Skip to Main content Skip to Navigation
Journal articles

Almost-sure Growth Rate of Generalized Random Fibonacci sequences

Abstract : We study the generalized random Fibonacci sequences defined by their first nonnegative terms and for $n\ge 1$, $F_{n+2} = \lambda F_{n+1} \pm F_{n}$ (linear case) and $\widetilde F_{n+2} = |\lambda \widetilde F_{n+1} \pm \widetilde F_{n}|$ (non-linear case), where each $\pm$ sign is independent and either $+$ with probability $p$ or $-$ with probability $1-p$ ($0
Complete list of metadatas

Cited literature [10 references]  Display  Hide  Download

https://hal.archives-ouvertes.fr/hal-00273525
Contributor : Elise Janvresse <>
Submitted on : Tuesday, April 15, 2008 - 3:10:28 PM
Last modification on : Tuesday, May 5, 2020 - 1:03:20 PM
Document(s) archivé(s) le : Thursday, May 20, 2010 - 11:22:22 PM

Files

rf-rosen.pdf
Files produced by the author(s)

Identifiers

Citation

Elise Janvresse, Benoît Rittaud, Thierry de la Rue. Almost-sure Growth Rate of Generalized Random Fibonacci sequences. Annales de l'IHP - Probabilités et Statistiques, 2010, 46 (1), pp.135-158. ⟨10.1214/09-AIHP312⟩. ⟨hal-00273525⟩

Share

Metrics

Record views

340

Files downloads

379