Scaling-sharp dispersive estimates for the Korteweg-de Vries group
Raphaël Côte, Luis Vega

To cite this version:

HAL Id: hal-00273050
https://hal.archives-ouvertes.fr/hal-00273050
Submitted on 14 Apr 2008

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Scaling-sharp dispersive estimates for the Korteweg-de Vries group

Raphaël Côte Luis Vega

Abstract

We prove weighted estimates on the linear KdV group, which are scaling sharp. This kind of estimates are in the spirit of that used to prove small data scattering for the generalized KdV equations.

The purpose of this short note is to give a simple proof of two dispersive estimates which are heavily used in the proof of small data scattering for the generalized Korteweg-de Vries equations [2]. The proof of these estimates can be easily extended to other dispersive equations.

Denote $U(t)$ the linear Korteweg-de Vries group, i.e $v = U(t)\phi$ is the solution to

$$\begin{cases}
 v_t + v_{xxx} = 0, \\
 v(t = 0) = \phi,
\end{cases}$$

i.e. $\widehat{U(t)}\phi = e^{it\xi^3}\hat{\phi}$ or $(U(t)\phi)(x) = \frac{1}{t^{1/3}} \int \text{Ai} \left(\frac{x - y}{t^{1/3}} \right) \phi(y) dy$,

where Ai is the Airy function

$$\text{Ai}(z) = \frac{1}{\pi} \int_0^\infty \cos \left(\frac{\xi^3}{3} + \xi z \right) d\xi.$$

Theorem 1. Let $\phi, \psi \in L^2$, such that $x\phi, x\psi \in L^2$. Then

$$\| U(t)\phi \|_{L^\infty} \leq 2 \| \text{Ai} \|_{L^\infty} t^{-2/3} \| \phi \|_{L^2} \| x\phi \|_{L^2},$$

$$\| U(t)\phi U(-t)\psi_x \|_{L^\infty} \leq C t^{-1} (\| \phi \|_{L^2} \| x\psi \|_{L^2} + \| \psi \|_{L^2} \| x\phi \|_{L^2}).$$

Furthermore, the constant $2 \| \text{Ai} \|_{L^\infty}$ in the first estimate is optimal.

Remark 1. These estimates are often used with ϕ replaced by $U(-t)\phi$: denoting $J(t) = U(t)xU(-t)$, they take the form

$$\| \phi \|_{L^\infty} \leq C t^{-2/3} \| \phi \|_{L^2} \| J(t)\phi \|_{L^2},$$

$$\| \phi \psi_x \|_{L^\infty} \leq C t^{-1} (\| \phi \|_{L^2} \| J(t)\psi \|_{L^2} + \| \psi \|_{L^2} \| J(t)\phi \|_{L^2}).$$

Proof. Due to a scaling argument (and representation in term of the Airy function), we are reduced to show that

$$\| U(1)\phi \|_{L^\infty} \leq C \| \phi \|_{L^2} \| x\phi \|_{L^2},$$

and similarly for the second inequality. Hence we consider

$$(U(1)\phi)(x) = \int \text{Ai}(x - y)\phi(y) dy,$$
and we recall that the Airy function satisfies $|\text{Ai}(x)| \leq C(1 + |x|)^{-1/4}$ and $|\text{Ai}'(x)| \leq C(1 + |x|)^{1/4}$. Then

$$|U(1)\phi|^2(x) = \int \int \text{Ai}(x-y)\phi(y)\text{Ai}(x-z)\tilde{\phi}(z)\frac{y-z}{y-z}dydz$$

$$= \int \text{Ai}(x-y)y\phi(y)\int \frac{\text{Ai}(x-z)\tilde{\phi}(z)}{y-z}dz dy$$

$$- \int \text{Ai}(x-z)z\tilde{\phi}(z)\int \frac{\text{Ai}(x-y)\phi(y)}{y-z}dy dz$$

$$= 2\Re \int \text{Ai}(x-y)y\phi(y)\mathcal{H}_{z\rightarrow y}(\text{Ai}(x-z)\phi(z))(y)dy,$$

where \mathcal{H} denotes the Hilbert transform (and with the slight abuse of notation $\frac{1}{z}$ for $\text{vp}\left(\frac{1}{z}\right)$). As $\mathcal{H} : L^2 \rightarrow L^2$ is isometric and hence continuous (with norm 1), and $\text{Ai} \in L^\infty$, we get

$$|U(1)\phi|^2(x) \leq 2\|\text{Ai}(x-y)y\phi(y)\|_{L^2(dy)}\|\mathcal{H}(\text{Ai}(x-\cdot)\phi)(y)\|_{L^2(dy)}$$

$$\leq 2\text{Ai} \|y\phi\|_{L^2}\|\phi\|_{L^2}. \quad (5)$$

This is the first inequality. Let us now prove that the constant is sharp.

First consider the minimizers in the following Cauchy-Schwarz inequality:

$$\left|\int y\psi(y)\mathcal{H}(\psi)(y)dy\right| \leq \|y\psi(y)\|_{L^2(dy)}\|\psi\|_{L^2}. \quad (7)$$

There is equality if $y\psi(y) = \lambda\mathcal{H}(\psi)(y)$ for some $\lambda \in \mathbb{C}$. Then a Fourier Transform shows that $\partial_\xi \hat{\psi}(\xi) = \lambda \text{sgn} \xi \hat{\psi}(\xi)$, hence $\hat{\psi}(\xi) = C \exp(-\lambda|x|)$, or equivalently, one has equality in (7) as soon as

$$\psi(y) = \frac{C}{1+(y/\lambda)^2} \text{ for some } \lambda, C \in \mathbb{R}. \quad (8)$$

(Notice that all the functions involved lie in L^2)

We now go back to (7). Let $x_0 \in \mathbb{R}$ where $|\text{Ai}|$ reaches its maximum. Now as $\text{Ai}(x_0) \neq 0$, let $\varepsilon > 0$ such that for all $y \in [-\varepsilon, \varepsilon]$, $|\text{Ai}(x_0 - y)| \geq |\text{Ai}(x_0)|/2$, and consider the sequence of functions

$$\phi_n(x) = \frac{\sqrt{n}}{1+(ny)^2} \frac{1_{|y| \leq \varepsilon} - y}{1+y^2}. \quad (9)$$

Denote $\psi_n(y) = \frac{1_{|y| \leq \varepsilon}}{1+y^2}$. As $\text{Ai}(x_0 - y)\phi_n(ny) = \sqrt{n}\psi_n(ny)$,

$$|U(1)\phi_n|^2(x_0) = 2 \int y\sqrt{n}\psi_n(ny)\mathcal{H}_{z\rightarrow y}(\sqrt{n}\psi_n(nz))(y)dy = \frac{2}{n} \int y\psi_n(ny)\mathcal{H}(\psi_n)(ny)dy. \quad (10)$$

One easily sees that $\psi_n(y) \sim \frac{1_{|y| \leq \varepsilon}}{1+y^2}$ in L^2 and $y\psi_n(y) \sim \frac{y}{1+y^2}$ in L^2, and hence, in view of (7), as \mathcal{H} is homogeneous of degree 0 and L^2 isometric, we have

$$|U(1)\phi_n|^2(x_0) \sim \frac{2}{n} \int \frac{y}{1+y^2}\mathcal{H}(\frac{1}{1+y^2})(y)dy \sim \frac{2}{n}\|y\psi\|_{L^2}^2 \|\frac{1}{1+y^2}\|_L^2$$

$$\sim 2\|y\sqrt{n}\psi_n(ny)\|_{L^2}^2 \sqrt[n]{n}\psi_n(ny)\|_{L^2}$$

$$\sim 2\|y\text{Ai}(x_0-y)\phi_n(y)\|_{L^2}^2 \text{Ai}(x_0-y)\phi_n(y)\|_{L^2}. \quad (11)$$
As \(\phi_n \) concentrates at point 0, we deduce

\[
|U(1)\phi_n|^2(x_0) \sim 2|\operatorname{Ai}(x_0)|^2 \|y\phi_n(y)\|_{L^2} \|\phi_n(y)\|_{L^2} \quad \text{as } n \to \infty,
\]

which proves that the sharp constant in the first inequality is \(2\|\operatorname{Ai}\|_{L^\infty}^2 \).

For the second inequality (estimate of the derivative), we have as for the first inequality:

\[
(U(1)\phi U(1)\bar{\psi}_x)(x) = \int \int \operatorname{Ai}(x-y)\phi(y) \operatorname{Ai}'(x-z)\bar{\psi}(z) \frac{y-z}{y-z} dydz
\]

\[
= \int \operatorname{Ai}'(x-y)y\phi(y) \left(\int \frac{\operatorname{Ai}(x-z)\phi(z)}{y-z} dz \right) dy
\]

\[
- \int_z \operatorname{Ai}'(x-y)y\phi(y) \left(\int \frac{\operatorname{Ai}(x-z)z\bar{\psi}(z)}{z-y} dz \right) dy
\]

\[
= \int \operatorname{Ai}'(x-y)y\phi(y)\mathcal{H}_{x\to y}(\operatorname{Ai}(x-z)\phi(z))(y)dy
\]

\[
+ \int \operatorname{Ai}'(x-y)y\phi(y)\mathcal{H}_{z\to y}(\operatorname{Ai}(x-z)z\bar{\psi}(z))(y)dy.
\]

Denote \(\omega_x(y) = \frac{1}{\sqrt{1 + |x-y|}} \); \(\omega_x^{-1} \in A_2 \) (with the notation of \([4]\)), so that there exists \(C \) not depending on \(x \) such that

\[
\forall v, \quad \int |\mathcal{H}v|^2 \omega_x^{-1} \leq C \int |v|^2 \omega_x^{-1}.
\]

Recall the well-know asymptotic \(|\operatorname{Ai}'(x)| \leq C(1 + |x|^{1/4}) \). Then

\[
\left| \int \operatorname{Ai}'(x-y)y\phi(y)\mathcal{H}(\operatorname{Ai}(x-z)\bar{\psi})(y)dy \right|
\]

\[
\leq \left(\int |\operatorname{Ai}'(x-y)y\phi(y)|^2 \omega_x dy \right)^{1/2} \left(\int |\mathcal{H}(\operatorname{Ai}(x-z)\bar{\psi})(y)|^2 \omega_x^{-1} dy \right)^{1/2}
\]

\[
\leq C \|\phi(y)\|_{L^2} \left(\int |\operatorname{Ai}(x-y)\bar{\psi}(y)|^2 \omega_x^{-1} dy \right)^{1/2}
\]

\[
\leq C \|\phi\|_{L^2} \|\psi\|_{L^2}.
\]

In the same way,

\[
\left| \int \operatorname{Ai}'(x-y)y\phi(y)\mathcal{H}_{z\to y}(\operatorname{Ai}(x-z)z\bar{\psi}(z))(y)dy \right|
\]

\[
\leq \left(\int |\operatorname{Ai}'(x-y)y\phi(y)|^2 \omega_x(y) \right)^{1/2} \left(\int |\mathcal{H}_{z\to y}(\operatorname{Ai}(x-z)z\bar{\psi}(z))(y)|^2 \omega_x^{-1} dy \right)^{1/2}
\]

\[
\leq C \|\phi\|_{L^2} \left(\int |\operatorname{Ai}(x-y)y\psi(y)|^2 \omega_x^{-1} dy \right)^{1/2}
\]

\[
\leq C \|\phi\|_{L^2} \|y\psi\|_{L^2}.
\]

So that:

\[
\|U(1)\phi U(1)\bar{\psi}_x\|_{L^\infty} \leq 2C(\|\phi\|_{L^2} \|x\psi\|_{L^2} + \|\psi\|_{L^2} \|x\phi\|_{L^2}).
\]

Up to scaling and replacing \(\psi \) by \(\bar{\psi} \), this is the second inequality. \(\square \)
Remark 2. This proof (especially (3)) is reminiscent of that in [3] (see also [1])
\[\| \phi \|_2^2 \leq \| \phi \|_L^2 \| \phi \|_{L^2}, \]
where the constant is sharp and minimizers are \(Ce^{-\lambda|x|} \). This has application to the Schrödinger group \(\mathcal{U}(t) \) (i.e. \(\mathcal{U}(t) \hat{\phi} = e^{it\Delta} \hat{\phi} \)). We have the following Schrödinger version of estimate (3) (notice that \(U \)
like space. Let \(\phi \in D(\mathbb{R}) \) be non-negative with support in \([-2, 2]\) and such that \(\phi \) equals 1 in a neighbourhood of \([-1.5, 1.5]\). Denote \(\psi(x) = \varphi(2x) - \varphi(x) \) and \(\psi_j(x) = \psi(x/2^j) \).
Finally introduce
\[\| \phi \|_{N_t} = \sum_{j=-\infty}^{\infty} 2^{j/2} \| \psi_j U(-t) \phi \|_{L^2}. \]

Corollary 1. We have:
\[\| \phi \|_{L^\infty} \leq Ct^{-1/3} \| \phi \|_{N_t}. \]

Proof. Notice that \(|x\psi_j(x)| \leq 2^{j+1} \| \psi_j \| \). As \(\phi = \sum_j U(t) \psi_j U(-t) \phi \), we have:
\begin{align*}
\| \phi \|_{L^\infty} & \leq \sum_j \| U(t) \psi_j U(-t) \phi \|_{L^\infty} \\
& \leq Ct^{-1/3} \sum_j \| U(t) \psi_j U(-t) \phi \|_{L^2}^{1/2} \| U(t) U(-t) \psi_j U(-t) \phi \|_{L^2}^{1/2} \\
& \leq Ct^{-1/3} \sum_j \| U(t) \psi_j U(-t) \phi \|_{L^2}^{1/2} \| \psi_j U(-t) \phi \|_{L^2}^{1/2} \\
& \leq Ct^{-1/3} \sum_j \| U(t) \psi_j U(-t) \phi \|_{L^2}^{1/2} 2^{j/2} \| U(t) \psi_j U(-t) \phi \|_{L^2}^{1/2} \\
& \leq Ct^{-1/3} \| \phi \|_{N_t}. \quad \square
\end{align*}

References

Raphaël Côte
Centre de Mathématiques Laurent Schwartz, École polytechnique
91128 Palaiseau Cedex, France
cote@math.polytechnique.fr

Luis Vega
Departamento de Matemáticas, Universidad del País Vasco
Aptdo. 644, 48080 Bilbao, España
luis.vega@ehu.es