
HAL Id: hal-00273947
https://hal.science/hal-00273947

Submitted on 16 Apr 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Neighborhood transformations on graph automata
Bruno Martin, Christophe Papazian

To cite this version:
Bruno Martin, Christophe Papazian. Neighborhood transformations on graph automata. JAC 2008,
Apr 2008, Uzès, France. pp.90-101. �hal-00273947�

https://hal.science/hal-00273947
https://hal.archives-ouvertes.fr

Journées Automates Cellulaires 2008 (Uzès), pp. 90-101

NEIGHBORHOOD TRANSFORMATIONS ON GRAPH AUTOMATA

BRUNO MARTIN AND CHRISTOPHE PAPAZIAN

Université de Nice–Sophia Antipolis, I3S, UMR 6070 CNRS, 2000 route des Lucioles, BP 121,
F-06903 Sophia Antipolis Cedex.
E-mail address: {Bruno.Martin|Christophe.Papazian}@unice.fr

Abstract. We consider simulations of graph automata. We introduce two local trans-
formations on the neighborhood: splitting and merging. We explain how to use such
transformations, and their consequences on the topology of the simulated graph, the speed
of the simulation and the memory size of simulating automata in some cases. As an ex-
ample, we apply these transformations to graph automata embedded on surfaces and we
link our results with some simulation results between cellular automata on Cayley graphs.

1. Introduction

In this paper, we consider simulations between networks of automata arranged on graphs
which are embedded on surfaces. The way to draw graphs on surfaces comes from combina-
torial topology, an older name for algebraic topology which was addressed by Kuratowski [4].

Combinatorial topology (see [3]) was developed at first as a branch of geometry. The
work of Euler and a number of nineteenth-century geometers on polyhedra is part of the
development. Under the scope of this theory is also the study of surfaces. Surfaces are
topological spaces in which every point has a neighborhood that is topologically equivalent
to an open disk. The simplest example of a surface is the plane. Other objects can be
constructed in a combinatorial way by gluing disks together. With this kind of operation
one gets a cylinder, a surface with boundary, or the torus which is the surface that results
when both pairs of opposite sides of a rectangle are identified.

This kind of networks of automata has to be compared with cellular automata on
Cayley graphs. Both models share the same underlying networks but are described in a
completely different fashion. Instead of drawing the graph of the network on a surface, it is
defined by the Cayley graph of a finitely presented group. The approach, more algebraic,
brings more constraints. Some authors already considered simulations between cellular
automata on Cayley graphs: Róka [10, 11, 12, 13] proposed different simulations extended
by Martin [5, 6, 7].

Key words and phrases: Graph automata, Cellular automata on Cayley graphs, algorithmics, topology.
(This work has been supported by the Interlink/MIUR project “Cellular Automata: Topological Prop-

erties, Chaos and Associated Formal Languages” and by the french ANR programme Sycomore.)

c

90

NEIGHBORHOOD TRANSFORMATIONS ON GRAPH AUTOMATA 91

Some results can be imported from the Cayley graphs approach to the combinatorial
topology approach and we will discuss their similarities and differences.

The paper is organized as follows. We introduce our model of computation in Section 2.
Section 3 presents our local transformations on the neighborhood and gives some examples.
Section 4 uses the local transformations to simulate finite graph automata embedded on
surfaces.

2. Notation and definitions

We start with two surfaces with boundary: the cylinder and the Moebius strip (see
Fig. 1). The cylinder which can be described as a square in which top and bottom edges

Figure 1: Two surfaces with boundary; a cylinder (left) and a Mœbius strip (right).

are given parallel orientations and the left and right edges are joined to place the arrow heads
and tails into coincidence. The Möbius strip is a one-sided non-orientable surface obtained
by cutting a closed band into a single strip, giving one of the two ends thus produced a half
twist, and then reattaching the two ends.

a1

ag

ag

ag

bg

bg

a1

a1b1

b1

bi

ai

ai

ai

ai

a1

ag

bi

Figure 2: Drawing of orientable surface (left) and non-orientable surface (right).

We then consider “classical” surfaces for drawing a picture of a graph (cf. section 2.1).
There are two types of surfaces: orientable and non-orientable. The orientable surface of
genus 0 and 1 are respectively called a plane and a torus. When we increase the genus g

of the orientable surface for g ≥ 2, we obtain
−→
Sg a g-handled torus. The non-orientable

surfaces of genus 1 and 2 are respectively a projective plane and a Klein bottle. Fig. 2 left
describes an orientable surface of genus g in which each pair of edges sharing the same label
are joined together. Fig. 2 right describes Sg, an non-orientable surface of genus g.

In the rest of the paper we will keep the notations of combinatorial topology for the
surfaces we consider. Thus, the usual ring becomes a cylinder (abbreviated by Cyl), a

“usual” torus remains a torus (abbreviated by
−→
S 1).

92 B. MARTIN AND C. PAPAZIAN

2.1. Embedding graphs on surfaces

A graph G is an ordered pair G = (V,E) where V is a set of vertices (or nodes) and E

is a set of edges which are pairs of distinct vertices. A path is a sequence of vertices, each
adjacent to the next. A cycle is a path with at least 3 vertices such that the last vertex is
adjacent to the first. Given x and y two vertices of G, the distance between them is the
length of a minimal path from x to y.

Since our goal is to embed regular graphs (i.e. isomorphic to Cayley Graphs) on surfaces
and to associate a finite state machine to each vertex of the graph, we need some further
definitions on graphs.

A graph is planar if it can be drawn in the plane so that no edges intersect or, equiv-
alently, if it can be embedded in the plane. A nonplanar graph cannot be drawn without
edge intersections. More generally, we consider in this paper graphs which are embeddable

on an orientable surface
−→
Sg, that is which can be drawn on

−→
Sg without crossing edges.

When a graph is drawn without any crossing, any cycle that surrounds a region without
any edge reaching from the cycle inside to such region forms a face, including the outer,
infinitely large regions (when existing). Observe that the notion of face is independent from
the embedding [2].

The dual of a given planar graph G has a vertex for each face of the graph and an
edge for each edge joining two neighboring regions. Fig. 3 illustrates the embedding of an
hexagonal grid on a torus and the embedding of its dual on a torus. Vertices with the same
number have to be identified as well as edges joining identical vertices.

1

1

1 1

1

2
2

2

2

3
3

3

3

4

4

4
4

4

5
5

55

6
6

66

5

5

Figure 3: Dual embeddings of an hexagonal graph on a torus. On the left, vertices with
the same number are identified like on the right, the dotted edges with the same
numbers.

2.2. Graph automata

A partitioned graph automaton (PGA for short) over a graph G is a 4-tuple A =
(Q, G,N, δ) for which we associate a finite state machine called a cell to each vertex of
the graph G. The set Q denotes the finite set of the states, G = (V,E) is a graph, N

the neighborhood (including the cell itself and nodes at distance 1 together with a local
numbering as described by Fig. 4; the numbering gives an ordering of the neighbors that will
be used by the local transition function) and δ : Q♯N → Q♯N is the local transition function
which updates the state of cell i at time t according to the states of (copies of) its neighbors
at time t − 1, analogously with the partitioned CA (PCA for short) introduced in [8]. In
a PGA (as well as in a PCA), the states are partitioned according to the neighborhood
and only the relevant pieces of states are available to any state. Sub-states are gathered

NEIGHBORHOOD TRANSFORMATIONS ON GRAPH AUTOMATA 93

to form only one state to be updated. That is, each state of a PGA is a ♯N -tuple, each
tuple contains information for a specific neighbor. This model simplifies the simulations we
are considering in section 2.3. We define a distinguished state q, the quiescent state that
verifies δ(q, . . . , q) = q♯N . Note that we only consider the radius 1 neighborhood (of one
cell) defined as the set of vertices at distance at most one from the cell (thus including the
cell itself) that we depict on Fig 4. The k-neighborhood (of a cell) is the set of vertices at
distance at most k from the cell. Hence, as we need to know the neighborhood of a cell to
compute one transition step, we need to know the k-neighborhood to compute k transition
steps. We define a configuration of the PGA as an application c which attributes a state to
each cell. The set of all the configurations of a PGA is denoted by C = Q♯N♯V on which the
global function ∆ of the PGA is defined by applying globally the local transition function.

1

1
1 1

2

2

2

2

3

3

3

4

4

5

6

Figure 4: Different kinds of neighborhoods; from left to right: N2, N3, N4 and N6.

Definition 2.1 gives the formal statement of a simple PGA embedded on a cylinder and
the behavior of the transition function is depicted on Fig. 5.

Definition 2.1. A 2-neighbor PGA on a cylinder is A = (Q, G,N2, δ) with set of states
Q = L×C×R. L, C and R are all non-empty subsets of the same set of states Q′ with L the
set of left internal states, C the set of center internal states and R the set of right internal
states, G = Cn (the cycle graph with n vertices), N2 the von Neumann neighborhood, and
δ the local transition function:

δ : R × C × L → L × C × R

A configuration of A is a mapping Zn → L×C×R. The set of all configurations is denoted
by C. We denote by left (center, right resp.) the projection function which picks
out the left (resp. center, right) element of a triple in L × C × R. The global function
is ∆(c)(i) = δ (right(c(i − 1)),center(c(i)), left(c(i + 1))) where i, i − 1 and i + 1 are
integers modulo n.

Definition 2.1 can be easily adapted to the neighborhoods depicted on Fig. 4.

In the sequel, we will consider some particular drawings of graphs on surfaces for which
we introduce some notation. The first letter(s) denotes the surface on which the graph will
be embedded with the subscript denoting its genus (if relevant). The second letter gives
the neighborhood of the graph according to Fig. 4. Last parameter gives the number of
vertices of the graph. The simplest one is the embedding of a cycle graph with n vertices
on a cylinder (Fig. 5). It will be denoted by CylN2(n). Next is the toroidal mesh which
is the embedding of the cartesian sum1 of two cycle graphs with respectively m and n

vertices on a torus. It will be denoted by
−→
S1N4(m, n). We also consider the embedding

of an hexagonal graph (resp. triangle, its dual graph) on a torus denoted by
−→
S1N6(m, n)

(resp.
−→
S1N3(m, n)). Observe that, for simplicity reason, the parameters of

−→
S1N3(m, n) are

the same than
−→
S1N6(m, n). Indeed, we count the number of hexagons in each principal

1The cartesian sum is often called cartesian product but the definitions differ [2].

94 B. MARTIN AND C. PAPAZIAN

ti
m
e

Figure 5: Two configurations of a 2-neighbor 3 cells PGA embedded on a cylinder CylN2(3).

n

m

k

Figure 6: S3N6: embedding of an hexagonal graph in a 3-handled torus.

direction. We will also consider a generalization as represented in Fig. 6: the embedding
of an hexagonal graph (resp. triangle, its dual graph) on S3 (the non-oriented surface of
genus 3) denoted by S3N6(m, n, k) (resp. S3N3(m, n, k)). The regularity and extendability
of S3N6(m, n, k) comes from its group representation and was considered by Róka in her
work on cellular automata on Cayley graphs.

Since we are dealing with graphs which are (cellularly) embedded into surfaces, there is
no need here to fully define the interconnection pattern. All the graphs we consider being
regular, the way they are connected is defined by the neighborhood (cf. Fig. 4).

2.3. Simulation

Below, we propose the definition of a step by step simulation between two PGAs. It
expresses that if a PGA A simulates each step of PGA B in τ units of time, there must
exist effective applications between the corresponding configurations:

Definition 2.2. Let CA and CB be the two sets of PGA configurations A and B. We say

that A simulates each step of B in time τ (and we note B
τ
≺ A) if there exists a constant

τ ∈ N and two recursive functions κ : CB → CA and ρ : CA → CB such that κ ◦ ρ = Id
and for all c, c′ ∈ CB, there exists c′′ ∈ CA such that if c′ = ∆B(c), c′′ = ∆τ

A(κ(c)) with
ρ(c′′) = c′, where ∆M denotes a global transition of PGA M and ∆t

M the t-th iterate of a
global transition of PGA M .

Depending upon the value of τ , we say that the simulation is elementary if τ = 1,
simple if τ = O(1) and general for τ = O(f(c)) with f denoting any given time-complexity
function on c, the size of the input.

3. Neighborhood transformations

Neighborhood transformations can be seen as local transformations. Such transfor-
mations allow to handle the same computation with slightly different automata, without
changing the major topological properties of the GA. We present two local transformations:
splitting and merging and we give some consequences on the computations.

NEIGHBORHOOD TRANSFORMATIONS ON GRAPH AUTOMATA 95

3.1. Homogeneous GAs and splittings

Homogeneous GAs are networks where all the vertices have the same number of neigh-
bors. No other assumption is made. We first introduce the splitting.

Definition 3.1. A splitting sG is a local transformation that replaces simultaneously each
single vertex by a subgraph G with the same number of outgoing edges (edges that do not
belong to the subgraph but that link it to the network). The splitting is regular if the GA
remains homogeneous (if G is homogeneous).

1

2

3

9

4 6

8

7

5

n
1

2

3

4

9

6

8

7

5

n

1

2

3

n+1

n 2n

n+2

n+3

1

2

3

n

n+1

2n

n+2

n+3

Figure 7: 2-split and multisplit.

Fig. 7 shows two simple regular splits. The 2-split transforming a 2n-node into two
n + 1-nodes and the multisplit transforming a n-node into n 3-nodes.

If we consider simulations, we obtain Lemma 3.2.

Lemma 3.2. Any GA N can be simulated by any other GA sG(N) obtained by application
of a split. The bound on the factor of deceleration equals one plus the diameter of the

subgraph G; with our notation, N
d+1
≺ sG(N).

Proof. The diameter of a graph is the maximum length of shortest paths between any two
vertices of the graph. Obviously, each subgraph G needs one step of computation to “read”
the states of neighbor subgraphs. Then, d steps are required to obtain, in each nodes of
the subgraphs the complete information on the neighborhood to compute the simulated
transition. Hence one can compute a simple simulation with a slowdown factor of d + 1.

Hence, we can simulate complex homogeneous GAs with a high degree of connectivity
with bigger but less connected GAs.

3.2. Example of a 2-split

Lemma 3.3 explains the simulation of any 6-neighbor PGA by a 4-neighbor PGA.

Lemma 3.3. N6-PGA
2
≺ N4-PGA.

The idea is to cut the hexagon using a 2-split for transforming a 6 node into two 4
nodes and by adding a new part state called a layer (R for the left part and L for the right
part). The simulation depicted on Fig. 9 is as follows:

(1) gather the missing neighbors information; pack it in the layer (Fig. 9 left);
(2) simulate one step of h according to the new neighborhood (Fig. 9 right).

96 B. MARTIN AND C. PAPAZIAN

L

N
NE

SE

S
SW

NW
C

S

SW

NW

N

NE

SE

C L CC

D

U

R R

U

D

Figure 8: Transition of a N6-PGA (left) and of a N4-PGA (right).

RR

R

R

L

L

L

C C

D

D

D

D

U

U

U

U

R

R

R

L

L

L

C C

D

D

D

D

U

U

U

U

R

R

R

L

L

L

C C

D

D

D

D

U

U

U

U

R

R

R

L

L

L

C C

D

D

D

D

U

U

U

U

Figure 9: Simulating N6-PGA by N4-PGA: gather neighbor informations (left) and simulate
one transition step (right).

Proof. A N6-PGA [9] is (Q, G6, N6, h) with Q = C ×N ×NE × SE × S × SW ×NW sets
of center, north, north-east, south-east, south, south-west and north-west part states. G6

is the graph of hexagons which is embedded on a surface, N6 is as depicted on Fig 4. The
local function h is a mapping (see Fig. 8):

h : C × S × SW × NW × N × NE × SE → C × N × NE × SE × S × SW × NW

A N4-PGA is (Q, G4, N4, σ) with Q = (C, U,R, L,D) sets of center, up, right, left and
down part states. G4 is a toroidal mesh, N4 as on Fig 4. The local function σ is a mapping:
σ : C × D × L × U × R → C × U × R × D × L (Fig. 8 right).

To simulate a N6-PGA by a N4-PGA, we distinguish periodically two cells: one which
gathers the contents of the right part of the hexagon and, respectively, one which gathers
the left part of the hexagon. The first rule of σ is:

(1) (C, D, L, U,R) 7→ (C, U,R = (D,U, R), D, L) gathering left part
(2) (C, D, L, U,R) 7→ (C, U,R, D, L = (D,L, U)) gathering right part

After these rules, the contents of the R part is for (1) (D,U, R) which contains a copy of
(SE, N, NE) and for the L part, (S, SW,NW). After that, the part C has all the necessary
information to simulate one transition step of h (Fig. 9). The factor of deceleration is 2 as
stated in Lemma 3.2.

Below, we also recall Lemma 3.4 which states that a 6 neighbors PGA can be simulated
by a 3 neighbors PGA (and conversely). It was proved by Róka by using Cayley graphs.
But, since it is a local transformation, it will be used later.

Lemma 3.4 (Róka [13]). N6-PGA
1
≺ N3-PGA (and conversely).

NEIGHBORHOOD TRANSFORMATIONS ON GRAPH AUTOMATA 97

3.3. Homogeneous GAs and merging

Merging, the converse operation of splitting is more difficult. It is due to the fact that
we need some special property of the GA for merging. Actually, merging is only possible if
one of the graphs can be obtained by splitting from the other one (finding if a graph can
be obtained by splitting seems to be a complex NP problem). But what is the acceleration
factor?

Lemma 3.5. Any GA N can be simulated by any other GA mG(N) obtained by application
of a merge. The factor of acceleration equals one: in the worst case, there is no speedup.

Proof. As we consider only radius 1 neighborhoods, the k-neighborhood of a node v is the
set of all vertices at distance at most k from v. To simulate k steps of computation, an
automaton needs to know the states of all vertices of the k-neighborhood of the simulated
vertex.

Fig. 10 shows how such pieces of information about k-neighborhood can be difficult to
gather in arbitrary networks. The subgraph on the left is G, our merging pattern. When
we apply the merge on the large GA, we obtain a four vertices GA. But one can remark
that the 2-neighborhood of the circled vertex is not contained in the 1-neighborhood of the
macro-vertex in the resulting GA. Hence, we cannot really apply a simple speed-ud, as we
need two steps to gather the 2-neighborhood of all vertices in each subgraph G. This is
due to the size 4 of the grey face. On the right, there is a n-face, where the speed-up will
be even more difficult. In arbitrary networks, arbitrary large faces occur. Hence there are
arbitrary long paths that are not shrinked by the merge, preventing any acceleration (due
to the “speed of light” limit inherently present in any automata network). Obviously, in
some finite case, we can use more complex acceleration techniques, but the worst case can
possibly occur.

Figure 10: Acceleration problem.

However, many networks can be simulated with a good speedup factor by merging
vertices. Hence, we must remember that we use some regular property of those networks
and not only merging to obtain an acceleration. The theorem 3.7 is a refinement of the
lemma 3.5. We obtain a more precise bound using the internal path length.

Definition 3.6. The internal path length of a subgraph with outgoing edges is the shortest
path between two different outgoing edges. If there is a vertex with two outgoing edges,
the internal path length is zero.

Theorem 3.7. Any GA N can be simulated by any other GA mG(N) obtained by applica-
tion of a merge. The factor of acceleration is at least one plus the internal path length of
the subgraph G.

98 B. MARTIN AND C. PAPAZIAN

Proof. Let i be the internal path length of G. In mG(N), the neighborhood of any vertex
v contains the (1 + i)-neighborhood of any vertex of N simulated by v. This is due to the
fact that any path of length 1 + i cannot reach outgoing edges of neighborhood subgraph
G.

Figure 11: An efficient merging.

The figure 11 shows a merge with a subgraph G with an internal path length of 1.

3.4. Some efficient merges

Theorem 3.7 only gives a lower bound. We show now several ways to use regularity to
find efficient merges to speed-up the simulations.

3.4.1. n-ary tree. In a infinite regular n-ary tree Tn, one can merge using any finite tree t.
We consider oriented trees, each vertex having one father, and n sons.

The acceleration factor only depends upon the smallest path from the root of t to a
descendant not in t. Hence we only consider complete n-ary tree of height h as t, that we
note thn.

mthn
(Tn) = Tnh+1 , and the k-neighborhood in the merged tree contains the simulted

(1 + (k − 1)h)-neighborhood. Hence, for any ε > 0, we can simulate Tn by Tnh+1 , with
an acceleration factor of h − ε. Each automaton reads its k-neighborhood (with k ≥ h−1

ε
)

using k time steps, and simulates 1 + (k − 1)h time steps of Tn. The factor of acceleration

is 1+(k−1)h
k

= h − h−1
k

≥ h − ε.

3.4.2. Memory usage. Hence, when one wants to simulate Tn at speed s, one can choose
any h > s to merge using thn, and then k = ⌈h−1

h−s
⌉ will be the size of the neighborhood in the

new network that we read before simulating several steps of computation. But which is the

size of the simulating automaton? tnh contains nh+1−1
n−1 vertices. And the k-neighborhood of

a vertex in Tn contains 1 + (n + 1)nk−1
n−1 vertices (only 1 vertex if k = 0). Let s be the speed

we want to obtain, and h the height of thn that we used for merging, the new automaton
must contain at least:

m =
nh+1 − 1

n − 1

(

1 + (nh+1 + 1)
n

(h+1)(⌈h−1

h−s⌉−1) − 1

nh+1 − 1

)

copies of simulated automata. It means that a simulating automaton must remember the
states of m different simulated automata to compute the simulation. By minimizing this
formula, we obtain the best height to achieve the simulation at given speed with a minimum
memory size for the new automaton. The minimal height h does not depend on n, and the
height h that minimizes the memory size is obtained for k-neighborhood k = 2 then h =
2s− 1. This is the best way to simulate merged infinite regular trees. In this case, memory

NEIGHBORHOOD TRANSFORMATIONS ON GRAPH AUTOMATA 99

Figure 12: Simple (left) and optimal (right) merges of the grid for 4-vertices patterns.

usage grows as n4s, which is quite fast. Hence merging is better than waiting (intuitively,
merging allows several vertices to be merged and they can share memory, whereas waiting
needs to copy on each vertex redondant pieces of information).

3.4.3. Grids and toroidal meshes. Merging grids is more complex, as any tiling pattern can
be used to merge a grid, and it is an open question to know if a pattern tiles a grid [1]. Some
tilings are surprisingly more efficient than others. Consider Fig. 12; on the left, we merge
with squares, and as for trees, we can achieve any speed 2−ε (ε is expensive to minimize as
in trees). On the right we merge using a pattern whose shape resembles a bottom symbol,
and we achieve a speed of 2 with k = 2 which is optimal for a pattern of 4 vertices.

The results on trees hold on grids: merging is better than waiting. For example, when
merging grids using squares, it is better to use big squares and read the 2-neighborhood
than using smaller squares and read a larger neighborhood. The optimal memory usage
(for a simulation at speed s) grows as 4s.

4. Application to the simulations of GA on surfaces

We apply the neighborhood transformations introduced in section 3 to PGA embedded
on surfaces. The simulations we construct have tight relations with some results on cellular
automata on Cayley graphs recalled in the next section.

4.1. Related results

The results we present here come from the Cayley graph approach. Except for the
definition of a local transition function (which is equivalent), they describe exactly the
same objects but from a more algebraic point of view. We give here a statement of the
results for finite PGAs embedded on surfaces as defined in Section 2.1.

Theorem 4.1 (Róka [11]). S3N6(r, p, q)
1
≺

−→
S1N4(m, n) with m = |α1(p + r − 1) − β1p|,

n = |α2(p−1)−β2(p+q−1)|, (p−1)α1 = lcm(p−1, p+q−1), (p+r−1)α2 = lcm(p+r−1, p),
(p + q − 1)β1 = lcm(p − 1, p + q − 1) and pβ2 = lcm(p + r − 1, p).

Theorem 4.2 (Martin [5]).
−→
S1N4(m, n)

3. min{m,n}+O(1)
≺ CylN2(mn).

100 B. MARTIN AND C. PAPAZIAN

#

1 1

m/2 m/2 m/2 m/2

#

1 1

Figure 13: Simulating a PGA on a torus by a PGA on a cylinder (even and odd m).

And, by combining Theorem 4.1 and Theorem 4.2, we get:

Corollary 4.3. S3N6(r, p, q)
3. min{m,n}+O(1))

≺ CylN2(mn) where m and n are those of The-
orem 4.1.

Theorem 4.4 (Martin-Peyrat [7]).
−→
S1N4(m, n)

Θ(n+m)
≺ CylN2(mn) if and only if n ≡ 2

mod m; in this case the number of copies of each cell is minimal.

Theorem 4.4 improves the time-complexity of Theorem 4.2. We have minimized the
number of copies requested to simulate the behavior of a torus of n × m automata by a
cylinder of n ·m automata. Observe that this number of copies cannot be further improved.
It is thus the minimal number of copies requested to complete this task. Theorem 4.4 forbids
some values of n and m. However, for those prohibited values, one can use Theorem 4.2.

4.2. New simulation results

Below, we propose a series of finite simulation results. The first (Lemma 4.5) proposes
a simulation of a N4-PGA embedded on a torus by a N4-PGA embedded on a cylinder. To
do this, we need to cut the torus along one of its Jordan curves.

Lemma 4.5.
−→
S 1N4(n, m)

1
≺ CylN4(n,

⌈

m
2

⌉

).

(Proof sketch). We consider a N4-PGA with (m, n) nodes embedded on the torus with m

beeing the height and n the width. We “cut” all the connections along the width and we
fold the resulting cells on the middle. This construction is analogous with the simulation
of a Turing machine with a bi-infinite tape by a Turing machine with an (simply) infinite
tape. We add a “dummy” cell (with symbol ♯) on the top depending upon the parity of m

(see Fig. 13). It is not difficult to design the local transition function of the new PGA.

Theorem 4.6 proposes two simulations of a N6-PGA embedded on a torus. The first one
by a N4-PGA embedded on a torus and the other by a N4-PGA embedded on a cylinder.
The results are easily obtained from the previous lemmas.

Theorem 4.6.
−→
S 1N6(n, m)

2
≺

−→
S 1N4(2n, m), and

−→
S 1N6(n, m)

2
≺ CylN4(n, m).

NEIGHBORHOOD TRANSFORMATIONS ON GRAPH AUTOMATA 101

Conclusion

This paper proposed two graph transformations: splitting and merging. Both can be
used for simulating graph automata in order to make local transformations on the neigh-
borhood. When used on regular graphs, the results we obtain can be compared with those
for cellular automata on Cayley graphs. In particular, they can be used in this formalism
and, conversely, local transformations on Cayley graphs can be applied to graph automata.
We have given some examples of this kind in the paper. Only Lemma 4.5 cannot be related
to cellular automata on Cayley graph since the PGA on a cylinder we have built for the
simulation is not regular. The results of this paper can be combined with results from the
Cayley graph approach to give other results as, for instance, one can replace N6 by N3 in
Theorem 4.6. This study of the relationships –and differences– between both approaches
would be interesting to pursue.

References

[1] D. Beauquier and M. Nivat. Tiling the plane with one tile. In Symposium on Computational Geometry,
pages 128–138, 1990.

[2] C. Berge. Graphes. Gauthier Villars, third edition, 1983.
[3] M. Henle. A combinatorial introduction to topology. Dover Publication, 1979.
[4] K. Kuratowski. Introduction à la théorie des ensembles et à la topologie. Institut de Mathématiques de

l’Université de Genève, 1966.
[5] B. Martin. Embedding torus automata into a ring of automata. Int. Journal of Found. of Comput. Sc.,

8(4):425–431, 1997.
[6] B. Martin. A simulation of cellular automata on hexagons by cellular automata on rings. Theoretical

Computer Science, 265:231–234, 2001.
[7] B. Martin and C. Peyrat. A single-copy minimal-time simulation of a torus of automata by a ring of

automata. Discrete Applied Math., 155:2130–2139, 2007.
[8] K. Morita and M. Harao. Computation universality of one-dimensional reversible (injective) cellular

automata. Trans. IEICE Japan, E(72):758–762, 1989.
[9] K. Morita, M. Margenstern, and K. Imai. Universality of reversible hexagonal cellular automata. In

Workshop on Frontiers between Decidability and Undecidability, Brno, 1998.
[10] Zs. Róka. One–way cellular automata on Cayley graphs. In Proc. FCT’93, number 710 in Lecture Notes

in Computer Science, pages 406–417. Springer Verlag, 1993.

[11] Zs. Róka. Automates cellulaires sur graphes de Cayley. PhD thesis, École Normale Supérieure de Lyon,
1994.

[12] Zs. Róka. One–way cellular automata on Cayley graphs. Theoretical Computer Science, 132(1–2):259–
290, 1994.

[13] Zs. Róka. Simulations between cellular automata on Cayley graphs. Theoretical Computer Science,
225:81–111, 1999.

This work is licensed under the Creative Commons Attribution-NoDerivs License. To view a
copy of this license, visit http://creativecommons.org/licenses/by-nd/3.0/.

