

)

µ(i1, ..., ip),

whence the result.

Let us now find the expression of the measure in terms of the Möbius transfor-

mation.

Proposition 6 Let µ be a p-symmetric measure associated to the partition

{A1, ..., Ap}. Now, suppose m denotes its Möbius transform. Then, for B ≡

(b1, ..., bp) ⊂ X, it is

µ(b1, ..., bp) =
∑

c1≤b1,...,cp≤bp

(

b1

c1

)

· · ·

(

bp

cp

)

m(c1, ..., cp).

Proof: Consider C ≡ (c1, ..., cp) ⊂ B. Then, the number of possibilities for

such a C is
(

b1

c1

)

· · ·

(

bp

cp

)

,

and thus the expression holds applying (2).

Let us now turn to the Shapley interaction:

Proposition 7 Let µ be a p-symmetric measure associated to the partition

{A1, ..., Ap}. Then, for B ≡ (b1, ..., bp) ⊂ X, we have

I(b1, ..., bp) =
∑

c1≥b1,...,cp≥bp

1

c − b + 1

(

a1 − b1

c1 − b1

)

· · ·

(

ap − bp

cp − bp

)

m(c1, ..., cp),

with c =
∑p

i=1 ci, b =
∑p

i=1 bi.

Proof: We know from (3) that for B ⊂ X

I(B) =
∑

C|B⊂C

1

|C| − |B| + 1
m(C).
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Let us consider C ≡ (c1, ..., cp)|B ≡ (b1, ..., bp) ⊂ C. Then, the number of possible

C’s is
(

a1 − b1

c1 − b1

)

· · ·

(

ap − bp

cp − bp

)

.

Thus, we obtain

I(b1, ..., bp) =
∑

c1≥b1,...,cp≥bp

1

c − b + 1

(

a1 − b1

c1 − b1

)

· · ·

(

ap − bp

cp − bp

)

m(c1, ..., cp),

whence the result.

The reciprocal result is given by

Proposition 8 Let µ be a p-symmetric measure associated to the partition

{A1, ..., Ap}. Then, for B ≡ (b1, ..., bp) ⊂ X, we have

m(b1, ..., bp) =
∑

ci≤ai−bi,i=1,...,p

(

a1 − b1

c1

)

· · ·

(

ap − bp

cp

)

Bc1+...+cp
I(c1+b1, ..., cp+bp).

Proof: We know from (4) that for B ⊂ X

m(B) =
∑

C⊂X\B

B|C|I(C ∪ B).

Let us consider C ≡ (c1, ..., cp) ⊂ X\B ≡ (a1 − b1, ..., ap − bp). Then, the number

of possible C’s is
(

a1 − b1

c1

)

· · ·

(

ap − bp

cp

)

.

Thus, we obtain

m(B) =
∑

c1≤a1−b1,...,cp≤ap−bp

Bc1+...+cp

(

a1 − b1

c1

)

· · ·

(

ap − bp

cp

)

I(c1 +b1, ..., cp +bp),

whence the result.

The expression of Shapley interaction in terms of µ is given in next proposition.

Proposition 9 Let µ be a p-symmetric measure associated to the partition
{A1, ..., Ap}. Then, for B ≡ (b1, ..., bp) ⊂ X, we have

I(B) =
∑

di≤ai,∀i

∑

ci≥{bi,di},∀i

1

c − b + 1
(−1)c−d

(

c1

d1

)

· · ·

(

cp

dp

)(

a1 − b1

c1 − b1

)

· · ·

(

ap − bp

cp − bp

)

µ(D),

with d =

p
∑

i=1

di, c =

p
∑

i=1

ci, b =

p
∑

i=1

bi.
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Proof: We will use the expressions in Proposition 5 and Proposition 7. From

Proposition 7, we know that

I(b1, ..., bp) =
∑

c1≥b1,...,cp≥bp

1

c − b + 1

(

a1 − b1

c1 − b1

)

· · ·

(

ap − bp

cp − bp

)

m(c1, ..., cp).

But now, from Proposition 5,

m(c1, ..., cp) =
∑

d1≤c1,...,dp≤cp

(−1)c1+...+cp−d1−...−dp

(

c1

d1

)

...

(

cp

dp

)

µ(d1, ..., dp).

Joining both results, the proposition is proved.

And the reciprocal result is:

Proposition 10 Let µ be a p-symmetric measure associated to the partition
{A1, ..., Ap}. Then, for B ≡ (b1, ..., bp) ⊂ X we have

µ(B) =
∑

ci≤bi,∀i

(

b1

c1

)

. . .

(

bp

cp

)

∑

di≤ai−ci,∀i

(

a1 − c1

d1

)

· · ·

(

ap − cp

dp

)

BdI(c1+d1, ..., cp +dp),

with d =
∑p

i=1 di.

Proof: We know that

µ(b1, ..., bp) =
∑

c1≤b1,...,cp≤bp

(

b1

c1

)

· · ·

(

bp

cp

)

m(c1, ..., cp),

by Proposition 6, and

m(C) =
∑

di≤ai−ci,i=1,...,p

(

a1 − c1

d1

)

· · ·

(

ap − cp

dp

)

Bd1+...+dp
I(c1 + d1, ..., cp + dp),

by Proposition 8. Joining both results, the proposition is proved.

Of course, when considering the representation of a p-symmetric measure in

terms of the Möbius transform or the Shapley interaction, we can represent it in a

p-dimensional matrix, as we have done in the previous section.

5. Choquet integral with respect to a p-symmetric measure

In this section we study the expression of Choquet integral with respect to a

p-symmetric measure, as well as some properties of this integral.

Proposition 11 Let µ be a p-symmetric measure. Given a function f , the

Choquet integral is given by

n
∑

i=1

f(x(i))
∑

ck≤b
i−1
k

,∀k

m(c1, ..., cj + 1, ..., cp)

p
∏

k=1

(

bi−1
k

ck

)

with x(i) ∈ Aj , and where (bi−1
1 , ..., bi−1

p ) ≡ B(i−1) = {x(1), ..., x(i−1)}.
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Proof: We know from Definition 6

(C)

∫

fdµ =

n
∑

i=1

f(x(i))(µ(B(i)) − µ(B(i+1))),

where B(i) = B(i+1) ∪ {x(i)}.

Suppose that B(i+1) ≡ (bi−1
1 , ..., bi−1

p ). Then, by Proposition 6

µ(B(i+1)) =
∑

ck≤b
i−1
k

,∀k

m(c1, ..., cp)

p
∏

k=1

(

bi−1
k

ck

)

.

Now, if x(i) ∈ Aj ,

µ(B(i))−µ(B(i+1)) =
∑

C⊂B(i+1)

m(x(i) ∪C) =
∑

ck≤b
i−1
k

,∀k

m(c1, ..., cj + 1, ..., cp)

p
∏

k=1

(

bi−1
k

ck

)

,

whence the result.

As a subset C ⊂ X is determined by the number of elements in Ai, ∀i, we

can find all possible Choquet integrals finding all possible paths from (0, ..., 0) to

(|A1|, ..., |Ap|) (see Figure 1 for an example with a 2-symmetric measure).

(0,0)

(0,1)

(0,2) (1,2) (2,2)

(2,3) (3,3)

Figure 1: Possible path from (0,0) to (3,3) when |A1| = 3 and |A2| = 3.

The number of such paths is given in next lemma:

Lemma 5 Let µ be a p-symmetric measure with respect to the partition {A1, ..., Ap}.

Then, the number of paths from (0, ..., 0) to (|A1|, ..., |Ap|) is

(

n

|A1|, ..., |Ap|

)

.

Example 7 If we are in the 2-symmetric case and |A| = 1, then we have just

n + 1 different paths from (0, ..., 0) to (|A1|, ..., |Ap|) (see Figure 2).

Let us now see some properties for Choquet integral of a p-symmetric measure.
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{1,2}

{1,1}

{1,0}

{1,3}

{1,4}

{0,4}

{0,3}

{0,2}

{0,1}

{0,0}

Figure 2: Possible paths when |A1| = 1 and |A2| = 4.

Proposition 12 Let µ be a p-symmetric measure with respect to the partition

{A1, ..., Ap}, and suppose µ(Ai) > 0, ∀i. Then, the Choquet integral is given by

p
∑

i=1

µ(Ai)(C)

∫

fdµAi
+

∑

B 6⊂Aj ,∀j

m(B)
∧

xi∈B

f(xi),

where µAi
is defined by its Möbius transform

mAi
(C) =

{

m(C)
µ(Ai)

ifC ⊂ Ai

0 otherwise

Proof: Suppose that µ is a p-symmetric measure with respect to the partition

{A1, ..., Ap}. Then, the Choquet integral can be written as

p
∑

j=1

∑

B⊂Aj

m(B)
∧

xi∈B

f(xi) +
∑

B 6⊂Aj ,∀j

m(B)
∧

xi∈B

f(xi),
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by (5). Now, let us define for A ⊂ X, µ(A) > 0

mA(C) =

{

m(C)
µ(A) ifC ⊂ A

0 otherwise

Let us see that mA is the Möbius transform of a fuzzy measure. To see this, let us

show that the conditions of Proposition 1 hold:

First, note that mA(∅) = 0. Now, for i ∈ X, C ⊂ X , we have

• If xi /∈ A, then
∑

xi∈B⊂C

mA(B) = 0.

• If xi ∈ A, then

∑

xi∈B⊂C

mA(B) =
∑

xi∈B⊂C∩A

m(B)

µ(A)
≥ 0,

as µ is a fuzzy measure.

•
∑

B⊂X mA(B) = µ(A)
µ(A) = 1.

Let us denote by µA the fuzzy measure associated to mA. Then, it is trivial to

see that
∑

B⊂Aj

m(B)
∧

xi∈B

f(xi) = µ(Aj) (C)

∫

fdµAj
, ∀j,

by (5). This completes the proof.

The last summand in Proposition 12 represents the part of the Choquet integral

that cannot be assigned to any subset in the partition. When µ is a belief function,

the following can be proved:

Proposition 13 Let µ be a p-symmetric measure with respect to the partition

{A1, ..., Ap}. Suppose also that µ is a belief function. Then, the Choquet integral

can be written as
n
∑

i=1

µ(Ai)(C)

∫

fdµAi
+ (C)

∫

fdµ∗,

where µAi
and µ∗ are defined by

mAi
(C) =

{

m(C)
µ(Ai)

ifC ⊂ Ai

0 otherwise

µ∗(C) = µ(C) − µ(C ∩ A1) − ... − µ(C ∩ Ap).
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Proof: We know from Proposition 12 that the Choquet integral for a p-symmetric

fuzzy measure can be written as

∑

i

µ(Ai)(C)

∫

fdµAi
+

∑

B 6⊂Aj ,∀j

m(B)
∧

xi∈B

f(xi).

Now, define

µ∗(C) = µ(C) − µ(C ∩ A1) − ... − µ(C ∩ Ap).

µ∗ is a non-normalized fuzzy measure:

∑

xi∈B⊂C

m∗(B) =
∑

xi∈B⊂C, B 6⊂Aj,∀j

m(B) ≥ 0,

as µ is a belief function. Remark that

m∗(B) =

{

m(B) ifB 6⊂ Aj , ∀j
0 otherwise

Then, it is easy to see that

∑

B 6⊂Aj ,∀j

m(B)
∧

xi∈B

f(xi) = (C)

∫

fdµ∗,

and thus, the proposition holds.

Note that for belief functions, µ∗(X) = µ(X) − µ(A1) − ... − µ(Ap). Then, this

value can be seen as a degree of the interaction among the elements of the partition:

If µ∗(X) = 0, then necessary m(B) = 0 if B 6⊂ A1, ..., B 6⊂ Ap. We write it in the

following definition.

Definition 16 Consider µ a p-symmetric measure associated to the partition given

by {A1, ..., Ap}. Suppose also that µ is a belief function. We define the degree of

interaction among the elements of the partition by

µ(X) − µ(A1) − ... − µ(Ap).

Now, we can state the following corollary:

Corollary 1 Let µ be a p-symmetric measure with respect to the partition given by

{A1, ..., Ap} such that µ(Ai) > 0. Suppose also that µ is a belief function. When

the interaction degree vanishes, the Choquet integral can be written as

µ(A1)(C)

∫

fdµA1 + ... + µ(Ap)(C)

∫

fdµAp
,

where µAi
is defined by

mAi
(C) =

{

m(C)
µ(Ai)

ifC ⊂ Ai

0 otherwise
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In this sense, when µ is a belief function and the degree of interaction vanishes,

the partition {A1, ..., Ap} in sets of indifference is also an interadditive partition

(Equation 6). Moreover, each integral is indeed an OWA operator over a smaller

referential set.

Remark 3 Note that we need µ being a belief function in order to ensure a

positive value for the degree of interaction among the elements of the partition.

Moreover, if µ is not a belief function, we can find µ(X)− µ(A1) − ... − µ(Ap) = 0

and, on the other hand, there exist interactions among the elements of the partition.

For Corollary 1, it must be remarked that µ must be a belief function. Otherwise,

the result does not necessary hold as next example shows:

Example 8 Consider X = {x1, x2, x3} and let us define the fuzzy measure µ

given by the following Möbius transform:

x1 x2 x3 x1, x2 x1, x3 x2, x3 x1, x2, x3

0.4 0.3 0.3 0.1 0.1 0 -0.2

µ is a 2-symmetric measure, with sets of indifference A1 = {x1}, A2 = {x2, x3}.

On the other hand µ(A1) + µ(A2) = 1, and thus, µ(X) − µ(A1) − µ(A2) = 0.

However, we can not ensure

(C)

∫

fdµ = µ(A1) (C)

∫

fdµA1 + µ(A2) (C)

∫

fdµA2 , ∀f.

To see this, just consider f defined by f(x1) = 1, f(x2) = 0.5, f(x3) = 0. Then, it

is straightforward to see

(C)

∫

fdµ = 0.6, µ(A1) (C)

∫

fdµA1 = 0.4, µ(A2) (C)

∫

fdµA2 = 0.15.

6. Conclusions

In this paper, we have proposed a generalization of the concept of symmetry

for fuzzy measures. This new concept is based in sets of indifference; these sub-

sets model the fact that some elements are indistinguishable. We have defined

p-symmetric fuzzy measures and we have studied some of their properties, as well

as other representations. The main property of p-symmetric measures is that they

can be represented in a p-dimensional matrix. Once the definition of p-symmetry

given, we have obtained an expression for Choquet integral; we have shown that

this integral can be easily computed from the matrix representation. Finally, we

have derived a value for the interaction among sets of indifference.

We think that p-symmetric measures provide an interesting tool in the field of

fuzzy measures, and a graduation between symmetric measures and fuzzy measures.
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