A review of image denoising algorithms, with a new one

Abstract : The search for efficient image denoising methods is still a valid challenge at the crossing of functional analysis and statistics. In spite of the sophistication of the recently proposed methods, most algorithms have not yet attained a desirable level of applicability. All show an out- standing performance when the image model corresponds to the algorithm assumptions but fail in general and create artifacts or remove image fine structures. The main focus of this paper is, first, to define a general mathematical and experimental methodology to compare and classify classical image denoising algorithms and, second, to propose a nonlocal means (NL-means) algorithm ad- dressing the preservation of structure in a digital image. The mathematical analysis is based on the analysis of the “method noise,” defined as the difference between a digital image and its denoised version. The NL-means algorithm is proven to be asymptotically optimal under a generic statistical image model. The denoising performance of all considered methods are compared in four ways; mathematical: asymptotic order of magnitude of the method noise under regularity assumptions; perceptual-mathematical: the algorithms artifacts and their explanation as a violation of the image model; quantitative experimental: by tables of L2 distances of the denoised version to the original image. The most powerful evaluation method seems, however, to be the visualization of the method noise on natural images. The more this method noise looks like a real white noise, the better the method.
Type de document :
Article dans une revue
SIAM Journal on Multiscale Modeling and Simulation: A SIAM Interdisciplinary Journal, 2005, 4 (2), pp.490-530
Liste complète des métadonnées

Littérature citée [39 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-00271141
Contributeur : Antoni Buades <>
Soumis le : jeudi 21 janvier 2010 - 13:19:48
Dernière modification le : mardi 10 octobre 2017 - 11:22:03
Document(s) archivé(s) le : vendredi 28 septembre 2012 - 12:25:09

Fichier

061602r.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-00271141, version 1

Collections

Citation

Antoni Buades, Bartomeu Coll, Jean-Michel Morel. A review of image denoising algorithms, with a new one. SIAM Journal on Multiscale Modeling and Simulation: A SIAM Interdisciplinary Journal, 2005, 4 (2), pp.490-530. 〈hal-00271141〉

Partager

Métriques

Consultations de la notice

1674

Téléchargements de fichiers

25511