N

N

On the underfitting and overfitting sets of models
chosen by order selection criteria

Xavier Guyon, Jian-Feng Yao

» To cite this version:

Xavier Guyon, Jian-Feng Yao. On the underfitting and overfitting sets of models chosen by order se-
lection criteria. Journal of Multivariate Analysis, 1999, 70 (2), pp.221-249. 10.1006/jmva.1999.1828 .
hal-00272372

HAL Id: hal-00272372
https://hal.science/hal-00272372
Submitted on 11 Apr 2008

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://hal.science/hal-00272372
https://hal.archives-ouvertes.fr

Centre de Recherche

SAMOS

Satistique Appliquéee &
Modélisation Stochastique

On the underfitting and overfitting sets of models
chosen by order selection criteria

X.GuYyoN e JF Yao

Prépublication du SAMOS N° 71 (Version Révisée)
Mai 1998




On the underfitting and overfitting sets of models chosen by order selection
criteria

Xavier GUYON and Jian-feng YAO

SAMOS - Université Paris 1*

*

e-mail: guyon[ yao] @i v-parisl.fr



Running head: Underfitting and overfitting sets of models

Mail address for correspondence : J. F. YAO , SAMOS, Université Paris 1, 90 rue de
Tolbiac, 75634 Paris Cedex 13, France



Abstract

For a general class of order selection criteria, we establish analytic and non asymp-
totic evaluations of both the underfitting and overfitting sets of selected models. These
evaluations are further specified in various situations including regressions and au-
toregressions with finite or infinite variances. We also show how upper bounds for
the misfitting probabilities and hence conditions ensuring the weak consistency can
be derived from the given evaluations. Moreover, it is demonstrated how these eval-
uations, combined with a law of the iterated logarithm for some relevant statistic,
can provide conditions ensuring the strong consistency of the model selection crite-
rion used.
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1 Introduction and notations

Let X = (Xy, X3, ....) be a sequence of observations generated by a semiparametric dis-
tribution Ps, where 6, is the finite dimensional part of the true model and belongs to O,
a subset of R™. The integer m should be thought as an upper-bound for the dimension of
the parametric part. The goal of model selection is to estimate the true model.

We call any subset P of M = {1, ..., m} a submodel and identify P with the parameter
subspace Op = ©ON{ §; = 0 for: ¢ P}. The cardinality of P, denoted by p, is the dimension
of ©p. Thus M corresponds to the full model. Our purpose is to find the true model P, =
{i : 8y; # 0}, that is the locations of non-null coordinates of §;.

Given n observations X (n) = {Xi, X3, ...., X,,}, a general model selection criterion
[1] consists of minimizing in P a penalized pseudo-likelihood (PL) or objective function
U,(8) =U,(8, X (n)): first we estimate 6, in P by

fp = Arg é\é[énp U, (8) . (1)

Let (¢, )n>0 be some sequence of positive numbers (penalization rate). We estimate Fy by

~ X ~ Cp
P, = Arg %1]\114 {Un <0p) + ;p} . 2)
For instance with U,, = —% log(Likelihood), we obtain the AIC for the constant rate ¢,, =

2, while the rate ¢, = log n yields the well-known BIC criterion.
Therefore, a submodel P will be preferred to the true model F, if and only if:

A, (P, Py) := Un(Bp) — Un(Br,) < (po — p). 3)

n

The underfitting set M, and the overfitting set M, are respectively
M;:{ﬁnzpo}, M;:{ﬁngpo} (4)

The purpose of this paper is to provide an accurate evaluation of these two misfit-
ting sets in a unified and general set-up. Our main assumption is that the PL process
U,,(8) could be factorised as U, () = U(6,T,,), where U is a known deterministic function
and 7T, some sample statistic. The remaining assumptions on model identifiability or its
smoothness are more standard.

Our main results (Theorems 1 and 2) give, for a fixed sample size n, the evaluations
of M and M. These evaluations are not asymptotic, hence they can be used for small
or moderate sample sizes n. Another important feature is that these evaluations are an-
alytic: by this we mean that they are derived without using any stochastic properties of
the models. Actually, they only depend on the smoothness of the map (6,~) — U (6, 7).

Furthermore, these evaluations shed a new light on the known asymmetry between
the two misfitting sets M, and M. For example, we can easily see from these evalu-
ations how the overfitting set M depends on the penalization rate ¢, much more than
the underfitting set M.

As an important application, we will use these evaluations to derive upper bounds
for the misfitting probabilities P(M,;) and P(M,;F). Consequently, sufficient conditions
on the rate ¢, will be given to ensure the weak consistency. On the other hand, if the
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almost sure convergence rate of the statistic 7), can be estimated through e.g. a law of
the iterated logarithm, strong consistency of the selection criterion can be derived in a
straightforward way.

Such a penalization criterion for model selection was first introduced by Akaike [1].
Since the literature on the subject is huge, we just mention some references related to the
applications developed in this paper. Strong consistency is established for various linear
models by [12, 13], [24], [9], [29], [20], [32], [15], [22, 23] and [27].

Probability estimates of the misfitting sets M, and M, has been much less studied.
In the case of an AR process, [28] obtained for the AIC criterion an exact evaluation of
the overfitting probability P(M ). In the same context, Bai and al. [2] proposed an upper
bound for P(M;}). Their approach has largely inspired our work. Other related results
can be found in [4] for convolution models, in [3] for a log-linear models and in [31] for
regression models.

The paper is organized as follows. In Section 2, we establish the main theorems. In
Section 3, we apply these results in various situations: regression models with least squares
estimation, Whittle’s PL for an AR process or a CAR Markov field on Z¢, categorical data
models with maximum-likelihood estimation, and Markov fields with Besag’s PL estima-
tion. For these models, we establish in Section 4 upper bounds for misfitting probabilities
P(M,) and P(M,}). Weak consistency of the selection criterion is derived under suitable
condition on ¢,. Finally, we show in Section 5 how our evaluations, combined with a law
of the iterated logarithm for the statistic 7’,, can be used to address the strong consistency
of the model selection procedure.

2 Evaluation of the misfitting sets M and M

Let us first introduce some notations. For any scalar map ¢ depending on some vector
variables, say ¢ and d, we shall denote its derivatives by qbgl) = (0¢/0c;) and gbfg =
(0*¢/dc;dd;). The maximum and minimum of two real numbers u, v are denoted by u V
v and u A v, respectively. The norm ||-|| and the inner product (-, -) are Euclidean. For a
linear map A from R?” to R?, we use the operator norm ||A|| = sup {||Au|| : ||u|| = 1}. The
open ball with center z and radius r is denoted by B(z ; r) and the transpose of a matrix
Aby A'.

Let n be some fixed positive integer. In the following assumptions, (C.2) and (C.3)
are defined with respect to some fixed point 7o € F C R”.

(C1) Factorization. For an open parameter space © C R and some integer k, there is
some statistic 7}, = T), (X1, X, ..., Xn) € F' C R* and a continuousmap U : OxF — R
such that U, (§) = U (0,T,,).

(C2) Identifiability. (i) For all 8 € O, U(60,v,) > U(6o,70). (1) If U(8,7v0) = U(bo,70),
then {i: 6, # 0} D F.

(C3) Smoothness. Thereis someopenball V := B(vy; R;)in F such that, forall P C M
andy eV

(i) themap 8p — U(fp,v) from Op to R has a minimum 0p(v) € Op;

(ii) these minima can be selected such that the map v — 0p(7) is continuouson V.



The fixed point g corresponds to a central value of 7;, and will be specified in examples
below. Clearly, the identifiability assumption (C2) is fulfilled if 6, is the unique global
minimum of the map 6 — U(6,~y) on ©. This will happen for applications carried out in
Sections 3 and 4. However, this uniqueness is not necessary. We require instead that P
is minimal, i.e. that any other model P must contain F; if it yields the same minimum
(e.g., this can be useful for ARMA models).

Roughly speaking, the smoothness assumption (C3) requires that in each submodel
P, the PL process U,, () = U (6,T,,) can be continuously minimized if the statistic 7), is
close to 7. Here again, the minimization map v — 6p(v) may not be unique. In particu-
lar, the estimator §p = 8p(T}) can be any of the possible solutions of (1).

It follows from (C3) that for each submodel P, the map v — op(v) := Ulfp(v),7] is
continuous on V. Since the number of submodels is finite, there is a common modulus of
continuity ¢ (resp. ¥) for {op} of all submodels P 2 F; (resp. overmodels P O Fy). More
precisely, &, ¥ are positive and increasing maps defined on the interval [0, R;] such that
limy o, ®(u) =0, limy_o, Y(u) =0,

lop(v) = op(10)| < @(|lv = 70ll), for P 2 Fyandy € V', (5)
and
lop(v) = op(vo)| < ¥(lly = 0ll), for P2 Fyandy e V. (6)
Define, for y € R, the inverse map
& !(y) ;= inf{u: ®(u) >y} (by convention,inf = oco).
We have
(i) @ '(y)=0fory <0, and @ !(y) = +oo for y > ®(Ry).
() u< ®71(y) implies ®(u) < y, and y > 0 implies ®~*(y) > 0.

The inverse map ¥~! is defined similarly and satisfies similar properties.

Note thatif P O Fy, op(v0) = U(bo, 70) = op,(70). On the other hand for any submodel
P 2 Py, by (C2),0p(70) = infe, U(fp,70) is strictly greater than U(6y,vo). Therefore the
following constant

Ay :=min {op(y0) —op,(70) : P2 P} )]
is positive.
2.1 Main results
Theorem 1 (Analytic evaluation of the misfitting sets M, and M). Assume

that (C1), (C2) and (C3) hold. Then
(i) The underfitting set M, satisfies
Cn,

M;g{mz—%uzmA¢4(§m2—m—D}. ®)

n
In particular, setting 1y = Ag/(2m)and &5 := Ry A ®~! ( iAg), we have for ¢, /n <
]70_’
M7 C{|IT — 0l > 65} ©)



(i) The overfitting set M satisfies

Leyg
s e {im -l > monw (32)1 10)

We now discuss this result while postponing its proof to the end of the section.

Comments.
(i) The evaluations of M and Mt are by no means asymptotic and hold for each n.

(i1) Often the smoothness (C3) holds with large R, (even R; = oo as in Section 3.1). In
such a case, the term R; disappears from the above evaluations.

(iii) Theorem 1 sheds new light on the strong asymmetry between M, and M,'. First,
the identifiability condition (C2) is necessary only for the evaluation of M, (through
the constant A,). Second, if ¢, /n is small (say = < %) and 7, — 7o when n — oo,
we have M, = () for large n. This is not the case in general for M} which depends
on the relative magnitudes of ||T,, — 7o|| and ¢, /n ([28]).

(iv) The strongest penalization rate is ¢, = an with some o > 0. Actually, any positive
« is effective to control the overfitting set M, for large n (assuming again 7,, — o
as n — oo). However, the same effectiveness would hold for M, only if the constant
o is smaller than % Since A depends on the (unknown) true model P, exact eval-
uation of such an admissible linear rate would be possible only if some additional
information about (F, 6y) is available.

To make the evaluation of M, in (10) more explicit, we need to estimate the modulus
of continuity ¥. In situations where ¥ can be computed in a closed form, application of
Theorem 1 is straightforward (see Section 3.1). Otherwise, Theorem 2 below provides a
new estimate of M,F by using some second order smoothness of the map U.

(D) Second-order smoothness. There is a radius ro > 0 (we choose ry < R;) such
that, for each P C M, the map U : ©p x F — R is twice continuously differentiable
on Bp := B(zp; ro)in Op x F with center zp := (6p(70), 70). Moreover, Uéf) (zp) is

P
positive definite and 6p (7o) = 6, for P D F,.

Theorem 2 Assume that (C1), (C3-i) and (D) hold. Then there are two positive con-
stants &f and ni such that if c,/n < 13, then

sf e {im =l 2 672 . an

Therefore, higher smoothness of U yields a more explicit evaluation (11) of the over-
fitting set M. In particular, to overcome any overfitting, /c,/n must have at least the
magnitude of ||T,, — vo||. However, there is a price to pay for this new evaluation of M :
it is in general less accurate than (10).

It is worth noting that the assumption (C3-ii) on the continuity of the minimization
map v — 0p(7y) is not used in Theorem 2. Indeed, the smoothness (D) implies this con-
tinuity, as shown by Eq.(17) in the proof of Theorem 2 given below. As a consequence,
under assumptions (C1), (C2), (C3-i) and (D), both Theorems 1 and 2 apply.



2.2 Proofs.

Proof of Theorem 1. To describe M, and M, we should first estimate

-~

An(P7 PO) = Un(é\P) - Un(GO) = UP(Tn) — 0P, (Tn) = 51 + 52(P7 PO) + 53 (12)
where §; = op(T) — op(v0), (P, Fo) = op(v0) — or,(70) and & = op,(70) — op, (T5), and
then compare it with n=c,(py — p) according to equations (3) and (4).

Evaluation of M. Let P 3 Fy. By (7), &(P, Py) > A,. First assume |7, — yo|| < Ri.
Then by using the modulus of continuity ® (5), we find

&1l < @ ([T — o]}, €3] < @ (I[T7 = oll) - (13)

Assume in addition that ||T,, — yo|| < @' (3 [A; — m] ). Then
& (|17, — ol]) < = (25— m 2]
n— = —m—| .
7o 5 72 n

Hence

Ccn Ccn
AL (P, Fy) > Ay =29 (||T5 — vol]) >m;2 (]00—]0);- (14)

Consequently by (3), P should not be preferred to P, that is P, ¢ {P: P32 P} The
evaluation (i) of M, follows.

Evaluation of M;7. Let P O P, and P # F,. Clearly, &(P, Py) = 0. Again assume
||T% — 70| < Ry. The estimates in (13) also hold with ¥ in place of ®. Assume in addition
that ||7,, — vo|| < ¥~' (:<= ) . Then

le,
v (||T,, — ——
(1T~ 0ll) < 52
Hence
CTL CTL
AL (P, Ry) > =2V (||T, — vol]) > - > (po —P);- (15)

Consequently, such a P should not be preferred to P,. The evaluation (ii) of M} follows. ®
Proof of Theorem 2. Observe first that for each P C M , as U 0(3 ) (6,7) is continuous

P
and U e%) (zp) is positive definite, we may assume (by decreasing r if necessary), that

U (8,7) is positive definite everywhere on the ball B(zp ; rg). Let us define

9?3

bi= max sup {H [Uézi) }—1"7 |U6£i)w H} , (16)

Step 1. Let us first prove that there is some r; > 0 such that we have for each P C M,

If [y = 70ll <71, then [|6p(v) = 8p(v0)l] < 6%y — 7oll. an



Fix some P C M and assume that ||y —~o|| < ro. Recall that Ué;) Op(v),v) = U;;) (6p(70),70) =

0. Since U 6(22 ) (0r(70),70) is positive definite, an application of the implicit function theo-
P

rem to Ué;) says that there exists some ball Vp = B(yo; r1,p) (we take 71 p < r¢) and

1
and only if § = G(v), with (G(v),v) € B(zp; ro ). In particular, if ||y — 70|P| < ryp, then
0p(v) = G(v). Since

a continuously differentiable map G : Vp — ©p such that if vy € Vp, Ué )(0,7) = 0if

G0() = - [ (@6, U2, G,
the estimate (17) follows from (16) taking ry = min{ry p: P C M}.
Step 2. Let P D F,. By definition, @\0 = épo ,
A, (P, Py) = U(8p,T,) — U(Bo,T,) > U(Bp,T,) — U(bo, Ty).

1
P~ o~
for some 6 € [6y,0p] :

Since Ug( )(ap) = 0, applying Taylor’s formula to the r.h.s. of the above inequality gives,

1 ~ ~ ~
AP, Po) > = (00 - ep)'U;Qi)(o, T,) (00 — Op).
Let us define
ro =11 A (ro/2) Aro/(26%), nf =13, and & = 1A+/2/b5. (18)

Assume that ¢, /n < i and [T, — v|| < & /2. By (D), 0p(y0) = 6o. It follows that
1T —70]| < 7o < Lrg and by (17), ||8p — 6o|| < b2|| T, —70l| < Lro. Hence, the point (8p, T},)
as well as (5, T,) belongs to Bp. So using (16), ||U ;Qj, )(5, T.)|| < b. Therefore, for such a
choice of T,, and P, we obtain:

1 ~ 1 c
An(P, Ro) 2 = 5bl1f0 = Bll* > ~S87I1T, = 0l > — . 19)

Consequently, if P D> Fy and P # Fy, A,(P, Fy) > —(p — po). The new evaluation (11)
of Mt follows. ®
3 Applications

In this section, we shall illustrate Theorems 1 and 2 for several models.

3.1 Regression models with least squares estimation
Consider an univariate regression model
yi=alf+e, i=1,...,n, ; €R, =2;andf cR™. (20)

Thatis Y = X0+ ¢, withY = (y1,---,u), X = (21, ,2,) and & = (g1, ,&,)". Set
@Q = LX'X and assume

(ML) : @ is positive definite . (21)

9



For any positive definite matrix A, we set ||u||% := «'Au and denote its largest and
smallest eigenvalues by A\pax(A) and Amin(A), respectively. The least squares function is:

Un(0) = n7H|Y = X6[|* = un + |10 = T0l[ (22)

with w, = 27! [Y'Y - Y'X(X'X)"'X'Y | and T, = (X'X)"'X'Y. Here U(6,v) = ||6 —
’)/||22, F=0=R™and Yo = 00.

For B C M and a matrix I" (or vector) indexed by M, let 'z denote the restriction of
I' on B. Then, the submatrix Q5 = > X;Xj is still positive definite.

Assumptions (C1) and (C2) are obviously satisfied. Furthermore, for each P C M,
the (unique) minimum map is v — 0p(y) = [ 7:licp] defined for all v € R™. Thus (C3)
holds with R, = oco. It follows that o (y) = ||ysl|3,, where S := M\ P. Therefore op (7o) =
ap(bo) = 11605115, = ||007P0\P||22P0\P- Hence A, is equal to

— : 2
Ay = ]%111310 ||90,P0\P||QPO\P .

We now estimate the modulus of continuity ® and ¥. For overmodels P O Fy, op(vo) =
0. Since vp,s = 0,

17sllgs = l1vs = 70,5116
< v =70l < Amax(Q) 17 = 7ol* -

op(v) — opr(70)

A

Therefore we can take ¥(u) = Apax(Q) u?.
Next consider submodels P 2 F,. Assume that 6y = v # 0 and ||y — || < u.

lop(v) —op(v)| = ‘ ||75||Z)S - ||70,S||Z)5 ‘ <|lvs + v0.5sllasllvs — Yo0.5ll0s
< Amax(@s) [1vs + 70,5l s = Y0511 € Amax(@) 117+ 0l 17 = 70ll
< Amax(@) w(u+ 2[[70l]) -

Thus we can take ®(u) = Apax(Q) u(u + 2||70||) for submodels. A straightforward appli-
cation of Theorem 1 yields

Proposition 3  For the regression (20) and the least squares function (22), assume that
(ML) holds. Then

(i) Let fo:= \/iAQ/AmaX(Q) + 11602 = [|60ll. If 6 # 0 and c, /n < Ay/(2m) , have
M7 C{|(X'X)T'X'Y = 6o]| > fo } - (23)

(ii) For the overfitting set, we have

1 - ; 1 n
M C {H()( X)TXY - 6| > m%} . (24)

It is worth noting that the matrix (), hence A; and A\,a.x(@), depend on the sample
size n. For A,, note that

As > Amin inf. .
2 > (Q)ngg; 0.i

10



Therefore any asymptotic analysis will depend on the behavior of both i, (@) and Apax(Q)-

Remark. The estimation of the support of the mean of a multidimensional variable
can be treated in a similar way. Let Y7, ---,Y, be n i.i.d. m-dimensional observations
with mean 6, = EY;. The aim is to estimate the support Fy = {7 : 6y; # 0} of §,. Consider
the least squares function

Un(8) =" Y 1Y, =62 =16 =Y[]> +n7" Y [|Y; - Y%, (25)

J=1n i=1n
with Y = n=1(Y; +---+Y,). Analogously to the regression case, we have the following

Proposition 4

(1) Let e := /502 + ||60]|> = ||60]|. If 6o # 0 and ¢, /n < Ay/(2m) , we have

M CHIIY 6ol > eo} - (26)

(ii) For the overfitting set, we have

M*C {||?—00||2 1"—”} @7)
2n

3.2 AR on Z or Markov field on Z? with Whittle’s pseudo-likelihood

AR(m) process. For a positive integer m and M = {1,2,---,m}, define

O={AcR™:1-> 6,z'#0 forzeC, [z[<1}. (28)
=1

For § ¢ © and some white noise ¢, we consider a causal univariate AR(m) process

AXVt = Z 05)(75_5 + &¢, tEZ (29)
=1

Conditional Markov field [CAR(A)] model ([25], [10]). Let M be some finite subset
of (Z%)*, the positive half space of Z¢ with respect to the lexicographic order. Denote by
m the size of M and define

O={AcR™: 1-2) fcos(A,f) >0, forall A e T% (30)
leM

with T = [0, 2x[. If § € O, the following equations

AXVt = Z OZ(AXVH_Z + AXVt_g) + ey, with E(etXu) =0 fort # u (31)
leM

defines a CAR(M) Markov field with support M.
Spectral densities and Whittle’s pseudo-likelihood
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The spectral density fy of both models (29) and (31) takes the form

I = @2m) % Heo(8) +220z cos(\, )} . (32)

For the AR(m), k = 02, ¢s(8) = 6ob; + -+ + 6,,_40,, (in this formula, §, = —1) for £ =
0,...,m ;and for the CAR(M) model, k= 02, co(6) =1, c,(f) = —6; for £ € M.

Suppose that the process is observed on a rectangle [1,n]: = [1,nq] x -+ x [1,n4] of
7% (d = 1 for the AR(m) process). The Gaussian pseudo-likelihood (Whittle, [30]) is given
by

Un(8) = log 02 + 0 co(0)7(0) + 23 . (6)7u(s)}, for AR(m)

s=1

U, (6) = (27)~ / log fs(\)dA + 0724F.(0) 2 3 6,3.(5)), for CAR() P
Td

s=eM

where 7, (s) denotes the sample covariance n~! Ete[l’n] X;X;4s with the convention X, =
0ifu ¢ [1,n]. By taking 7}, = (¥.(u), u € M U {0}), we can factorise U,, with the function

U(8,7) =logo? 4+ o72{co(8)7(0) + 2205(0)7(5)}, for AR(m)
s=1
—d —2 (34)
U(8,7) = (27) / log fa(A)dA + 022 {7(0) =2 Y 6.7(s)}, for CAR(M).
Td

s=eM

Here the state space F is the collections of all (m + 1) Fourier coefficients v = [1(¢)] with
¢ € M U {0}, h running through the set of positive and Lebesgue integrable functions on

T<. We take v = {(277)%0 (E)} , the Fourier coefficients of (27)¢f;, on M U {0}.

Proposition 5 For both the AR(m) process defined in (29)-(28) and the CAR(M) field
defined in (31)-(30) with the Whittle pseudo-likelihood (33), Conditions (C) and (D) are
fulfilled and Theorems 1 and 2 apply.

The proof'is given in Appendix A.

3.3 Likelihood for categorical data, conditional pseudo-likelihood for

Markov field
Let X be a random variable with a finite state space £ = {ag.a1,az,---,ax}, K > 1,
the distribution of this variable being conditional to some v € V = {vy,vq,---,vr}. In

econometric models, v is some conditioning exogenous variable, while for a Markov field
X = (X;), v = Xy, represents a neighborhood configuration around some site i. Natu-
ral estimating functions include the likelihood and Besag’s conditional pseudo-likelihood,
see [5, 10]. Assume that such a conditional distribution is defined by

exp(f, ¢(a, v))

P(X = a|v) = mg(a|v) = D s exp(f, d(z,v))

(35)

12



with § € © = R™. Here ¢(a,v) = [¢¢(a,v)], ¢ =1,...,m, are conditional potentials. To
ensure the identifiability of the model, we take ¢(ag, v) = 0.

Suppose that for each v we have n, > 1independent observations { X;, = (X;|v) }1<i<n,
under v. The conditional log-likelihood of the observations is

Lo(0) =" ) logmg(Xuw|v)= Y naylogms(alv) (36)

v oi=1,ny a€lBveEV
where n,, = #{i: X;, = a}, n, =Y, ngy and n = >__n,. Thus we have for U, = —n~'L,

Ul0) =U(0,T,) = —n"1>n,> T,(a,v)logms(alv)
with o (37)
T,=(Ty(a,v):ac E,veV), T,(a,v)=mng/n,.

Here © = R™, and F is the set of all conditional distributions induced by (35): an element
v € F'is a collection of L conditional distributions v = (7(a|v)), (a,v) € E x V, for some
6 € R™. Also we take vy = (mg, (@, v)). Let us define the m x (K +1)L matrix ¥ = (¢(a, v)),
for row index ¢ = 1,...,m and column index (a,v) € E x V.

Proposition 6  Consider the model (35) with the pseudo-likelihood function (37). Un-
der the condition

(CAT) the matrix X is of full rank m , (38)

Conditions (C) and (D) are both fulfilled and Theorems 1 and 2 apply.

The proof'is given in Appendix B.
Let us give two examples where (CAT) is satisfied.

Example 1: logistic regression. Here we assume v € R? for some integer ¢ > 0. The
polytomic logistic regression model takes the form :

exp(f;, v)

]P’(AX — (LZ'|'U) = Eﬁio eXp<ﬁsv Jv> 7

i=0,1,...,K

with 3y = 0. The parameters are § = (3, ..., 3%) € R and ¢(a;,v) = (0/,..., 0,0/, ...

where v is at position i. Assume that V spans R? Then ¥ spans R?%X and (CAT) is
satisfied (with m = ¢K). O

Example 2: Markov field on Z?[10]. Let M = {uy, us, - -, u,, } be m sites of the pos-

itive half space (Z%)* with u; = 0. The set M defines a neighborhood relation: i ~ j
if i — j or j — ¢ belongs to M\{0}. For simplicity, consider a homogeneous field with
a singleton potential ¥; : ¥ — R, and pair potentials ¥, : £ x ¥ — R, defined
for any pair of sites (¢, j) satisfying i — j = +us, £ = 2,...,m. Thus the condi-
tional distribution at site ¢ is defined by the conditional energy (6, ¢(z;, z5;)), where
6 = (61,02,---,0,) € R", ¢ = (¢, £ = 1,m)", 00 = {i £ u,{ = 2,...,m} and
G1(x5, wa;) = Wi (i), Qelwi, wa:) = Wolay, Tigu,) + Vol wiy,), £ = 2, m.
To specify, consider an Ising model: £ = {-1,1},¥y(z) = z,VYy(z,y) = a2y for { =
2,...,m. Define vy = @1y, + @iy, for £ =2,... ,;m, and A(v) = “(1, v, 03, , V).
It is easy to see that ¢(z;, z5:) = z;A(v). Hence if {A(v),v € V} spans R™, the
condition (CAT) is satisfied. O

13
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4 Upper bounds for the misfitting probabilities P(M, ), P(M,)

We now give upper bounds for P(M ) and P(M ") for the examples considered in the pre-
vious section and two infinite variance models. Even we do not state it explicitly, suf-
ficient conditions for the weak consistency can be straightforwardly derived from these
upper bounds.

Probability and expectation under 6y will be denoted by Py and E, respectively. The
main goal is to evaluate deviation probabilities like Po{||7, — 70 || > @»}, a,, being a con-
stant in the case of M, , while for Mt a, is proportional to /c,/n which usually tends
to zero as n — oco. Consequently, P(M,)) is related to large deviations of T}, and P(M,}) to
its moderate deviations.

We follow an approach based on exponential inequalities. The main interest of this
approach is that large or moderate deviation probabilities can be treated in an unified
way. However, a possible drawback of this approach could be that the constants involved
in the upper bounds given below may be not optimal.

A common fact is that P(M,) vanishes exponentially fast (provided ¢, /n is small),
while P(M;") decreases at a slower rate depending on the magnitude of ¢,/n. For in-
stance, for the BIC rate c¢,, = log n, P(M,) is of polynomial order O(rn~*) for some o > 0.

Let us recall the exponential inequalities used. We shall say that a zero-mean, real-
valued variable X has an exponential moment E( 7, g) if the following condition is fulfilled
for some positive constants = and g,

E(r,g) : EetX < e79? for lt| <7 . (39)
This is equivalent to the following moment condition (see Lemma 2.2 in [21]) :
Ja>0, E*Ml <o . (40)

Moreover, any family F = {X,} of real variables will be said to have an uniform expo-
nential moment E(r, g) if (39) is satisfied for each X, € F with some uniform constants
7 and g.

Furthermore for any sequence of independent and centered real variables (X, ),>:
having a uniform exponential moment E(r, ¢), the following exponential bound holds for
the mean X,, = n~' 3_7_, X (see Theorem 2.6 in [21])

2
]P’(|Yn| Zas) §2exp{—n (;_g/\%)} . 41)

4.1 Regression models

For the regression model (20) defined in Section 3.1, we will assume that

The variables (¢;);> are zero-mean, independent and
(42)
have an uniform exponential moment E(7*, ¢*) for some 7*, g* > 0.

As the sample size n may vary, we add the subscript n to previously defined variables
X, Y, ¢ and Q). Assume also the following condition on the exogenous variables {z;}

A*::sup{xf(ﬁ):iZO,lgﬁgm} < oo, (43)
A 1= igf Amin(@rn) > 0. (44)

14



It is worth noting that for an i.i.d. process (¢;), (43) can be weakened, see [31] and [22].

Proposition 7 In the framework of Section 3.1, assume that (42), (43) and (44) are sat-
isfied. Then there exist positive constants A, D, Dy and Ds such that

(i) If6y #0and c,/n < A./(2m), we have

Po(M;) < 2me D1

(ii) For the overfitting set, we have
Po(M;]) < 2mexp {— [Dy ¢, A D3y/nc,]} .

Proof. Easy calculus give for the constants involved in Proposition 3

Amax(@Qn) < mAT (45)
Ay > A=A, mlnHOZ, (46)

1€FP

A,
fo > o= 2ol 11l @n

As @), is always positive definite for n > m, Condition (ML) is satisfied. Let us use the
evaluations (23)-(24). Since Y,, = X0y + &,, we get (X! X,)"1 XY, — 6y = n71Q 1 X/&,.
Let Z, be the m-dimensional vector n=! X/¢,. Thus for u > 0,

X)XV = bl 2w} € {120 12 0v/Aaia@0) | € {10 )] 2 wv/AL )

Furthermore, the ¢-th component of 7, is Z,(¢) = n~' > | z;(f)s;. For any ¢ such
that |¢| < 7 /v A*, since |tz;(¢)| < 7%, we find by (42) and (43),

(e 1
Ee'® (9% < exp [ig*x?(ﬁ)ﬁ] < exp [ g ATt ] .

Hence the weighted sequence {z;(¢ )52}»1 has a uniform exponential moment E(7* /v A*, g* A*).

Since {[|Zn|| > uv/Ac} C UL, {1Za(0)] > uv/As/y/m}, we have

*

Au? T™u A
P <HZn || > u\//\*> < 2mexp {—n <29*mA* A 5 mA*)} .

The results follows by taking u = f. and u = {(2mA*)~l¢,/n}"/* for Po(M7) and Po( M),
respectively. The involved constants are

BN o 2, T ¥ b TV
1 2g*m A* INmA* 27 2g*(2mA*)?’ 7 4/2mA*

15



4.2 AR and CAR Markov fields
For the AR(m) process (29), we shall assume the following
(e¢) is a centered i.i.d. sequence satisfying for some a > 0, Ee®! < oo . (48)
and for the CAR(M) field (31)
X = (Xy) is a centered Gaussian field. (49)

Both the AR(m) process and the Gaussian CAR(M) field are linear processes, i.e.
Xt = Zasé}_s (50)

520

where (£;) is the corresponding innovation process (for the CAR(M) case, see e.g. The-
orem 1.2.3 in [10]). Moreover, there is some o« € [0,1) and A > 0 such that for s =
(s1,.-.,84) € Z% |as| < Aalstl+tlsal In the AR(m) case, d = 1 and () is the i.i.d. se-
quence defined in (29), while in the Gaussian CAR(M) case, ¢, isgiven by ¢, = E (X4 X5, s <
t) with < the lexicographic order on Z?. In the CAR(M) case, the variables (¢;) are Gaus-
sian and uncorrelated, hence independent, and the moment condition Fe?*! < oo holds
for some a > 0.

The common linear representation (50) makes a unified analysis of both models pos-
sible. Recall that the CAR(M) model is observed on a rectangle [1,n] = [1,ny] X ---X[1, ng]
of sizen =ny---ng.

Proposition 8 (1). The CAR(M) case: Assume that (30) and (49) are satisfied. Then
there are positive constants n., p, p' and oj, v;, v for j = 1,2, such that for n; > n.,
i=1,....d,

(i) Ifc,/n<ny,wehave

(i) If nc, > oy and ¢,,/n < o3, we have

2
, , 1 ‘
P(M,) < 1+10g£ + (log i) e 4y {1—|— A /E—I— —} e Vavnen
“n €n Cn Cn (51)

(2). The AR(m) case: Assume that (28) and (48) are satisfied. Then the same conclu-
sions hold.

The proof is given in Appendix C where the constants are made explicit. These re-
sults show that once ¢,,/n < 75y, P(M,) vanishes exponentially fast. Moreover, the up-
per bound for P(M,}) is close to optimal in the following sense. Consider the AR(m) case
with ¢, = 2C'loglog n for some C' > 0. The r.h.s of (51) is equivalent to v (logn)2(1=1¢),
Therefore, P(M;") — 0if C > 1/v], while if C < 1/, this upper bound does not goes to
zero. The existence of such a critical value for C' is already known for strong consistency:
Theorem 5.4.1 of [15] shows that strong consistency holds if and only if C' > 1. If we con-
jectured the same critical value for weak consistency, the Hannan-Deistler’s result seems
to indicate that the upper bound in (51) is nearly optimal although we do not recover the
exact critical value C' = 1.

16



4.3 Categorical data models and finite state space Markov fields

Within the framework of Section 3.3, probability estimates for M and M, will be based
on the following result (see [16, 21]): Given » independent real variables (X}),<x<», each
of them having a compact range [a;, bx] (ar < bz), the following deviation estimate holds
for the average X,

22

don=t (b —ag)?

P(|Xn| > o) < 2exp - (52)

On the other hand, since

T
Tn - > c { Tn 3 - > f} ’
U=l =2y e U {1 ) = m(alo)| > 7

and 7, (a,v) = n;ln,, € [0,1], we have by (52)

. T\ 2
P(|T. — 7ol| > z) < 2K Zvjexp— {m <E) } .

For the constants &, , 1, and J; defined in Theorem 1 and 2, set
¢ = 205 (KLY, ¢ =255 /(KLY
A straightforward application of Proposition 6 yields

Proposition 9 Under the condition (38), we have

(i) Ifc,/n<ng,then
P(M,)<2K» e ™.
veV

(it) Without any condition on c,,

P(M) < 2K Zexp |:—C+ (%) Cn} .

veV

On the (CAT) condition for Markov field : The condition(CAT) (38) requires that
ny, > 1 for each v in some subset V' of the neighborhood configurations. Here (n,),ev
are random. However, if X is observed on [1, n] =[1, n]?, this requirement will be fulfilled
almost surely for large n, thanks to the following subergodicity result [8]:

Ja > 0, such that almost surely, Vv € V, lim inf n_Z > .
n—oo N

4,4 Models with infinite variances

Once ¢, /n is small enough and following Theorem 1 and 2, the misfitting set M,, = M, U
M can be estimated as M,, C {||Tn - 7ol > 5\/Cn/n} for some ¢ > 0. We shall estimate
Py(M,,) for two models involving variables with infinite variance.
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4.4.1 Sample from a a-stable law with exponent « € (1, 2)

Let us consider an i.i.d. sample of an m-dimensional random vector Y = 6, + ¢. Assume
that each component ¢(j) of £ is a symmetric a-stable variable with index a € (1,2) (see
[21], Chap. 3 for more reference on stable variables). Such a «-stable variable 7 satis-
fies : (1). as z — oo, 2°P(|Z| > z) — C, where (' is a characteristic constant; (2). For any
sample (Z;)i=1,.. », the normalized sample mean n~1l/e >, Z; has the same a-stable dis-
tribution as Z. Note that since o > 1, (2 — a)/a < 1. Thus straightforward application of
(9) and (11) yields the following result.

Proposition 10 Assume that

CTL CTL
o —0 and —a)/a

— 00 . (53)

Then there is a positive constant D such that for large enough n

Po(M,) < D [ }_a” (54)

@-a)/a

4.4.2 Infinite variance AR(m) process

Consider an AR(m) process (X;) as defined in (29)-(28), where (=) are i.i.d. with a com-
mon distribution in the domain of attraction of a symmetric stable distribution with in-
dex o € (0,2). For such a process, expectations of sample auto-covariances are undefined.
Therefore the Whittle PL (33) is no longer useful.

However, expectations of the sample autocorrelations p,(s) := 7,(s)/9.(0) are well-
defined [14], and converge to

. EjZO bjbjts
po(s) = TS

2075

(55)

where (b;) are the coefficients of the linear representation of the process: X; = " ., bsct—s.
For estimation purpose, we modify the Whittle PL (33) as follows (still denoted U,,)

Un<e>=co<9>ﬁn<o>+22cs<9>ﬁn<s>:(ZXE) -Z(Xt—zbesxt_s) ,

with the same ¢ () asin (33), 1, = [p,(s)] and 7o = [po(s)] where 1 < s < m. Assumptions
(C1), (C2), (C3-i) and (D) still hold (as in the finite variance case, Proposition 5). Hence
Theorem 1 and 2 apply.

To control the wrong fitting probabilities, let us recall the following Central Limit The-
orem on T,,, proved in [7] (see also [19])

1/
() 1)~ pule] — £(), Prweakdy, (56)

where L(s) is some limiting distribution. Consequently, an application of (9) and (11)
yields
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Proposition 11 Assume that

l/oz 1/2
2 40 and ( n ) <C—”) — 0. (6Y0)
n log n n
Then
Po(M,) = 0 . (58)

For instance, the Akaike’s information criterion (c,, = 2) is consistent: we have recov-
ered a result proved by [6] and [18].

5 Strong consistency of the model selection criterion

This section is devoted to illustrate how strong consistency can be derived from Theo-
rems 1 and 2. To this end, assume that the following upper bound is available on the a.s.
convergence rate of the statistic 7,

n

1/2
JA > 0, limsup ( ) [|IT, — 70l < A a.s. (59)

2loglog n
In such a case, strong consistency holds.
Theorem 12 Assume that (59) and the evaluations (9) and (11) hold. Then

(i) Iflimsupc,/n < 1y, almost surely, for large enough n, underfitting is impossible,
that is M = 0.

(i) Iflimsupec,/n < 5, and liminf ¢,/(2loglogn) > (A/8)?, then almost surely, for
large enough n, overfitting is impossible, that is M;" = {).

Proof. First note that (59) ensures ||}, —7o|| — 0. Hence a.s. the set {||7}, — vo|| > 7 }
is empty for large enough n, and so is M, by (9).

For M}, we know, by (ii) of Theorem 2, that M5 C {||T,. —vol| > éf \/¢cn/n} = W,.. On
W = limsupW,, = {||T, — 7ol|| > 6§ +/c./n infinitely often}, there is some subsequence
ng 1 oo, such that ||T,, — vo|| > 85 v/cn, /nr. Hence on W

n 1/2 c 1/2

li _ T, — > 6 liminf [ —2—— A.

i sup (210glogn) ] Yol| 2 & limin (210g10gn) ~
By (59), W is negligible. The result (ii) follows. ®

It should be pointed out that (59) is a natural assumption when considering the strong

consisitency. So, Theorem 12 just recovers this well-known fact. Again, if we remember
the Hannan-Deistler’s result (Theorem 5.4.1 of [15]) applied to AR models (see also com-
ments at the end of Section 4.2), our conditions on the penelization rate c, in Theorem
12 are optimal up to some constant factor in that case. We have lost some precision, but
Theorem 12 can be applied to many other models than the AR ones.

ACKNOWLEGDEMENT. The authors are grateful to the anonymous referees for their
helpful comments which have contributed to improve the results of the paper.
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A Proof of Proposition 5
It is already shown that (C1) holds. For (C2), we find for both models

Joy Joy

—1-1lo
Jo gfe

U0.20) = Uit = 20 [ | (A)dA >0,
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where the equality holds if and only if § = 6,. Therefore 6, is the unique minimum of
U(8,70) on ©.
We now check the smoothness condition (C3-i) and (D) separately for the two models.

The AR(m) model. By (34) and (32), we get
U(8,v) = log 0'3 + 05_2 [tHFH — 2%0u + 7(0)] , (60)

where I' is the m x m auto-covariance matrix [y(: — j)]i<i j<m, With v(—j) = v(j), and
u = [v(j)]i<j<m-. For each submodel P C M and 6p = (6;1;cp), the function 6p — U(0p,7)
is a positive quadratic map, having a unique minimum 6p () = ['s'up. Clearly v — 6p(7)
is everywhere continuous and (D) holds. O

The CAR(m) model. The parameter space O given by (30) is convex. Define g4(\) :=
a2[(2m)efa (M) = 1 — 232, 8scos(A, £). The function § — U(8,v) is convex because its
Hessian matrix,

D) = U (6. ~) — 4(2m) (/ cos(u, /\>Cos<v,/\>d/\> ’ 61
( ) I ( 77) ( ﬂ-) Td 99(/\)2 woeM ( )

is positive definite on ©. Thus any minimum 0p(y) of U(6,v) on Op, if it exists, will be
unique. It remains to prove the existence of such a minimum. For this, we shall show
that U(6,~) tends to infinity when 6 approaches the boundary of ©p.

First note that O is bounded (||||. < 1 on O) : indeed, an application of the Fourier
inversion formula to the positive polynomial g4 yields

| — 6, = ‘(zﬂ)—d/ng@(A) exp—m,ﬁ)cm‘ < (277)_d/ngg(/\)d/\: 1.

Set G(8) = —(27)~? [,aloggs(N)dX and H(8,v) = U(8,7v) — G(8). As O is bounded, H is
bounded on ©.
Let 6 be some boundary point of ©p. By the definition of ©, there exists some p* € T¢

s.t. gz(p*) = 0. As g7 > 0, we find géli (1*) = 0. ATaylor expansion at p*, together with the

compactness of T? ensure that there is some a > 0 s.t. g5(A) < a||A — p*||2 for all A € T
It follows that /() = co. Take some sequence (6,,) converging to . Then (g,,) converges
uniformly to g;. Hence lim, _;G(6,) = G() = co =lim, _;U(6,7). The existence of an
(unique) minimum 0p () € ©p follows. Thus (C3-i) is proved.

Finally by (61), the second order smoothness (D) obviously holds. &

B Proof of Proposition 6

The assumption (C1) holds by definition (37) of U. Let us examine (C2). The assumption
(CAT) ensures that the §-parametrisation is proper, i.e. the map # — w4 is injective.
Denote by Ey , and V; , the expectation and the variance under 7y (:|v), respectively. For

7= (mlalv)) € F,

U, 7)=-3y. %EWJ [log 76(X |v)] - (62)
veV
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The r.h.s. of the above equation is a weighted sum of Kullback-Leibler discrepancy be-
tween the conditional distributions 7, (:|v) and 74 (-|v). Taking v = v = (7g, (a|v)), we find
that 6, is the unique minimum of the map 6 — U (6, v,) on © = R™. Hence (C2) holds.

We now check (C3-i) and (D). Fix some P C M. It is easy to see that for all v, the
map fp — U(fp,v) has continuous second order derivatives on Op (hereafter, we drop
the index P in ). In particular, its Hessian matrix at (6, v) is equal to

20.7) = Vo, (X, 0)] (63)

which is independent from ~. It will be shown below, while proving (D), that this matrix is
positive definite. Because Op is convex and 6 — U(#, v) is strictly convex, any minimum
6p(y) of U(,v) on ©p will be unique (if it exists). It remains to prove the existence of
such a minimum. For this, we shall prove that U(6,~) — oo as ||8]| — oc.

Let us take some non null vector D in ©p and consider § = 3D € ©p while letting 5 —
. For any v € V, let us define W, (a) = (D, ¢(a, v)), and its maximum W, = max{W,(a) :
a € F}. Thus

E, log (X |v) = B8R, [Wy(X)] = log Y exp [8W,(a)] . (64)
acl

When 3 — oo, we have ) . exp [8W,(a)] = eVl + £,(3)] with some positive integer
a, and ,(3) — 0. Hence by (62) and (64)

ﬁz —R,, [W, — W,( +Z llog v, [1 + £, (3)]] .-
veV veV
On the other hand, the assumption (CAT) ensures that there is some v, € V for which the
map a — W,, (a) is not constant. It follows that U(#,~v) — oo as § — oo. The assumption
(C3-1) is proved.

Finally to check (D), it is enough to prove that the Hessian U 0(22 ) (0,~) in (63) is positive
definite. Let us take again some D € R™\{0}. With the same W,’s and v, as defined
before, the conclusion follows from
Ny,

VouWe (X)>0. =
n

DU 6,y)D= n—TZ’VWWU (X) >
veV

C Proof of Proposition 8

For a linear process as defined in (50), there is no basic difference between the unidi-
mensional case d = 1 and the multidimensional case d > 2. Therefore we shall hereafter
assume that ¢ = 1 for simplicity. Since T}, = [¥,(¢) : £ € M U {0}] and Ey7,,({) = vo({), we
have to control deviation probabilities Py(|7,(¢) — 70(¢)| > z): the intended result follows
from specifications of such estimates with suitable values of z as indicated in Theorem
1. Again for simplification purposes, we shall explain in detail only the case ¢ = 0. For
¢ # 0, the results follow in a similar way.

Following [2], the idea of the proof'is to use the linear representation (50). Since there
is some trouble in their proof (see Eqgs. (3.23) and (3.27) there), we reconsider it here. For
£=0,

.(0) — 0% = A, + B, , (65)
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with

n n

R D) I CIETE N S 35 3 SN NVCRCNG

t=1 s>0 t=1 A>0 s5>0

Thus for z > 0,
~ T T
P([Fn(0) — 0% | > 2) <P(|A,] > 5) TP(Bu 2 3) .

We estimate the right hand side in several steps. Recall that o € (0, 1) is the rate such
that |as| < Aa®. The following constants will be used in the sequel.

8 € (a,1), h=p/a, n, = min{k > 0: h* <k}, (66)

Ko = (18407 (1= p)(1-§), Kj= 472057, 67
Tg(m+1) ,  Tg(m+1)

1 Koot T Tk (68)

o = ¢, o= (%)2/\@’)”773- (69)

Step (1). Estimate for P(|4,| > 1z).  Set E; := ¢} —02, 2, = K(h**z, B2 = (1-3%)p*".

Since " .., 82 =1,
1 — 1 —
LS —zmﬂz%}
n t=1 n t=1

z 2
5>0

F; has an exponential moment E(r, g) for some positive constants 7 and g. Set &, ,(z) =

2 [(z*/g) A (t2)]. Therefore

z%ﬁix}g U{

520

P{|A.l > ;} <2Y el | (70)

5>0

Step (2). Estimate for P(|B,,| > ;z). Similarly, set for any positive integer A,

ko3
-1
Ft,A = Et&t—A, Fs,A =n E Ft—s,A )
i=1

Ts A = I(OhQS-I—Ax ’ ﬁs,A — (1 _ 62)(1 . ﬂ)ﬁzs_}_A_l ‘

Since Y- 5q a>1 85,4 = 1, we may write

x 1 —
{|Bn|2§}§ U {;;Ft_s,a

s>0,A>1

> -rs,A} = U {Feal>2.a}.

s>0,A>1

Hence

P{B. 2 5} <3 S P{Foal 2 asa} - (71)

A>1 s>0

Fix some s > 0 and define I,, = {1,...,n}, J1 = {t : t € I, and 1 < [t] < A}with
[t] :==t mod 2A, Jy = I, — Ji, ng = |Ji| and Fy, = n ;' 35,5 Fi_oa for k = 1,2 (with the
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convention F; = 0 if ny = 0). Such a decomposition of I,, ensures the independence of the
variables {Fi_; A : ¢ € Ji} in each subset J;. Furthermore, since n; > ny, we have that
ny > tn > 0. Then

{|Fsal > zsa} C U {|Fx| > z5a} . (72)
k=1,2

On the other hand, consider the variable /' = ¢,¢, for some u # v. Since |F| <
%(53 +¢2), (40) holds for F'. Thus F has an exponential moment E(7', g) for some positive
constants 7’ and ¢'.

We may assume that 7’ = 7 and ¢’ = ¢ (otherwise replace 7, 7’ by 7 A 7/, and g, ¢’ by
gV ¢'). Then ¢ will hereafter denote this common bound ¢, for the variables {5? - 02}
and {F; a}.

We now split the r.h.s of (71) in three different terms according to whether A > n,
A<inorin<A<nIfA>n,n;=0andn=n; Hence

P{Fsa|>asa} <270 (73)
If A < in,thenny > in and ny > in. Therefore
P{F,al > 2,0} < Y P{Fi| > zoa) < de”57¢Ea) (74)
k=1,2
In the last case, since ny, > 1, ny > 1 and £ is increasing, we have
P{Fsal> 200} < > P{Fi| > 2,0} < dem¢Eea), (75)
k=1,2

Collecting (71) to (75) yields

%P{|Bn| > g} < Z + Z Ze—%”f(ﬂfs,A) + Z Ze—é(ﬂfs,A) (76)

A>n AS%n 520 %n<A<n 520

Step (3). An auxiliary lemma. The upper bounds in (76) and (70) show that we have
to estimate sums of type > .. exp[—a,&(zs )] With some «,, > 0. This is done in the
following lemma that we shall prove later.

Lemma 13 (i) Letp € (0,1),u > 1. For any integers 1 < s < {,

us—l

t
uk P
<
Z P log u|logp| us—L’ (17

In particular Y <, p* < 1+ (logu|logp|)~*

(i) By setting K1 = 397 K3, Ky = $7Ko, u(z) = log[rg/(Koz)]/logh and v(z) = 1 +
(2K2zlog h) ™1, we have

ZGXP[ @nf@s A)] [1 + = ( )] 1{u(z‘)ZA} e—anl{m2h2A n v(x) e_anKQth ’

s>0 (78)
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(iii) Similarly by setting K| = 1g7'K2?, K} = 1K), u/'(z) = log[rg/(K}z)]/logh and

v'(z) = 14 (2K4z log h) ™!, we have

ZQXP [—anf(xs)] < |:1 + %U/(Q?)] 1{u’(7;)20} e_Oé"K{I2 + U/(gp) e_a"Ké$ .
520

(79)

Step (4). Final estimate for P(|7,(0) — 0% | > z). First an application of (79) with
a, = n to the r.h.s of (70) yields

%P {1402 g} = [1 - %“'(w)] Lwimsoy € 07 4+ 0/(0) e85 = By + By
(80)

applications of (77)-(78)

Let u(z) := u(z) [1+ Ju(z)]. For the first sum in the r.h.s (76), we find by successive

Y+ Y | ettt

A>n Agén

([1 + %“(fv)] Liu(@yza) € 550 4o (a) e—%”f"ﬂhA)

v
4

(]
+
(]

1 1 g _272A 1l g A
[HE“@”) Lu@zay € 700 4y () emznart
A>n A<ln A>1
—%n]&"lehQ SU(‘T) e—%nl&"gz

+ 1)1y a(z)e nKqxlogh

— %n[&"l z2h2"

= E3+E4+ Es5 . (81)

Similarly, for the last sum in (76),

—&(xz, 1 —K z2h%2 —Koxh®
Z Ze &(rs,n) < Z (|:1—}— §u(.’E):| 1{u(m)2A}e +U(.T)€ )

%H<A<n 520 %n<A<n
- _ 1 70 .272n v(.r) e oam
< 1 a(z)e 3Ktk — LU (82)
= THul@)>am (=) Koz (log h)h2 ™!
= Esg+ Er (83)
Collecting all these estimates gives
P([7(0) - o%| > 2) < By + -+ Er. (84)

Estimate for (/). Recall that under the assumptions, we have ¢,,/n < 5 and n >
n. (hence /2 > n). Since M; € {[|T, =0l = &5 } € Uod7a(6) = 70(0)] 2 (m+1)"165 },
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we may apply (84) with = = (m +1)~1§; . Taking into account the condition 4*/2 > n, one
easily checks that P(|9,(0) —o%| > (m+1)"'65) < puoe "o for some constants o > 0 and
ih > 0. As we also have P(|7,(£) — 70(¢)| > (m + 1)7185) < pge "t for some constants
pe>0and p, > 0,0=1,...,m, we take pt = o+ -+ + py, and g/ = min{pg, ..., u,} to
conclude the first part (i) of the proposition.

Estimate for P(M;}). Here we apply (84) with z = (m + 1)716f /. Under the as-
sumption nc, > ¢?, it is readily checked that n > 2u(z). Therefore, F3 = Fg = 0. Taking
into account the conditions n > n, (hence 2"/? > n) and ¢, /n < (q1/h)* A ¢3 A nt, we find

P - o412 on )7/
n
n n 2 ' n 1 ,
< V1{1+10g—+ (10g—) } e‘”lc"+u2{1+1/—+—} e~ Vav/men

with some constants v; > 0 and v} > 0 (j = 1,2). As for (i), the result (ii) of the proposition
follows by summing these inequalities over £ = 0,...,m. [ |
To complete the proof of Proposition 8, it remains to prove Lemma 13.

Proof of Lemma 13 . Part (i) follows from the elementary inequality EZZS p“k <
fst—l pux dz.

Part (). Asé(x) = £ A TH, we have £(z) = £ if || < rg, and £(2) = L7|a| otherwise.
Since z, A = Koh?*t2 2, one has |zs,a| < Tgifand onlyif s < s* := %[u(m) — A]. Assume
that u(z) > A. For s < s*, exp[—a,&(z5a)] < exp[—a,&(z0,a)] = exp[—a, K12%h?*2]. As
(1+s%) < [1+ tu(z)], we find

1 .

Z exp [—apé(zsa)] < [1 + Eu(x)] 1u(z)>A e—anK12?h?8

s<sx

For s > s*, we have that{(zs a) = Kozh?*h®. By applying Part (i) with p = exp[—a,, Kazh?]
and v = h?, it follows that

Z exp [—apé(zs,a)] < Zexp [—a, Koah*h?] < v(z) = onfaTh®
s>s* 5>0

Part (iii) follows in the same way as for Part (ii). H
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