Growth rate for the expected value of a generalized random Fibonacci sequence

Abstract : A random Fibonacci sequence is defined by the relation g_n = | g_{n-1} +/- g_{n-2} |, where the +/- sign is chosen by tossing a balanced coin for each n. We generalize these sequences to the case when the coin is unbalanced (denoting by p the probability of a +), and the recurrence relation is of the form g_n = |\lambda g_{n-1} +/- g_{n-2} |. When \lambda >=2 and 0 < p <= 1, we prove that the expected value of g_n grows exponentially fast. When \lambda = \lambda_k = 2 cos(\pi/k) for some fixed integer k>2, we show that the expected value of g_n grows exponentially fast for p>(2-\lambda_k)/4 and give an algebraic expression for the growth rate. The involved methods extend (and correct) those introduced in a previous paper by the second author.
Type de document :
Article dans une revue
Journal of Physics A: Mathematical and Theoretical, IOP Publishing, 2009, 42, pp.085005. 〈10.1088/1751-8113/42/8/085005〉
Liste complète des métadonnées

Littérature citée [6 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-00273537
Contributeur : Elise Janvresse <>
Soumis le : mardi 15 avril 2008 - 15:33:21
Dernière modification le : jeudi 7 février 2019 - 17:48:24
Document(s) archivé(s) le : jeudi 20 mai 2010 - 21:06:12

Fichiers

20080306rf-moy.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

Elise Janvresse, Benoît Rittaud, Thierry De La Rue. Growth rate for the expected value of a generalized random Fibonacci sequence. Journal of Physics A: Mathematical and Theoretical, IOP Publishing, 2009, 42, pp.085005. 〈10.1088/1751-8113/42/8/085005〉. 〈hal-00273537〉

Partager

Métriques

Consultations de la notice

316

Téléchargements de fichiers

95