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We propose two types of time-frequency (TF) blind source separation (BSS) meth-
ods suited to attenuated and delayed (AD) mixtures. These approaches, inspired from a
method that we previously developed for linear instantaneous (LI) mixtures, almost only
require each source to occur alone in a tiny TF zone, i.e. they set very limited constraints
on the source sparsity and overlap, unlike various previously reported TF-BSS meth-
ods. Our approaches consist in identifying the columns of the (filtered permuted) mixing
matrix in TF zones where these methods detect that a single source occurs, using TIme-
Frequency Ratios Of Mixtures (hence their name TIFROM). We thus identify columns of
scale coefficients and time shifts. The detection stage for time shifts uses regression lines
associated to the above-mentioned TF ratios of mixtures. The detection stage for scale
coefficients uses the variance of these TF ratios of mixtures, either in Constant-Time or
in Constant-Frequency analysis zones. This yields two alternative BSS methods, which
are resp. called AD-TIFROM-CT and AD-TIFROM-CF. These methods are especially
suited to non-stationary sources. We derive their performance from many tests performed
with AD mixtures of speech signals. This demonstrates that they yield major SNR im-
provements, i.e. about 45 dB with optimum parameters for time shifts ranging from 0 to
20 samples and above 18 dB for 200-sample time shifts.
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1 Introduction

Blind source separation (BSS) consists in estimating a set of N unknown sources from a
set of P observations resulting from mixtures of these sources through unknown propa-
gation channels.

Most of the approaches that have been developed to this end are based on Independent
Component Analysis (ICA) [1]. They assume that the sources are random stationary sta-
tistically independent signals, and that at most one source is Gaussian. They recombine
the available observed signals so as to obtain statistically independent output signals.
These output signals are then equal to the sources, up to some indeterminacies.

More recently, a few other concepts for BSS have also been considered. Especially, sev-
eral methods based on a time-frequency (TF) analysis of the signals have been reported.
Three main classes emerge from these TF-BSS methods. The first one directly results
from classical BSS approaches, as it consists of TF adaptations of previously developed
joint-diagonalization methods, with subsequent modifications [2]-[4]. The second class
includes several methods based on ratios of TF transforms of the observed signals. Some
of these methods, i.e. DUET and its modified versions, require the sources to have no
overlap in the TF domain [5]-[9], which is quite restrictive. On the contrary, only slight
differences in the TF representations of the sources are requested by the TIFROM method
that we proposed in [10]-[14]. The third class is based on TF correlation [15]-[17] or TF
coherence [14],[18] parameters. All these methods are restricted to linear instantaneous
mixtures, except DUET, which applies to time-delayed mixtures but sets other restrictive
conditions as stated above.

In this paper, we propose a novel TF-BSS method which is inspired by our linear in-
stantaneous (LI) TIFROM method, but suited to more general mixtures, involving time
shifts. We thus avoid the restriction of the DUET method concerning the sparsity of the
sources in the TF domain.

The remainder of this paper is therefore organized as follows. In Section 2, we define
the attenuated and delayed (AD) mixture configuration considered in this paper and the
resulting goal of our investigations. We then present in Section 3 the LI method that
we used as the starting point of our extension introduced in this paper. In Section 4,
we describe a first AD extension of the LI-TIFROM method. We then propose an alter-
native version in Section 5. Section 6 reports on a detailed analysis of the experimental
performance of both proposed approaches, applied to AD artificial mixtures of real speech
sources. Section 7 presents the conclusions drawn from this paper and outlines extensions
of the proposed methods. Specific topics are detailed in the appendices.

2 Problem statement

In this paper, we consider the configuration involving N sources and N observations. In
the simplest class of mixtures which has been considered in the literature, the observations
z;(n) are linear instantaneous (LI) mixtures of the sources s;(n), i.e. they read

N
z;(n) :zai]’ sj(n) i=1...N (1)

where a;; are constant scale coeflicients, which may represent attenuation during propa-
gation from source j to observation i.
In this paper, we consider more general mixtures, which also take into account delays



during propagation, by means of integer-valued time shifts n;;. The resulting extended
model for attenuated and delayed (AD) mixtures then reads

N
xi(n):Zaijsj(n—nij) i=1...N. (2)

For the sake of simplicity, we assume that the coefficients a;; are real-valued and strictly
positive (this corresponds to direct propagation, i.e. without reflection) and that the
sources are real-valued. The Fourier transform of (2) reads

X,(w) = Zaij e—jwn,-j Sj(w) i=1...N. (3)

X(w) = Aw) S(w) (4)
with S(w) = [S1(w) -+ Sn(w)]", X(w) = [X1(w) -+ Xn(w)]" and

alle—jwnu .. alNe—jUJThN
asie Jwna2i .. a2Ne—]wn2N

Alw) = : : : (5)
a/Nle_jwan e aNNe_jwnNN

BSS would ideally aim at estimating the above mixing matrix A(w), which is assumed to
be invertible at all frequencies. However, this can only be performed up to the well-known
permutation and scale/filter indeterminacies inherent in the BSS problem. We here handle
them by extending to AD mixtures an approach that we introduced in another type of
LI BSS method, i.e. LI-TIFCORR [15],[16]. This approach may be defined as follows.
We consider an arbitrary permutation function o(.), applied to the indices j of the source
signals, which yields the permuted source signals s, ;) (n). We then introduce scaled and
time-shifted versions of the latter signals, equal to their contributions in the first mixed
signal, i.e.

83(n) = av0() 80() (N = 11,0()) - (6)

The mixing equation (2) may then be rewritten as

N
2i(n) = Y aio() S (0= g () (7)

j=1

N
= > by (n— ) (8)

j=1

with
. — %i,0(5)
{ bij = a1,0() 9)
Mij = N o(5) — M,0(;)

This mixing equation (8) has the same form as (2) except that the sources and parameters
sj(n), a;; and n;; are here respectively replaced by sj(n), b;; and p;;. Using the same



approach as above, this yields the Fourier domain matrix expression
X(w) = B(w) §'(w) (10)

where S'(w) = [} (w) - - - Sy (w)]" and

blle—jwuu - blNe_jw’“N
b2le—ij21 - b2Ne—ij2N

B(w) = : : : (11)
lee_jwuNl PP bNNe_ij'NN

We therefore aim at introducing a method for estimating B(w). The output signals may
then be obtained in the frequency domain by computing

Y(w) =B (w) X(w) (12)

where Y (w) = [Y1(w) - - -YN(w)]T is the vector of Fourier transforms of the output signals.
The time-domain versions of these signals are then obtained by applying an inverse Fourier
transform to Y (w).

3 Summary of the TIFROM method for linear instan-
taneous mixtures

3.1 Time-frequency tool and assumptions

We recently proposed [10]-[14] a BSS method based on TIme-Frequency Ratios Of Mix-
tures, that we therefore called "TIFROM". More precisely, we call it LI-TIFROM here-
after, since it is restricted to linear instantaneous mixtures, unlike its extensions that we
introduce in this paper. The TF transform of the signals considered in that approach is
the Short-Time Fourier Transform [24] (STFT) defined as’:

+oo
Uln,w)= > u(®)h(n' —n)e " (13)

n/=—o0

where h(n' — n) is a shifted windowing function, centered on time n. U(n,w) is the con-
tribution of the signal u(n) in the TF window corresponding to the short time window
centered on n and to the angular frequency w.

We now introduce the only assumptions that we made in the LI-TIFROM approach with
respect to the sources and the associated definitions.

Definition 1 a source is said to "occur alone" in a TF area (which is composed of several
adjacent above-defined TF windows) if only this source has a TF transform which is not
equal to zero everywhere in this TF area.

Definition 2 a source is said to be "visible" in the TF domain if there exist at least one
TF area where it occurs alone.

IThe LI-TIFROM method was defined in a continuous-time framework in [10]-[14]. We here consider
its discrete-time version, which is better suited to its AD extension introduced in this paper.



Assumption 1 each source is visible in the TF domain.

Assumption 2 there exist no TF areas where the TF transforms of all sources are equal
to zero everywhere?.

Assumption 3 when several sources occur in a given set of adjacent TF windows, they
should vary so that at least one of the ratios ;((Z,‘:))) of STFTs of observations, with
i = 2...N, does not take the same value in all these windows®. Especially, i) at least
one of the sources must take significantly different TF wvalues in these windows so that
the variance of the ratio Xilnw) ¢ non-negligible and ii) the sources should not vary

X1(n,w)
proportionally.

Assumption 4 the mizing matriz A composed of the entries a;; is such that a;; # 0,
Vi, j.

Assumption 4 implies that if a source occurs in one observation for a TF window (n,w),
then it also exists in all the other observations for this TF window.

3.2 Overall structure of LI-TIFROM

The problem statement that we presented in Section 2 for AD mixtures especially applies
to LI mixtures, which correspond to the specific case when all time shifts p;; are zero.
The matrix B(w) defined in (11) is then restricted to the frequency-independent matrix
B defined as

b1 bin o 1 1
bor ccr ban a1,0(1) a1,0(N)
B=1| . C | = _ _ . (14)
b .- b INe@) .. NN
Nt NN a1,0(1) 31,0(N)

The LI-TIFROM method aims at estimating this matrix, i.e. all the ratios* Z%, with
i=2...Nandm=1...N. "

As explained in [10]-[14], this LI-TTFROM method is composed of 3 main stages, preceded
by a pre-processing stage, i.e.:

1. The pre-processing stage consists in deriving the STFTs X;(n,w) of the mixed sig-
nals, according to (13).

2. In the detection stage, we consider constant-frequency TF analysis zones, composed
of a few TF windows (np,w;) corresponding to adjacent n, and the same w;. This
detection stage aims at finding TF analysis zones where a source occurs alone. The
principle of its basic version was explained in [10]-[14] and may be summarized as
follows (this aspect of the method is explained in more detail in the description of

2This assumption is only made for the sake of simplicity: it may be removed in practice, thanks to
the noise contained by real recordings, as explained in [13].
3When we further extend this approach to mixtures which involve time shifts, not only the ratio

))?"("’w) should thus vary, but also its modulus.
1(n,w)

We here consider the final form of LI-TIFROM proposed in [14]. On the contrary, its initial form

[10]-[13] uses a matrix different from B and identifies the inverse ratios Zi=.




the AD extension of this approach provided below in the paper). We consider the
ratios of STFTs of mixtures

L Xinw) | Xiey ai Si(n,w)
a;i(n,w) = Xinw) E;'Vzl w1 550.) (15)

If only source Si(n,w) occurs in the time-adjacent windows (np,w;) of an analysis
zone, then Eq (15) shows that a;(np,w;) is constant (and equal to ¢i) over these
windows. On the contrary, it takes different values over these windows for at least
one index i if several sources are present, due to Assumption 3. The TF analysis
zones where the average over i of the variances of the ratios a;(np,w;) takes the
lowest values are therefore considered as the "best" single-source zones. We select
these zones by ordering TF analysis zones according to increasing values of the above
averaged variance.

In [14], we proposed an improved version of this detection stage where we also
consider the inverse ratios

1 Xi(n,w)

Biln, w) = ai(n,w)  Xi(n,w) (16)

The averaged variance of ; has lower or higher values than that of a;, depending
on the mixing coefficients. We therefore order the TF zones, according to increasing
values of the minimum among the averaged variances of both ratios a; and f;.

In both versions of the detection stage, we eventually obtain an ordered list of single-
source TF analysis zones which then allows us to estimate the columns of B in the
identification stage, as will now be explained.

3. The identification stage identifies the columns of B in the above single-source anal-
ysis zones. This basically consists in successively using the first and subsequent
single-source zones in the above ordered list for deriving a column of B in each of
these zones. Denoting k the index of this column, all mixing coefficient ratios gi=
with ¢ =2--- N and m = o(k) are resp. estimated as the mean values of the ratios
a;(n,w) of STFTs of observations over the considered single-source TF zone (the
parameters (3;(n,w) are also used in the improved version of this stage, as detailed
below for the extension of this approach to AD mixtures)5.

4. In the combination stage, we eventually left-multiply the vector of mixed signals
by the inverse of the estimated mixing matrix B, in order to obtain the extracted
source signals. This correspond to the time-domain version of (12) restricted to LI
mixtures.

4 First extension of LI-TTFROM to attenuated and de-
layed (AD) mixtures

We now introduce a first approach for extending the above LI-TIFROM method so as
to handle the attenuated and delayed (AD) mixtures that we defined in Section 2. The
TF-BSS method thus introduced in this section uses constant-frequency (CF) TF zones

5The method then used for adequately gathering all these columns to form the overall matrix B may
be found in [10]-[14] for LI-TIFROM and is detailed below in this paper for the extension of this approach
to AD mixtures



for estimating some of the mixing parameters. It is therefore called AD-TIFROM-CF.
Its core stages again consist in detecting single-source TF zones and then identifying
inside these zones the parameters of the matrix B(w) that we introduced in (11), i.e.
the parameters b;,, and p;, which define the m-th column of B(w). In this section, we
successively describe:

e the methods that we propose for detecting (constant-frequency) single-source zones
and identifying the parameters b;,, inside them (see Subsection 4.1 below),

e the methods that we propose for detecting (constant-time) single-source zones and
identifying the parameters ;. inside them (see Subsection 4.2 below),

e the procedure for coupling the above identified parameters b;,, and i, (see Sub-
section 4.3 below),

e and the overall BSS method which results from all these principles (see Subsection
4.4 below).

4.1 Basic detection and identification stages for the parameters
bim

As in the case of LI mixtures, the BSS method that we introduce here first includes a
detection stage for finding (constant-frequency) single-source TF zones. Starting from the
time-domain AD mixture equations (2) considered in this paper, we derived in Section
2 the corresponding frequency-domain mixture equations (3). The latter relationship
between the observations and sources remains almost exact when expressed in the TF
domain if the time shifts n;; are small enough as compared to the temporal width of the
windowing function h(.) used in the STFT transform.

In this paper, we assume that this condition is met and therefore that the STFTs of the
observations can be expressed with respect to the STFTs of the sources as

N
Xi(n,w) = Zaij e I9mi S (n,w) i=1...N. (17)

Jj=1

This should be compared to the case of LI mixtures, where the time-domain mixture
equations (1) yield (without any approximation) the following TF-domain relationship:

N
Xz-(n,w)=2az-j Sj(n,w) i=1...N. (18)
j=1

The relationship (17) for AD mixtures is therefore the same as the expression (18) for LI
mixtures, except for the overall coefficient applied to each source. The property that we
used in Section 3 in the detection stage of the approach for LI mixtures does not depend
on the values of these coefficients and therefore still applies here. In others words, we
again consider a TF analysis zone which consists of a set of M possibly overlapping TF
windows corresponding to the same frequency w; and to adjacent time positions n,. This
set of M time points n,, with p = 1... M, is denoted as T hereafter and the corresponding
TF zone is therefore denoted (7', w;).

Here again, we study the ratios a;(n,w) and 8;(n,w) defined by (15) and (16), which here



read N
Y je @ij €7 Si(n,w)
E;'V:1 aij e~7™i Sj(n, w)
N —jwnaij S
D ae i Sj(n,w)
/Bi(naw) - N P (20)
> j=1 i €99 Si(n,w)

If a source Si(n,w) occurs alone in the considered TF window (n,,w;) then

ai(n,w) = (19)

ainy ) = Herdelnamy (21)
= bime THim (22)

with b;, and piy, defined by (9) and k = o(m). Since we assumed all mixing coefficients
a;r, to be real and positive, all resulting scale coefficients b;,, are also real and positive.
The modulus of the parameter value provided in (22) is therefore equal to

|a’i(np7wl)| = bim (23)

Therefore, if source Sy (n, w) occurs alone over the TF analysis zone (T, w;), then |a;(np, wy)|
is constant over this zone and its mean, defined by

|a,| (T, wy) Z | (np,wr)| (24)

then reads _ air
|a’i|(T7 UJl) == = b'im (25)

A1k

In the same way, |Bi(np,w)| is constant over the analysis zone (T',w;) and [B;|(T,w;),
defined by

1Bil (T, wr) Z |Bi(np, wi)| (26)
then reads 1
a1k
(T ——— 2
BT w) = 2 = - (27)

A natural approach may therefore be proposed for detecting the single-source zones and
identifying the parameters b;,,. It consists in using the same type of method as in the
LI-TIFROM approach that we briefly described in the previous section, except that the
parameters b;,, are here defined by |a;(n,w)| and |B8;(n,w)|. Thus, we compute the vari-
ances of |a;(n,w)| and |3;(n,w)|

2

var [loul] (T, ) = MZMaz )] = ol (T, )| (28)

i (29)

var [|B:f) (T, ) Mz\w, ps1)| = [B(T, 1)



and the means over i of these variances

MV AR laf} (Tyr) = 57 3 var leul) (), (30)
MVAR[BI) (Tr) = 57 > var [:]) (7, w0) (31)

We then order the TF analysis zones according to increasing values of the parameter
min {MVAR|[|a|] (T, w;), MVAR[|B|] (T, wi)}. The lowest values of this parameter are
again obtained in the "best" single-source zones.

The parameters b;y, are then identified by successively using as follows each of the first
and subsequent TF analysis zones in the above ordered list. If the considered single-source
analysis zone (T, w;) is such that

min {MV AR [|a|] (T, w), MVAR[|B|] (T, w)} = MV AR[|a|] (T, w), (32)

then, due to Eq (25), the identification parameters |a;|(T,w;) yield an estimated column
of the parameters b;,,, of B(w). This column is kept only if its distance with respect to all
previously identified columns is above a positive user-defined threshold €1, showing that
this TF analysis zone does not contain the same source as previous zones in the ordered
list. In the symmetrical case when

min {MV AR [|a||(T,w), MVAR|B|] (T,wr)} = MV AR[|B|] (T, w), (33)

in the considered analysis zone, due to Eq (27), the identification parameters |3;|(T, w;)
yield (the inverses of) the parameters b;,,, corresponding to a column of B(w), which is
kept according to the same criterion as above.

The identification procedure ends when the number of columns of B(w) thus kept becomes
equal to the specified number N of sources to be separated (this is theoretically guaranteed
to occur because all sources are assumed to be visible in the considered data).

We present in Appendix A a modified version of the identification stage for the parameters

bim.-

4.2 Detection and identification stages for the parameters y;,,

Thanks to expression (22) of the identification parameters a;(n,w) in single-source anal-
ysis zones, we used above the moduli of these parameters to identify the scale factors
bim- Still considering this expression (22), a natural idea for estimating the time shifts
Wim then consists in trying to take advantage of the phase of a;(n,w). What may be
derived in practice is its "plain phase angle", i.e. the associated angle situated in the
range [—m, 7], that we denote v;(n,w). Due to (22), in an analysis zone (T,w;) where
only Sk (n,w) occurs, we have (denoting m = o(k)):

—Wilim = ¢z (np7 (/Jl) + 2qzm (npa wl)Tr (34)

where gim(np,w) is an unknown integer which yields an indeterminacy in the value of
Mim -

It should be remembered that the plain phase angles of FFT or STFT values suffer from
the above type of indeterminacy when considered individually, but well-known techniques
exist for introducing "coherence" between the phases of frequency-adjacent FFT or STFT
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points, by unwraping these phases with respect to frequency. Combining this phase
unwraping with the phase-based identification principle that we introduced above suggests
a modified approach for identifying the parameters ;. This new approach is also based
on the phase of «;(n,w) considered in TF windows (n,w). We consider independently
each time position n associated to these TF windows and for each such position, we
unwrap the phase of a;(n,w) over all associated frequency-adjacent TF points. We will
now show that this unwraped phase makes it possible to identify the parameters pn,,
provided it is considered over a connected subset of the above TF points where only one
source occurs. This means that we should first detect single-source TF analysis zones,
but it should be clear that we here have to consider another type of analysis zones as
compared to those that we previously used for identifying the parameters b;,,: due to the
phase unwraping principle required here, we consider analysis zones which consist of TF
windows corresponding to the same time position and to adjacent frequency positions.
We therefore have to develop not only an identification method for the parameters g,
but also a method for detecting constant-time single-source analysis zones. Both methods
may actually be derived from the above principles, as will now be shown.

Let us consider a constant-time analysis zone, i.e. a set of M' TF windows, corresponding
to the same time position n, and to adjacent angular frequencies wy, with I’ =1... M.
This set of frequency points is denoted as (2 hereafter and the corresponding TF zone is
therefore denoted (n,, ). As stated above, it is to be contrasted with the analysis zones
(T, w;) that we used above for the identification of the parameters b;,, and which consist
of time-adjacent windows. Let us focus on an analysis zone (n,2) where only source
Sk (n,w) occurs. The expression (17) of the observed signals at any point of this analysis
zone then reduces to:

Xi(ng, wp) = aiw e Iwr Sk (npr, wp) 1=1...N (35)

The identification parameter (15) then reads:

ai(np’ywl’) = _Zi:’:, e Jwr (nipr —napr) (36)
= bype trtim' with m' = (k') (37)

The phase of a;(n, ,wy) in constant-time single-source analysis zones is therefore related
to the parameters u;, . More precisely, still assuming that S/ (n,w) occurs alone in an
analysis zone (n,, Q), if we consider the unwraped phase ¢ (np,wy) of a;(ny,wp) in this
zone, we have:

—Wy i = ¢; (nP' ) wl’) + 2qzl'm’ (np')ﬂ-7 (38)

where ¢},., (np) is an unknown integer. The associated multiple of 27 in (38) again yields
an indeterminacy. However, this indeterminacy is different from the one which occured
in (34): thanks to the phase unwraping procedure that we applied, the integer g}, (ny)
does not depend on frequency. Eq (38) shows that the curve associated to the variations
of the phase ¢}(n,,wy) with respect to wy in a single-source analysis zone (n,,{2) is a
line and that its slope does not depend on the value of ¢}, (n,) and is equal to —fiip, .
This slope therefore provides a means for identifying p;,,/, with no phase indeterminacy.
As a result of the above analysis, our method for identifying the set of parameters pi;,
associated to a column of B(w) operates as follows. In the selected constant-time single-
source analysis zone, for each observed signal with index i, we consider the M’ points
which have two coordinates, resp. defined as the frequencies wy and the corresponding
values ¢}(ny,wp) of the unwraped phase of the identification parameter. We determine

11



the least-mean square regression line associated to these points. The estimate of the
parameter [, is then set to the opposite of the slope of this regression line. More
precisely, ;s is set to the integer which is the closest to the opposite of this slope, since
Wim is defined as a time shift in a discrete-time representation and is therefore an integer.
This approach may then be straightforwardly extended so as to also perform the detection
of the constant-time single-source analysis zones which are required in this identification
procedure. This extended version is detailed in Appendix B.

A final stage should now be added to our approach, in order to couple each column of
parameters fi;,, to a column of parameters bj,,.

4.3 Coupling the parameters b;,, and p;,,
4.3.1 Alternative identification method for the parameters b;,,

In Subsection 4.2, we introduced a method for detecting constant-time single-source anal-
ysis zones and we showed how the phase of the parameters a;(n,w) in such zones may be
used to identify the parameters p;,,,». We here note that the moduli of these parameters
in these zones also make it possible to identify the parameters b, : Eq (36) shows that,
at any frequency wy of such a zone, the modulus of a;(n,,wy) is equal to b, . The latter
parameter may therefore be identified as the mean value of the modulus of «;(n,w) over
a constant-time single-source analysis zone.

The value thus obtained is denoted b},,,, below, in order to distinguish it from the value
bim provided by the methods that we introduced in Subsection 4.1. The alternative ap-
proach that we propose in this subsection is attractive because each considered analysis
zone yields the parameters b},,, and p;ms corresponding to the same source. It therefore
inherently provides a solution to the coupling of these types of parameters. However, our
experimental tests showed that the parameter value b,,, thus obtained estimate less accu-
rately the actual mixture parameters than the values b;,,, that we described in Subsection
4.1. We therefore introduce a modified approach which takes advantage of both types of
parameters hereafter.

4.3.2 Coupling the parameters b;,, and (b}, fim’)

Taking advantage of all above-defined principles, we now introduce a method for eventu-
ally coupling the parameters b;y,, and p;m,:. This method consists in:

1. determining the parameters b;,, as explained in Subsection 4.1,

2. independently determining the couples (b},,,, im’) as explained in Subsections 4.2
and 4.3.1,

3. and then mapping the parameters p;, towards the parameters b;y, thanks to the
parameters b},.,. This is achieved as follows. The above identification of the pa-
rameters b;,, yields N columns of such parameters, each associated with a different
source. In the detection of constant-time single-source analysis zones, we keep a
number of zones significantly larger than N, by selecting all the zones where the
mean-square error with respect to the associated regression line is below a user-
defined threshold e3. For each such zone, we identify the two columns that resp.
contain the parameters b}, and ;s corresponding to that zone. We then consider
the parameters bj,,, and by, resp. as coarse and accurate estimates of the scale
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parameters associated to the mixing matrix and we map each column of b}, to-
wards the closest column® of b;,,. Since the parameters b}, were already coupled
with the parameters ', the latter parameters are thus mapped towards the NV
columns of parameters b;,,. For each element (associated to the observation index
i) in each such column of b;,,, we should eventually keep only one parameter value
Wim'- This is achieved as follows for each such element: among all the values
which were mapped above towards this element, we keep the value which has the
highest number of occurences.

4.4 Overall AD-TTFROM-CF method

As a result of the above description, the overall AD-TIFROM-CF method that we first
propose for AD mixtures contains the following stages:

1. The pre-processing stage consists in deriving the STFTs X;(n,w) of the mixed sig-
nals, according to (13).

2. We then only consider the parameters b;,,,. We first detect constant-frequency single-
source analysis zones (T',w;) and we then identify the parameters b;,, in these zones,
using either the basic procedure described in Subsection 4.1 or its improved version
introduced in Appendix A.

3. We then consider the parameters b}, and p;m. We first compute the regression
lines and their associated mean-square errors over the constant-time TF analysis
zones (ny, Q) defined in Subsection 4.2. We then detect single-sources zones and
identify the parameters b},,, and p;n in these zones, using the procedures described
in Subsections 4.2 and 4.3.1 and in Appendix B .

4. We then couple the parameters by, and p;,, as explained in Subsection 4.3.2. All
the required parameters associated to the estimated matrix B(w) are available at
this stage.

5. Using the above parameters, we eventually derive the extracted sources from the
observations, according to (12).

5 Second BSS approach for AD mixtures

5.1 Alternative detection and identification stages

In Subsection 4.1, we introduced a method which exploits constant-frequency TF zones
(T, wy), based on the variances of the moduli of the ratios a;(n,w) and 8;(n,w), in order to
detect single-source zones. We were thus able to compute very good estimates of b;,, but
we could not estimate corresponding time shifts p;,,, in the same zones. In Subsection 4.2,
we presented a method, using constant-time TF zones (n,,2), and we introduced a new
approach for finding single-source TF zones, based on the regression lines of the unwraped
phases of a;(n,w) and the associated regression errors. Constant-time zones are attractive
because they inherently couple the two types of parameters identified inside them, i.e. b,
and pf.... But we stated in Subsection 4.3.1 that the parameters b}, ., obtained in zones
selected according to regression errors estimate less accurately the mixtures than the

SHere again, a user-defined threshold €4 is used to ignore any column of parameters b;m, such that all
its distances with respect to the N columns of parameters b;,, are above that threshold.
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values b;,;, above. We here aim at combining the advantages of the above two types of
approaches, by considering constant-time zones in order to obtain coupled parameters
b, and fiin, and by detecting which of these zones contain a single source by means
of the variances of the moduli of the ratios a;(n,w) and B;(n,w). We therefore call
this approach, which only uses constant-time (CT) analysis zones, AD-TIFROM-CT, as
opposed to the AD-TIFROM-CF approach described in the previous section, which also
uses constant-frequency analysis zones.

We now present in more detail the principles of this AD-TIFROM-CT method. If Sg/ (n,w)
occurs alone in an analysis zone (n,, ), then the moduli of a;(ny,wy) and B;(ny,wr)
resp. expressed in Eq. (19) and (20) are constant. Their means, resp. defined by

MI
— 1
|| (ny, ) = 75 > lei(ny, wr)| (39)
I'=1
and
_ 1 M
|Bil (npr, 1) = M Z |Bi(nyr s wir)| (40)
=1
then read . i
|a’i|(np’JQ) =—— = bim: (41)
aig’
— aig 1
AL I,Q = = 42
By, ) = 24 = — (42)

with m' = o(k'). We compute the variances of |a;(ny ,wp)| and |B;(ny ,wir)|:

MI
1 N
var [Jaul] (ny, @) = 7= D ()| = Tail(my, D) (43)
I'=1
1 & __ 2
var [1Bil) (mpr, ) = 72 D 1By )| = TBil ()| (44)
I'=1
and the mean over ¢ of these variances
1 N
MV AR[Jal] (ny, Q) = — > var [lail] (ny, ), (45)
=2
1 N
MVAR[I8) (nyy, ) = 57— > var [[B:l] (nyr, ). (46)
=2

The mixing parameters b}, are then identified by using the basic method defined in
Subsection 4.1 or preferably its improved version depicted in Appendix A, except that
the analysis zone (T',wy) is here replaced by the zone (ny, ). Therefore:

1. The parameter used here for selecting single-source zones is
min {MV AR[|a|] (ny, ), MVAR[|B|] (ny, )} (47)

instead of
min {MVAR[|a|] (T,w;), MVAR[|B|] (T,wi)} (48)
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which previously appeared in (32), (33), (56). The condition (56) is thus replaced
by:
min {MVAR[|e|] (ny,Q), MVAR[|B]] (ny, D)} < €2. (49)

2. The parameters used here for identifying the parameters b, , are |a;|(n,,Q) and
|Bi| (npr, ) instead of |ou|(T,w;) and |G| (T, wr).

The identification of the parameters p;,, is performed as follows. First consider the case
when the basic method (adapted from Subsection 4.1) is used for identifying the param-
eters b}, ... Then, in each selected single-source zone where a column of parameter b, ,
is identified (and kept), the corresponding column of parameters p;,, is simultaneously
identified, by using again the method based on regression lines described in Subsection
4.2. Now, in the improved method, we first form N clusters by only considering the
parameters b}, ,, using the approach adapted from Appendix A. For each point of these
clusters, we also identify the associated parameters p;n/, again by means of regression
lines. We then derive a single column of p;,, for each cluster by using the same type of
approaches as in Subsection 4.3.2, i.e.: for each index i independently among all values
Wim: corresponding to the considered cluster, we keep the value which has the highest
number of occurrences.

5.2 Overall AD-TTFROM-CT method

As a result of the above description, the overall AD-TIFROM-CT method that we also
propose for AD mixtures contains the following stages:

1. The pre-processing stage consists in deriving the STFTs X;(n,w) of the mixed sig-
nals, according to (13).

2. We then detect constant-time single-source analysis zones (n,,?) and we identify
the parameters b}, and g in these zones, using the procedure introduced in
Subsection 5.1. All the required parameters associated to the estimated matrix
B(w) are available at this stage.

3. Using the above parameters, we eventually derive the extracted sources from the
observations, according to (12).

6 Experimental results

6.1 Test conditions and performance criteria

In this section, we present a large number of tests performed with the two methods
proposed in this paper, i.e. TIFROM-CF and TIFROM-CT (in this section, we omit
"AD-" in the names of these methods in order to improve readability and because this
section only concerns AD mixtures of signals and AD BSS methods). These tests were
carried out in the following conditions.

e We use English speech signals sampled at 20 kHz. For the sake of simplicity, we
only performed these tests for two sets of sources. Each set consists of speech from
different male speakers. The sources in Set 1 consist of 2.5 s of continuous speech,
while those in Set 2 last 5 s and contain silence. The signals in Set 1 consist of a
part of those in Set 2. All these sources were first centered and scaled so that their
highest absolute value is equal to 1.
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o We derive various artificial AD mixtures of these sources.

e We process these mixed signals with the TIFROM-CF and TIFROM-CT methods
resp. defined in Subsections 4.4 and 5.2. For both methods, we here use the im-
proved identification method described in Appendix A for the parameters b;, (or
its adapted version).

The performance achieved in each test is first measured by the overall Signal to Noise Ratio
(SNR) associated to the outputs of the considered BSS system (denoted SN R°* hereafter)
and/or by the SNR Improvement achieved by this system (denoted SN RI below). These
parameters are defined in Appendix C, together with the input SNR associated to the
processed mixed signals (denoted SN R hereafter). Moreover, Appendix C shows that
the two performance parameters, i.e. SNR°* and SNRI, are linked by the following
relationship:

(SNRI)4p = (SNR°*)4p — (SNR™)4p. (50)

These performance parameters are measured over all tests when the considered methods
succeed in identifying N columns of B(w), where N is the number of considered sources.
As shown below, the few cases when they fail to do so correspond to situations when
quite large STFT windows are used, so that some sources are no more visible in the
corresponding TF representations.
It should also be remembered that the actual and estimated p;n are integers. This
makes it possible to check whether all estimates of parameters u;y: are exactly equal
to the actual ones. The percentage of cases when this condition is met, among all tests
(i.e. including the tests when some columns of B(w) were not identified), is used as an
additional performance criterion and called the "success rate" hereafter. It should be clear
however that even when the considered BSS method does not "succeed" in identifying all
Wim' exactly, it may still be able to identify all columns of B(w) and yield acceptable
performance in terms of SN RI, provided the estimates of p;,,» are not too far from their
actual values. The above-defined "success rate" is therefore a more pessimistic and partial
performance criterion than the overall SNRI.
In this section, we only consider the case when N = 2, i.e. the configuration involving
two mixtures of two sources. All our tests aimed at estimating the influence of the scale
coefficients and time shifts on the performance of the proposed methods. We therefore
used symmetrical mixing matrices defined as

1 Aedwn

A(w) = )\e—jwn 1 ’ (51)

where we successively considered different real values for the cross-coupling scale factors
A, in order to vary the mixture ratio and therefore the SN R" associated to the observed
signals z;(n). Similarly, the influence of time shifts was investigated by varying the
integer-valued parameter 7.
The values that we considered for A and 1 are
A=0.5,0.9
{ n = 0,10, 20,200 (52)

The SNR" are equal to 6.0 and 0.9 dB respectively for A = 0.5 and 0.9.

As explained in Subsections 4.4 and 5.2, the proposed methods use TF representations of
the observed signals z;(n), obtained by computing their STFTs X;(n,w). More precisely,
this type of representation is used twice in the TIFROM-CF method, i.e. first when
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considering constant-frequency analysis zones used for estimating the parameters b;,,,, and
then when considering constant-time analysis zones used for estimating the parameters
b, and fin. These two types of analysis zones may lead to different optimum values as
for the parameters of STFTs and numbers of STFT windows per analysis zone. Therefore,
we independently considered two sets of such parameters, resp. associated to the above
two types of analysis zones in the TIFROM-CF method, i.e.:

e we here denote d (resp. d') the number of samples of observed signals z;(n) in
each time window of the STFTs used in constant-frequency (resp. constant-time)
analysis zones,

e as stated above in Section 4, M (resp. M') is the number of adjacent windows in
constant-frequency (resp. constant-time) analysis zones,

e we here denote p (resp. p') the temporal overlap between the time windows in the
STFTs used in constant-frequency (resp. constant-time) analysis zones.

On the contrary, the TIFROM-CT method only uses one type of TF representation and
therefore a single set of parameters, i.e. d', M’ and p'.

6.2 Tests with moderate time shifts
6.2.1 Additional test conditions

As stated in Subsection 4.1, when developing both AD-TIFROM methods, we assumed
the time shifts to be small as compared to the size of the windowing function A(.). There-
fore, in the tests reported below, we can only state beforehand that performance should
be good when n <« min{d,d'} for TIFROM-CF and n < d' for TIFROM-CT. As a first
step, we therefore only consider situations such that this condition is roughly met in this
subsection, i.e. so that we typically have Wn{”m < %. To this end, we here only con-
sider the cases n = 0,10 or 20, while the parameters of the proposed BSS methods are
selected as follows.

Both types of STFTs use a Hanning windowing function A(.). The influence of the param-
eters of constant-frequency analysis zones was investigated in detail for LI mixtures when
testing the performance of the LI-TIFROM method in [14]. For the sake of simplicity, we
only consider the optimum values found in [14] in the tests of the TIFROM-CF method
reported here, i.e.:

o d =256,
e M =10,
e p="175%.

On the contrary, we analyze in detail the influence of the parameters associated to
constant-time analysis zones that we introduce in the current paper for AD mixtures.
This is especially motivated by the fact that the parameters of STFT windows influence
time shift estimates according to [19]. We varied this second set of parameters as follows:

e The number d' of samples per STFT was geometrically varied from 512 to 16384
samples.
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e The number M’ of windows per analysis zone was successively set to 4, 8, or 16
when d' = 512. This range of values of M' was then increased geometrically with
d'. Thus, the widths of the continuous-time frequency bands associated to the
frequency domains € of the analysis zones (n,, ) took the same values whatever
d'. In these tests, these values were 156.25 Hz, 312.5 Hz and 625 Hz.

e The temporal overlap p’ was successively set to 50%, 75% and 90%. This parameter
was varied independently from d' and M'.

The other parameters of the methods were constant in these tests, i.e.:

e The distance between two identified columns b;,, of the matrix B(w) was measured
by the highest absolute difference between elements of these vectors which have the
same index. The distance threshold €;, defined in Appendix A, was set to 0.15
(considering the mixing coefficient values).

o The single-source analysis zones (T, w;) (resp. (ny, 1)) were detected as the zones
where the means of the variances are below a threshold ez, as shown in (56) (resp.
in (49)). This threshold was set to 1.5e-2.

o The threshold €3 which defines which single-source analysis zones (n,, 1) are kept
in the TIFROM-CF method, as explained in Subsection 4.3.2, was set to 0.1.

e In the TIFROM-CF method, the distance between two identified columns b;,, and
b.,.., which coupled the parameters b;p, and f;, as explained in Subsection 4.3.2,
was measured by the highest absolute difference between elements of these vectors
which have the same index. The associated distance threshold €4, was set to 0.05.

In order to compare the performance of our methods, we studied TIFROM-CT under
same the conditions.

The set of combinations of parameters associated with the estimation of the time shifts
thus allows us to carry out 54 experiments per BSS method, for a fixed couple of signals
and a fixed mixing matrix. By considering the above-defined two couples of signals and
the 6 mixing matrices corresponding to n = 0,10 or 20 in (52), 648 tests were performed
for each method.

6.2.2 Performance of TIFROM-CF

6.2.2.1 Estimation of parameters b;,,

In the TIFROM-CF method, the estimates of b;,, are independent from the parameters
d', p' and M' varied in these tests. Table 1 provides the Frobenius norm of the difference
between the estimated and actual matrices of parameters b;,,,. This norm is quite low,
showing that the proposed method always succeeds in identifying the parameters b, very
accurately.

We expected Set 2 of sources to yield better performance than Set 1, because it contains
silence phases in addition, thus making the sources more visible. This is confirmed by
Table 1. When A = 0.9, both sets yield low estimation errors and the difference between
them is quite small.

6.2.2.2 Estimation of parameters yu;, and global performance

The overall performance of the TIFROM-CF method is shown in Table 2. The mean
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SNRI over all BSS method parameters ranges from 16.5 to 66.3 dB, depending on the
sources and mixing conditions, with a global value over all tests equal to 43.6 dB. This
table shows that this mean SNRI significantly decreases when the delays n increase.
However, the above-defined "success rate" (with respect to the eract estimation of the
time shifts p;m) then remains quite high, with a global value over all tests equal to 85.2%.
We expected such good results because all the assumptions made in our method are here
met. Note that in each of these tests, TIFROM-CF found all sources to be visible.

The influence of the scale parameter A on performance should be analyzed with care: when
X is changed, the input signals are no more mixed to the same extent, so that SNR"
is modified. Eq (50) shows that the correspondence between SN RI and SNR°“ is then
modified, so that these two performance criteria may not have the same variations with
respect to A. This is reflected in Table 2, where SN R°% has a lower sensitivity to A than
SNRI. For the sake of brevity, we only consider SN RI hereafter.

Let us now analyze in more detail the influence of the considered set of sources on perfor-
mance. In the same way as for the parameters b;,,, one may expect Set 2 to yield better
estimates of the parameters p;, than Set 1, because it contains silence phases. The
success rates in Table 2 confirm that expectation. Moreover, the mean values of SN RI
in this table show the same phenomenon (except in one case: A = 0.9 and n = 20).
Tables 3 to 5 provide a more detailed analysis of some aspects of the above tests: they
only contain the overall values of the considered performance criteria when considering all
the values of n) (i.e. 5 = 0,10 or 20), but each of these tables details the variations of these
criteria vs one of the parameters of the BSS method (while averaging over the others).
Table 3 first shows that the mean SN RI and success rate have a low sensitivity to the
overlap p' of STFT windows. Based on these results, we preferably choose p' = 75%.
Table 4 contains the variations of the mean SNRI and success rate with respect to the
number d' of points in the STFT windows. This table shows that the success rate sig-
nificantly depends on d'. Better results are obtained for intermediate values of d', i.e.
d" = 1024 or d' = 2048, which yield success rates almost always equal to 100%, and
always above 89%. This phenomenon may be explained as follows. If we compute the
STFTs with too few samples, then the frequency accuracy of our TF representation is low
and we are not able to estimate accurately the time shifts p;n,, which is in agreement
with [19]. On the contrary, if the number of samples is too high, it is more difficult to
find single-source TF zones in Set 1, because the time width of the STFTs is too large.
Note that when d' = 1024 or d’' = 2048, the mean SN RIs are always over 24 dB.

As explained above, the number M’ of windows in constant-time analysis zones (n,, )
defines the frequency width of these zones. Table 5 shows that it should be set to the
intermediate tested value, i.e. M' = 32 for d' = 2048.

To summarize, in the considered conditions, the TIFROM-CF method should preferably
be operated with d' = 2048 samples (or 1024: both values yield almost the same perfor-
mance) and p' = 75% of overlap in the STFT computations. One may then set the width
of constant-time analysis zones to M' = 32 (or M' = 16 if d' = 1024). The mean SN RIs
with both sets of parameters are then equal to 47 and 44.3 dB.

As an example, we detail the application of the proposed method with the above chosen
parameters, i.e. d' = 2048, p' = 75% and M' = 32. The source signals are those of Set 2
which last 5 s , as you can see in Fig. 1. The mixing parameters are set to

(o w
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The corresponding matrix B(w) defined in (11) is therefore equal to

0.5 e}jw.zo er]c-u.20 ] or [ 2eiw20 ()5 e}jw.20 ) (54)
depending whether it corresponds to a non-permuted or permuted version of the source
signals.

Although the TF transforms of these source signals have significant differences (see Fig.
2 and 3), the TF transforms of the resulting mixed signals are quite similar (see Fig. 4
and 5). Nevertheless, the TIFROM-CF method succeeds in separating these signals with
a high accuracy, as will now be shown.

The estimated matrix B(w) thus obtained is equal to

1 1

Bw)=1 9.0064e42 0.4914¢742 | (55)
which is very close to the second expression in (54). Consequently, the estimated output
signals are almost equal to the (scaled and permuted) sources, as confirmed by Fig 6, 7

and 8. The SNRI is thus equal to 38.6 dB.

6.2.3 Performance of TIFROM-CT and comparison with TIFROM-CF

In this subsection, we analyze the performance of the TIFROM-CT method described in
Section 5. Table 6 shows that its mean SN RI ranges from 27.4 to 61.3 dB, with a global
mean over all tests equal to 39.6 dB. The success rate over all these tests is 88.1%. The
method failed to identify at least one column of B(w) in 45 of the 648 considered tests.
These 45 tests represent 58.4% of the cases when the proposed method could not identify
exactly all parameters pi;p,. The TIFROM-CT method therefore yields somewhat lower
overall performance than TIFROM-CF. Comparing Tables 2 and 6 shows that, depending
on the considered sources and mixing conditions, the best performance is achieved either
by TIFROM-CT or by TIFROM-CF.

Tables 7 to 9 provide a more detailed analysis of some aspects of the above tests, using
the same approach as in Tables 3 to 5. Table 7 first shows that the mean SNRI and
success rate have a low sensitivity to the overlap p’ of STFT windows, with slightly better
performance for p' = 90%.

Table 8 contains the variations of the mean SNRI and success rate with respect to the
number d’ of points in the STFTs. It shows that the optimum value of d’ depends on 7. d’
should preferably be set to 1024 when 1 = 0. The mean SN RI then ranges from 60.3 to
66.2 dB and the success rate is always equal to 100%. When n = 10 or 20, the optimum
values of d' range from 2048 to 8192, depending on the value of A and the considered set of
sources. The mean SN RI then ranges from 36.0 to 48.1 dB, while the success rates vary
from 44.4 to 100% and they are equal to 100% in most cases. By disregarding the case
17 = 0, a good compromise is obtained by choosing d' = 4096, which always yields a mean
SNRI above 36 dB. By comparing these results with the performance of TIFROM-CF
provided in Table 4, TIFROM-CT is more sensitive to the choice of d' than TIFROM-
CT. Comparing the columns of these tables corresponding to the preferred values of d’
shows that, in these cases when TIFROM-CT always identifies all columns of B(w): i)
TIFROM-CT yields better performance than TIFROM-CF for Set 1 and ii) for Set 2,
i.e. when the sources contain silence phases, the best method depends on the mixing
conditions, i.e. on A and 7.

Table 9 shows that M’ should be set to the intermediate tested value, i.e. M' = 64 for
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d' = 4096.

As a result, a trade-off between these parameters may be obtained, for n # 0, by using
d' = 4096 samples and p' = 90% of overlap in the STFT computations. One may then set
the width of constant-time analysis zones to M’ = 64. The mean SN RI of TIFROM-CT
with the selected parameters is equal to 45.2 dB. We thus see that both methods yield
almost the same mean SNRI.

We then investigated the performance of both methods for much larger time shifts, i.e.
1 = 200. The results thus obtained are detailed in Appendix D and the main conclusions
that may be drawn from these tests are presented hereafter.

7 Conclusions and extensions

Most reported TF BSS methods were developed for LI mixtures. The rare methods
which were proposed for AD mixtures are very restrictive, i.e. they require the sources to
be (approximately) W-disjoint orthogonal. In this paper, we avoid all these restrictions
as follows. We were inspired by the TF BSS approach that we previously developed
for LI mixtures, which is based on the TIme Frequency versions of Ratios Of Mixtures of
source signals. We here introduced two extensions of this approach to AD mixtures, called
"AD-TIFROM-CT" and "AD-TIFROM-CF", depending whether they only use Constant-
Time analysis zones or also Constant-Frequency zones. The proposed methods consist in
identifying the columns of the (filtered permuted) mixing matrix by first finding TF zones
where only one source occurs and then independently estimating the scale coefficients and
the time shifts in these single-source zones, again using ratios of mixtures. Thanks to this
principle, these approaches apply to non-stationary sources, such as speech signals, but
also to stationary and/or dependent sources [13], provided there exist at least a tiny TF
zone per source where this source occurs alone.

We presented various aspects of the experimental performance of these approaches, derived
from a large number of tests. Our first series of tests showed that our methods yield very
good performance when the assumptions that we made for developing these methods are
satisfied, i.e. when the time shifts 7 involved in the mixing stage are significantly lower
than the temporal widths of the STFTs used in our BSS methods. The mean SN RIs in
that case are above 44 dB with both methods and optimum parameters. More precisely,
the mean SN RIs over BSS parameters decrease from more than 60 dB with LI mixtures
(i-e. no time shifts) to more than 27 dB when the time shifts increased up to 20 samples.
Moreover, our second series of tests performed with 7 = 200 showed that our methods
still yield attractive SN RIs when time shifts become similar to STFT temporal widths:
the mean SN RIs of both methods are then almost always above 18 dB when adapting
the parameters of these methods to these larger time shifts (except that AD-TIFROM-
CT yields low performance when n = 200 and scale coefficients are set to A = 0.9). It
should be mentioned that AD-TIFROM-CF yields better global performance than AD-
TIFROM-CT.

Our future investigations will concern the underdetermined case, i.e. the situation when
the number P of observations is lower than the number N of sources, where the approach
that we introduced [13] for the LI-TTFROM method may be straightforwardly extended.
We will also aim at extending the proposed approaches to general convolutive mixtures.
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A Improved identification stage for the parameters b;,,

The basic type of procedure for estimating the scale coefficients b;,,, which was presented
in Subsection 4.1 was initially introduced in the case of LI mixtures. It yields very good
experimental performance for such mixtures, with various numbers of sources, as shown in
[14]. When applied to more complex mixtures involving delays, it was also satisfactory for
mixtures of N = 2 sources involving moderate delays (i.e. n;; < 20 for the speech sources
considered in Section 6). However, for N > 2 or when delays were very large in the case
N = 2, it turned out to yield false results in a significant number of experimental tests.
More precisely, the parameters b;,,, of the columns of B(w) were thus identified in analysis
zones which were selected because they were at the beginning of the ordered list created in
the detection stage, but these identified columns did not correspond to the actual (scaled
permuted) mixing matrix, so that the outputs of our BSS system did not provide well
separated sources. This problem can be solved thanks to clustering techniques, because
only a few occurrences are obtained for each false column value, so that such columns
may then be discarded by clustering methods. We now detail such an approach, that we
developed and successfully tested for the considered type of mixtures, as shown in Section
6. In this approach, we form clusters of "points" where each point consists of a tentative
column of parameters b;,,. To this end, we only consider the analysis zones which are
such that

min {MV AR [|e|] (T,w), MVARI|B|] (T, w)} < ez, (56)

where € is a small positive user-defined threshold. We thus only keep single-source zones,
which correspond to the beginning of the ordered list created in the detection stage. We
successively consider each of the first and subsequent analysis zones in this beginning of
the ordered list and we use them in a slightly different way than in the basic identification
procedure that we described above.

Here again, for each considered analysis zone, the estimates of the parameters b;,, asso-
ciated to a column of B(w) are set to the values of |a;|(T,w;) or m, depending on

which of the parameters MV AR [|a|] and MV AR [|5]] takes the lowest value in this zone.
The estimated column associated to the first zone in the ordered list is kept as the first
point in the first cluster. Each subsequently estimated column is then used as follows.
We compute its distances with respect to all clusters created up to this stage, where the
distance with respect to a cluster is defined as the distance with respect to the first point
which was included in it. If such a distance is below a user-defined threshold €;, this
new column is inserted as a new point in the corresponding cluster. Otherwise, this new
column is kept as the first point of a new cluster. This is repeated for all analysis zones
which fulfill condition (56). If the threshold € is low enough, the number of clusters thus
created is at least equal to the specified number N of sources to be extracted. We then
keep the N clusters which contain the highest numbers of points. For each cluster, we
eventually derive a representative, by selecting its point which corresponds to the lowest
value of min {MVAR|[|a|] (T,w;), MVARI|8|] (T,w;)} and thus presumably to the best
single-source zone”.

This yields the N columns of estimates of parameters b;,,. Let us stress again that this
may be considered as a particular, simple method for obtaining more robust estimates
of these parameters by clustering techniques, and that many other related methods may
also be developed, some of them being more powerful but also more complex.

7Other representatives may be used instead, such as the center of gravity of the points in the considered
cluster.
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B Detection of constant-time single-source analysis zones
and identification of the parameters p;,,

We presented in Subsection 4.2 the main principles of the method for identifying the time
shifts g, That approach may then be straightforwardly extended so as to also perform
the detection of the constant-time single-source analysis zones which are required in this
identification procedure, as will now be shown. The overall detection and identification
method that we propose for the parameters p;,,,» then operates as follows. We successively
consider all constant-time analysis zones (n,, ) that may be associated to the available
TF points, i.e. the zones corresponding to all values of n, and to adjacent frequency
areas 2 which each contain M’ adjacent frequency points wy. In each such zone (n,, ),
we determine the above-defined regression line and the mean-square error of the points
(wir, @i (ny,wp)) with respect to their associated regression line. The best single-source
zones are those which yield the lowest mean-square error®. These zones may be then
be used in various ways for eventually identifying the parameters p;,,, .g. by ordering
these zones according to increasing values of their mean-square error or by using clustering
techniques, in the same way as in the identification of the parameters b;,, that we described
above. We do not detail these procedures for the following reason. They eventually yield a
set of column vectors. Each of these vectors contains the values p;,,/, which correspond to
all observations with indices ¢ and to the source with index &' = o(m') which occurs in the
considered analysis zone. These vectors are obtained in an arbitrary order, depending on
which source occurs in which of the considered time-constant analysis zones (this relates
to the permutation issue in BSS). The same comment applies to the identification of the
parameters b;,;,, that we previously performed with the methods described in Subsection
4.1. It should be remembered that we eventually aim at identifying the parameters which
define each column of B(w), so that we should determine which column of parameters b,
goes with which column of parameters p;p,, i.e. corresponds to the same source. This is
not yet defined at this stage of our discussion, since these two types of parameters were
obtained independently and each of them in an arbitrary order as mentioned above. A
final stage should therefore be added to our approach, in order to couple each column of
parameters L, to a column of parameters b;,,,. This stage is described in Subsection 4.3.

C SNR of mixed signals and performance criteria of
BSS methods

We here define the Signal to Noise Ratio (SNR) associated to the mixed signals which are
processed by our BSS methods and the main parameters used to measure the performance
of these methods in the tests reported in Section 6.

First consider a single source, with a given index® k. We define the input SNR of our BSS
system associated to source k by using the following two-stage approach. As a first stage,
we consider a single input with index ¢ of the BSS system, which receives the mixed signal

8Standard phase unwraping procedures sometimes have a spurious effect, i.e. they keep a phase
discontinuity equal to a multiple of 27 at some (rare) frequencies. The above description shows that this
is not a major problem in our approach: if such a discontinuity occurs inside a single-source analysis zone,
it will result in a high regression error in this zone. A very small set of single-source zones may thus be
missed in the detection of single-source zones. This does not make the proposed method fail however,
because practical signals yield enough single-source zones and even if a few of them are missed, others
will be used instead.

9The index of each source signal is known when testing our BSS methods with given source signals.
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x;(n). This signal consists of:

1. A contribution from the source with index k. This contribution is considered as
the signal of interest contained by input ¢ of the BSS system and is equal to
aikSK(n — nir).

2. Contributions from all others sources with indices j # k. These sources are consid-
ered as interfering signals or "noise" contained by input ¢ of the BSS system. Their
overall contribution in z;(n) is equal to x;(n) — a;x sk (N — nix)-

The elementary input SNR of any of the proposed BSS systems, associated to its input ¢
and to source k, is then defined as the ratio of the powers of the above signal and noise
contributions!?, i.e.

E {|aik5k(n - nik)|2}
E{|a:z(n) — aixsp(n — nzk)|2} ‘

SNR™(i) = (57)

As a second stage, we define the overall input SNR of the considered BSS system associated
to source k, i.e. when taking account all observed signals z;(n) used as the inputs of this
system. This overall SNR is defined as

SNE;" = max (SNE (1)), (58)

i.e., for the considered source k, we take into account the observed signal where this source
has the highest SNR.

We then use the same approach for defining the output SNR of the considered BSS system.
Therefore, we first consider source k and output ¢ of the BSS system, which provides the
signal y;(n). This signal consists of:

1. The useful contribution associated to output i of the BSS system. This contribution
is defined as the ideal value of output y;(n) when the source extracted on that
output is source k. Due to the principle of the considered BSS methods which were
presented in Sections 4 and 5, this ideal output is equal to the contribution of source
k in the first mixed signal, i.e. aixsk(n — nix) as shown in (6).

2. In the same way as in input signals, the noise contribution in output 7 is then defined
as the remainder of y;(n), i.e. it is equal to y;(n) — a1xsk(n — nag).

The elementary output SNR of the considered BSS system, associated to its output ¢
and to source k, is then defined as the ratio of the powers of the above signal and noise
contributions, i.e.

E {|a1k3k(n - nlk:)|2}

SNRZU (i) = .
C Bt - avsnn—n) )

(59)

We then define the overall output SNR of the considered BSS system associated to source
k as
SNRYv = max (SNRy“ (7)), (60)
=1...

10In our tests, we first centered each overall time series defining one source signal.
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We then define the SNR Improvement (SNRI) achieved by the BSS system with respect

to source k as
SNRI g“t

k

(61)
All above parameters only refer to a single source. The corresponding overall features
of the BSS system are eventually defined as the geometrical means of each considered
parameter over all sources k, i.e. as the arithmetic means of this parameter expressed in
dB. This yields explicitly

N

SNE" = (] sNEj")

2|~

N
. 1 :
and  (SNR™Map = 3 ) (SNR{")ap (62)

k=1 k=1
N 1 1 N
out __ out \ N out _ out
SNRw = (kl:[l SNE)™ and (SNR™“)ap = ~ ;(SNR,C ) (63)
N 1 1 N
SNRI = (k]:[l SNRIk) and (SNRI)an = ~ I;(SNRIk)dB (64)
Note that this also entails
SNRowt I [SNRow|\ & [ &
= =k = NRI,)" = SNRI
SNR" (kl;[l [ SNRI ] ) (kl;[l SNRI;)" = SNR (65)
and therefore '
(SNRI)4 = (SNR°*) 4 — (SNR™)45. (66)

The parameters SN R°% and/or SN RI are used to measure the performance of the con-
sidered BSS system, whereas SN R'™ indicates to which extent the signals processed by
this system are mixed.

D Tests with large time shifts

In this appendix, we study the behaviour of our methods for a much larger n than in
Section 6, i.e. 7 = 200, still considering the same sources and values of A as in Section 6.
We again perform tests in conditions such that W < % but we also consider cases
when 7 and d are similar, in order to analyze the resulting performance of TIFROM-CF.
More precisely, the number d of samples in STFTs of constant-frequency analysis zones
was geometrically varied from 256 to 2048 samples. The other parameters of these zones

were fixed to the same values as above for the sake of simplicity, i.e.
e M =10,
o p="175%.

Similarly, when we computed the STFTs used in constant-time zones, we decided to fix
some parameters for the sake of simplicity. Thus, the temporal overlap p' was fixed to
75% for TIFROM-CF and 90% for TIFROM-CT. Note that these values are the optima
that we selected in Subsection 6.2. The other parameters of STFTs were varied as follows:

e The number d' of samples per STFT was geometrically varied from 4096 to 16384
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samples!!.

e The number M’ of windows per analysis zone was successively set to 32, 64 or 132
when d' = 4096. This range of values of M’ was then increased geometrically with
d'.

The other parameters of the methods were fixed and equal to the values used in Subsection
6.2.

D.1 Performance of TIFROM-CF

In these tests, the estimates of b;,, only depend on the number d of samples in the STFTs.
Table 10 provides the Frobenius norm of the difference between the estimated and actual
matrices of parameters b;,,. The proposed method succeeds in identifying the parameters
bim, except in two cases: with Set 1, d = 256 and A = 0.5, we do not estimate the
parameters b;,, correctly, while with Set 2, d = 2048 and A = 0.9, one source is not
visible. These two cases illustrate the potential limitations of the proposed approach. On
the one hand, performance degradation is expected when 7 becomes too large (here 7 ~ 1
when d = 256). On the other hand, using large analysis zones, i.e. a high d, makes some
sources invisible. Optimum performance is therefore expected for intermediate values of
d'. This is confirmed by Table 10, where the best global performance is obtained for
d = 1024 (or 512). Note that this results in 7 ~ 0.2 (or 0.4), i.e. slightly larger values
than initially expected, due to the above-mentioned limitation set by invisible sources.
Table 11 shows the overall performance of TIFROM-CF. The mean SN RI thus varies
from -17.1 to 30.3 dB and the method succeeds in 45.6% of the tests. Let us stress again
that this includes cases resulting in poor performance because we intentionally considered
situations when the proposed method does not apply since the condition 7 < 1 is not met
at all. This table shows that the best SNRI and success rates are obtained for d = 512
or 1024, which is in agreement with the results obtained above for the parameters b;,,.
Let us now study the influence of the other parameters of our method. In table 12, we
provide the variations of the mean SN RI and success rate of this method with respect to
the values of d' and d. The best results are almost always obtained with d’ = 8192. One
could be surprised that the optimal value of d' is significantly larger than the optimum of
d. Tt should be remembered, however, that d' is involved in constant-time analysis zones,
and that the temporal width of these zones is exactly d’ samples. On the contrary, d is
involved in constant-frequency analysis zones, which here consist of M = 10 time-adjacent
d-sample overlapping windows, with an overlap p = 75%. The optimum values of d and
d' are therefore quite different but they result in relatively similar temporal widths for
the corresponding two types of analysis zones.

Table 13 proves that M' should be preferably set to the intermediate or highest tested
values, i.e. M' =128 or M' = 256 when d' = 8192.

As a result, a trade-off between these parameters may be obtained by using 1024 samples
(resp. 8192) in the STFT computations for the identification of the scale coefficients bj,,
(resp. the time shifts p;m/). One may fix the width of constant-time analysis zones to
M' =128 (or M' = 256). The mean SN RIs of TIFROM-CF with both sets of parameters
are thus equal to 20.2 and 18.8 dB. Note that for A = 0.5, each of these mean SN RIs is
equal to 24.3 dB, while they are resp. equal to 16.1 and 13.2 dB when A = 0.9.

11 The case d’ = 32768 was also tested but, in each test, our methods did not find all the columns of
B(w). This case is therefore not considered hereafter.
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D.2 Performance of TIFROM-CT and comparison to TIFROM-
CF

Table 14 shows that the TIFROM-CT method yields mean SN RIs varying from -16.8
to 25.4 dB. The method succeeds in 44.4% of the tests and hardly identifies the mixing
matrix B(w) when A = 0.9, unlike TIFROM-CF. On the contrary, TIFROM-CT yields
somewhat better optimum results than TIFROM-CF when A = 0.5 (see Tables 11 and
14).

Table 14 also shows that d' = 4096 yields the best performance with continuous speech,
while Set 2 allows us to use higher values, i.e d = 8192 (or d' = 16384). As TIFROM-CT
almost always yields bad performance for A = 0.9, we here only consider A = 0.5 for
selecting d', so that we preferably set d' = 4096.

The influence of M’ is shown in Table 15. The optimum value of M’ depends on the
considered conditions, so that, by again disregarding the case A = 0.9, a trade-off would
consist in choosing its intermediate tested value, i.e. M' = 64 when d' = 4096.

To summarize, a trade-off between the parameters of TIFROM-CT may be obtained by
using d' = 4096 samples in the STFT computations. One may then fix the width of
constant-time analysis zones to M' = 64. The mean SN RI of TIFROM-CT is then equal
to 18.7 dB when A = 0.5. This result is significantly lower than the mean SN RI obtained
with TIFROM-CF in that configuration (24.3 dB).

References

[1] A. Hyvérinen, J. Karhunen, E. Oja: Independent Component Analysis, Wiley-Interscience,
New York, 2001.

[2] A. Belouchrani, M. Amin: Blind source separation based on time-frequency signal represen-
tations, IEEE Transactions on Signal Processing, vol. 46, no. 11, pp. 2888-2897, November
1998.

[3] A. Holobar, C. Févotte, C. Doncarli, D. Zazula: Single autoterms selection for blind source
separation in time-frequency plane, Proceedings of the 11th European Signal Processing
Conference (EUSIPCO 2002), Toulouse, France, September 3-6, 2002.

[4] C. Févotte, C. Doncarli: Two contributions to blind source separation using time-frequency
distributions, IEEE Signal Processing Letters, vol. 11, no. 3, pp. 386-389, March 2004

[5] A. Jourjine, S. Rickard, O. Yilmaz : Blind separation of disjoint orthogonal signals: Demix-
ing N sources from 2 mixtures, Proceedings of International Conference on Acoustics, Speech,
and Signal Processing (ICASSP 2000), IEEE Press, Istanbul, Turkey, June 5-9, 2000, vol.
5, pp. 2985-2988.

[6] S. Rickard, R. Balan, J. Rosca: Real-time time-frequency based blind source separation,
Proceedings of the 3rd International Symposium on Independent Component Analysis and
Blind Signal Separation (ICA 2001), December 9-13, 2001, San Diego, USA, pp. 651-656.

[7] S. Rickard, O. Yilmaz: On the approximate W-disjoint orthogonality of speech, Proceedings
of International Conference on Acoustics, Speech, and Signal Processing (ICASSP 2002),
Orlando, USA, May 13-17, 2002.

[8] R. Balan, J. Rosca, S. Rickard: Non-square blind source separation under coherent noise by
beamforming and time-frequency masking, Proceedings of the 4th International Symposium
on Independent Component Analysis and Blind Signal Separation (ICA 2003), Nara, Japan,
April 2003, pp. 313-318.

[9] M. Baeck, U. Zslder: Performance analysis of a source separation algorithm, Proceedings of
the 5th Digital Audio Effects (DAFx-02), Hamburg, Germany, September 26-28 2002, pp.
207-210.

27



[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

23]

[24]

F. Abrard, Y. Deville, P. White: A new source separation approach based on time-frequency
analysis for instantaneous mixtures, Proceedings of the 5th International Worshop on
Electronics, Control, Modelling, Measurement and Signals (ECM2S 2001), pp. 259-267,
Toulouse, France, May 30 - June 1, 2001.

F. Abrard: Méthodes de séparation aveugle de sources et applications : des statistiques
d’ordre supérieur & ’analyse temps-fréquence, Ph.D, Université Paul Sabatier, Toulouse,
France, 2003.

F. Abrard, Y. Deville, P. White: From blind source separation to blind source cancellation
in the underdetermined case: a new approach based on time-frequency analysis, Proceedings
of the 3rd International Symposium on Independent Component Analysis and Blind Signal
Separation (ICA 2001), San Diego, California, USA, December 9-13, 2001.

F. Abrard, Y. Deville: A time-frequency blind signal separation method applicable to un-
derdetermined mixtures of dependent sources, to appear in Signal Processing.

Y. Deville, M. Puigt, B. Albouy: Time-frequency blind signal separation: extended methods,
performance evaluation for speech sources, Proceedings of the International Joint Conference
on Neural Networks (IJCNN 2004), IEEE Catalog Number: 04CH37541C, ISBN: 0-7803-
8360-5, pp. 255-260, Budapest, Hungary, July 25-29, 2004.

Y. Deville: Temporal and time-frequency correlation-based blind source separation methods,
Proceedings of the 4th International Symposium on Independent Component Analysis and
Blind Signal Separation (ICA 2003), pp. 1059-1064, Nara, Japan, April 1-4, 2003.

Y. Deville, M. Puigt: Temporal and time-frequency correlation-based blind source separation
methods. Part I: linear instantaneous mixtures, submitted to Signal Processing,.

D. Smith, J. Lukasiak and I. Burnett: Two Channel, block adaptative audio separation using
the cross correlation of time frequency information, Proceedings on the 5th International
Symposium on Independent Component Analysis and Blind Signal Separation (ICA 2004),
Granada, Spain, September 22-24, 2004.

B. Albouy, Y. Deville: A time-frequency blind source separation method based on segmented
coherence function, Proc. of the 7th International Work-conference on Artificial and Natural
Neural Networks (IWANN 2003), special session, vol. 2, pp. 289-296, J. Mira and J. R.
Alvarez eds (Springer), Mao, Menorca, Spain, June 3-6, 2003.

R. Balan, J. Rosca, S. Rickard, and J. O’Ruanaidh: The Influence of Windowing on Time
Delay Estimation, Proceedings of the 35th Annual Conference on Information Sciences and
Systems (CISS 2000), Volume 1, Pages WP1(15-17), Princeton, NJ, March 2000.

Y. Zhang, M. Amin: Blind separation of sources based on their time-frequency signatures,
Proceedings of the International Conference on Acoustics, Speech, and Signal Processing
(ICASSP 2000), Istanbul, Turkey, June 5-9, 2000, IEEE press, vol.5, pp.3065-3068.

H. Wu, J. Principe, D. Xu: Exploring the time-frequency microstructure of speech for blind
source separation, Proceedings of International Conference on Acoustics, Speech, and Signal
Processing (ICASSP 1998), IEEE Press, volume 2, pp. 1145-1149, paper no. 2161, Seattle,
USA, May 12-15, 1998.

S. Tkeda, N. Murata: An Approach to Blind Source Separation of Speech Signals, Pro-
ceedings of International Conference on Neural Networks (IJCNN 1998), Skévde, Sweden,
September 2-4, 1998.

N. Murata, S. Ikeda: An On-line Algorithm for Blind Source Separation on Speech Signals,
Proceedings of the International Symposium on Non Linear Theory and its Applications
(NOLTA’98), Crans-Montana, Switzeland, September 14-17, 1998.

F. Hlawatsch, G.F. Boudreaux-Bartels: Linear and Quadratic Time-Frequency Signal Rep-
resentations, IEEE SP Magazine, April 1992, pp. 21-67.

28



Matthieu Puigt was born in Perpignan, France, in 1980. He first studied mathematics
at the University of Perpignan where he received in 2002 the Master’s degree in mathe-
matical engineering. He then studied physics at the University Paul Sabatier of Toulouse
(France) where he received in 2003 the D.E.A degree in acoustics. He is now a Ph.D
student in signal processing and blind source separation.

Yannick Deville was born in Lyon, France, in 1964. He graduated from the Ecole
Nationale Supérieure des Télécommunications de Bretagne (Brest, France) in 1986. He
received the D.E.A and Ph.D degrees, both in Microelectronics, from the University of
Grenoble (France), in 1986 and 1989 respectively. From 1986 to 1997, he was a Research
Scientist at Philips Research Labs (Limeil, France). His investigations during this period
concerned various fields, including GaAs integrated microwave RC active filters, VLSI
cache memory architectures and replacement algorithms, neural network algorithms and
applications, and nonlinear systems. Since 1997, he has been a Professor at the University
of Toulouse (France). From 1997 to Oct. 2004, he was with the Acoustics lab of that Uni-
versity. Since Oct. 2004, he has been with the Astrophysics lab in Toulouse, which is part
of the University but also of the French National Center for Scientific Research (CNRS)
and of the Midi-Pyrénées Observatory. Yannick Deville’s current major research interests
include signal processing, higher-order statistics, time-frequency analysis, and especially
blind source separation methods and their applications to Astrophysics, Acoustics and
communication/electromagnetic signals.

29



0.5

Value of Source 1

0 05 1 15 2 25 3 35 4 45 5
Time (s)

[aV)

Bos}-

e

>

?

2o

o

()

=

505

>

-1 Il Il Il Il Il Il Il Il Il
0 0.5 1 1.5 2 25 3 3.5 4 4.5 5
Time (s)

Figure 1: Temporal representations of sources.
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A Set

U
0] 10] 20

0.5 [ 1] 0.0050 [ 0.0803 | 0.0204
2 [ 0.0005 | 0.0040 | 0.0107

0.9 [1_ || 0.0001 | 0.0162 | 0.0190
2 ][ 0.0001 | 0.0019 | 0.0116

Table 1: Frobenius norm of the difference between the actual matrices of parameters b;,,
and their estimates provided by TIFROM-CF, vs set of sources and parameters A and 7
of the mixing matrix defined in (51).
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A Set | perf. criterion

n
0] 10] 20020
05 |1 SNRI || 52.7 | 16.5 | 27.1 | 32.1
SNRovt || 58.7 | 22.5 | 33.1 | 38.1
% of success || 83.3 | 53.7 | 64.8 | 67.3
0.5 | 2 SNRI || 61.9 | 45.2 | 35.2 | 47.4
SNRe“ || 679 | 51.2 | 41.2 | 53.4
% of success || 98.1 | 88.9 | 88.9 | 92.0
09 |1 SNRI || 66.0 | 27.4 | 40.2 | 44.5
SNRo* | 66.9 | 28.5 | 41.1 | 454
% of success || 100 | 74.1 | 81.5 | 85.2
0.9 | 2 SNRI || 66.3 | 49.1 | 34.7 | 50.3
SNRe¥ || 67.2 | 50.0 | 35.6 | 51.2
% of success || 100 | 92.6 | 96.3 | 96.3

Table 2: Performance of TIFROM-CF, for each set of sources, each value of A\, n =
0,10 or 20 and global performance for n = 0-20. Performance criteria: i) mean values of
SNRI and SNR°“ (in dB) and ii) success rate over all parameter values of BSS method.
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!

A perf. criterion p
50 75| 90
0.5 SNRI || 37.8 | 41.0 | 40.2
% of success || 73.1 | 81.5 | 84.3
0.9 SNRI || 44.7 | 45.8 | 44.7
% of success || 88.9 | 95.6 | 90.7

Table 3: Global performance of TIFROM-CF for both sets of sources, n = 0-20 and for
each value of A, vs overlap p’ between STFT windows. Performance criteria: mean value
of SNRI (in dB) and success rate.
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n A Set | perf. criterion d
512 | 1024 | 2048 | 4096 | 8192 | 16384
0 051 SNRI || 55.8 | 62.1 | 62.1 | 62.1 | 44.0 30.0
% of success || 88.9 | 100 | 100 | 100 | 66.7 44 .4
2 SNRI || 56.5 | 62.9 | 62.9 | 62.9 | 62.9 62.9
% of success || 88.9 100 100 100 100 100
091 SNRI || 66.0 | 66.0 | 66.0 | 66.0 | 66.0 66.0
% of success 100 100 100 100 100 100
2 SNRI || 66.2 | 66.2 | 66.2 | 66.2 | 66.2 66.2
% of success 100 100 100 100 | 100 100
10 051 SNRI || 20.3 | 24.6 | 24.6 | 17.7 6.8 5.0
% of success || 66.7 | 100 | 100 | 44.4 | 11.1 0
2 SNRI || 35.1 | 45.9 | 49.6 | 49.6 | 49.6 41.7
% of success || 66.7 | 88.9 | 100 | 100 | 100 77.8
09 |1 SNRI || 29.2 | 354 | 35.4 | 30.0 | 32.1 2.2
% of success || 77.8 | 100 | 100 | 77.8 | 88.9 0
2 SNRI || 41.2 | 52.6 | 52.6 | 52.6 | 52.6 43.1
% of success || 77.8 100 100 100 100 77.8
20 051 SNRI || 25.7 | 344 | 34.4 | 344 | 26.8 7.2
% of success || 55.6 | 88.9 | 88.9 | 88.9 | 66.7 0
2 SNRI || 25.0 | 38.6 | 38.6 | 38.6 | 38.6 31.5
% of success || 55.6 100 100 100 100 77.8
091 SNRI || 22.8 | 33.0 | 33.0 | 33.0 | 29.9 11.9
% of success || 66.7 100 100 100 | 88.9 33.3
2 SNRI || 272 | 36.1 | 36.1 | 36.1 | 36.1 36.1
% of success || 77.8 100 100 100 100 100
0-20 | 0.5 | 1-2 SNRI || 36.4 | 29.8 | 45.4 | 44.2 | 38.1 30.3
% of success || 70.4 | 96.3 | 98.2 | 88.9 | 74.1 50
0.9 | 1-2 SNRI || 42.1 | 48.3 | 48.3 | 47.5 | 47.2 37.6
% of success || 83.4 | 100 | 100 | 96.3 | 96.3 68.6

Table 4: Performance of TIFROM-CEF, for each set of sources, each value of A\, n = 0,10
or 20 and global performance for both sets of sources and n = 0-20, vs STFT window size
d' (in samples). Performance criteria: same as previous table.
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A perf. criterion frequency width
156.25 | 312.5 | 625

0.5 SNRI 36.1 42.0 | 41.3
% of success 67.6 | 85.2 | 86.1
0.9 SNRI 40.0 46.7 | 45.7
% of success 83.3 | 95.4 | 93.5

Table 5: Global performance of TIFROM-CF for both sets of sources, n = 0-20 and for
each value of A\, vs width of constant-time analysis zones (in Hz).
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A | Set | perf. criterion 7
0] 10] 20020
05 |1 SNRI || 46.5 | 31.7 | 28.0 | 35.4
SNRevt || 52.5 | 37.7 | 34.0 | 41.4
% of success || 87.0 | 74.1 | 66.7 | 75.9
0.5 | 2 SNRI || 53.9 | 38.8 | 33.4 | 42.0
SNRovt || 59.9 | 44.8 | 39.4 | 48.0
% of success | 100 | 96.3 | 92.6 | 96.3
09 |1 SNRI || 50.2 | 34.7 | 27.4 | 37.4
SNRe% || 52.1 | 35.6 | 28.3 | 38.3
% of success || 100 | 79.6 | 72.2 | 84.0
0.9 | 2 SNRI || 61.3 | 38.3 | 31.4 | 43.7
SNRov | 62.2 | 39.2 | 32.3 | 44.6
% of success || 100 | 100 | 88.9 | 96.3

Table 6: Performance of TIFROM-CT, for each set of sources, each value of A\, n =
0,10 or 20 and global performance for n = 0-20.
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A perf. criterion p
50 75| 90
0.5 SNRI || 37.6 | 38.9 | 39.7
% of success || 79.6 | 87.0 | 88.0
0.9 SNRI || 39.0 | 40.7 | 41.9
% of success || 88.0 | 91.7 | 90.8

Table 7: Global performance of TIFROM-CT for both sets of sources, = 0-20 and for
each value of A, vs overlap p' between STFT windows.
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n A Set | perf. criterion d
512 | 1024 | 2048 | 4096 | 8192 | 16384
0 051 SNRI || 58.7 | 61.2 | 46.7 | 41.6 | 30.2 24.1
% of success 100 100 100 100 | 88.9 33.3
2 SNRI || 56.3 | 60.3 | 54.1 | 57.7 | 58.6 41.1
% of success 100 100 100 100 100 100
091 SNRI || 64.1 | 66.0 | 53.6 | 50.1 | 37.9 29.3
% of success 100 100 100 100 100 100
2 SNRI || 66.3 | 66.2 | 61.0 | 59.8 | 62.7 54.7
% of success 100 100 100 100 100 100
10 051 SNRI || 24.6 | 32.8 | 41.4 | 36.0 | 29.5 12.5
% of success || 77.8 100 100 | 88.9 | 77.8 0
2 SNRI || 28.7 | 29.0 | 38.5 | 48.1 | 44.9 44.1
% of success 100 100 100 100 100 77.8
09 |1 SNRI || 269 | 31.2 | 38.2 | 40.8 | 45.9 11.0
% of success || 88.9 | 100 | 100 | 100 | 66.7 0
2 SNRI || 29.9 | 29.6 | 40.7 | 41.4 | 44.9 43.6
% of success 100 100 100 100 100 100
20 05 |1 SNRI || 20.8 | 30.5 | 35.1 | 36.0 | 194 12.6
% of success || 66.7 | 88.9 | 100 | 100 | 44.4 0
2 SNRI || 26.0 | 23.6 | 31.2 | 40.6 | 42.3 38.4
% of success 100 | 88.9 100 100 100 66.7
09 |1 SNRI || 16.2 | 24.6 | 31.7 | 37.1 | 34.7 9.7
% of success || 66.7 100 100 100 | 66.7 0
2 SNRI || 203 | 229 | 30.2 | 41.7 | 384 36.3
% of success || 66.7 100 100 100 100 66.7
0-20 | 0.5 | 1-2 SNRI || 3569 | 39.6 | 41.2 | 43.3 | 37.5 28.8
% of success || 90.8 | 96.3 100 | 98.2 | 85.2 46.3
09 | 1-2 SNRI || 37.3 | 40.1 | 42.6 | 45.2 | 44.1 30.8
% of success || 87.1 | 100 | 100 | 100 | 88.9 66.1

Table 8: Performance of TIFROM-CT, for each set of sources, each value of A, n = 0,10
or 20 and global performance for both sets of sources and n = 0-20 , vs STFT window
size d' (in samples).
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A perf. criterion frequency width
156.25 | 312.5 | 625

0.5 SNRI 36.8 40.5 | 39.4
% of success 86.1 | 89.8 | 80.6
0.9 SNRI 39.6 41.1 | 36.3
% of success 87.0 | 93.5 | 89.8

Table 9: Global performance of TIFROM-CT for both sets of sources, = 0-20 and for
each value of A\, vs width of constant-time analysis zones (in Hz).
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A Set d
256 | 512 | 1024 | 2048

051 1.7605 | 0.0481 | 0.1263 0.1415
2 0.0645 | 0.0859 | 0.0142 0.2025
091 0.0516 | 0.1759 | 0.1128 | invisible
2 0.0513 | 0.0511 | 0.0195 0.2556

Table 10: Frobenius norm of the difference between the actual matrices of parameters b;,,
and their estimates provided by TIFROM-CF in the case = 200, vs set of sources and
A. This norm cannot be computed when one source is invisible.
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A Set | perf. criterion d
256 | 512 | 1024 | 2048
051 SNRI -17.1 | 17.3 | 10.3 7.9
% of success 0] 55.6 | 33.3 22.2
2 SNRI 19.3 | 22.4 | 10.3 14.5
% of success 66.7 | 88.9 | 77.8 77.8
091 SNRI 6.8 7.2 | 10.3 | invisible
% of success 444 | 33.3 | 22.2 0
2 SNRI 16.9 | 22.0 | 30.3 -14.3
% of success 77.8 | 100 | 100 0

Table 11: Performance of TIFROM-CF, for each set of sources, each value of A\ and
n =200, vs STFT window size d (in samples).
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A Set | d perf. criterion d
4096 | 8192 | 16384
051 256 SNRI -17.1 -17.1 -17.1
% of success 0 0 0
512 SNRI 16.7 254 9.8
% of success 33.3 100 33.3
1024 | SNRI 17.0 13.9 -0.0
% of success 66.7 33.3 0
2048 | SNRI 12.4 11.4 -0.2
% of success 33.3 33.3 0
2 256 SNRI 21.5 24.4 12.0
% of success 66.7 100 33.3
512 SNRI 20.8 23.2 23.2
% of success 66.7 100 100
1024 | SNRI 30.8 38.0 29.2
% of success 66.7 100 66.7
2048 | SNRI 14.8 15.6 13.2
% of success 66.7 100 66.7
0911 256 SNRI 8.5 17.2 -5.1
% of success 66.7 66.7 0
512 SNRI 11.4 10.4 -0.4
% of success 33.3 66.7 0
1024 | SNRI 14.7 -0.0 3.9
% of success 66.7 0 0
2048 | SNRI invisible | invisible | invisible
% of success 0 0 0
2 256 SNRI 17.4 21.3 12.0
% of success 66.7 100 66.7
512 SNRI 22.0 22.0 22.0
% of success 100 100 100
1024 | SNRI 30.3 30.3 30.3
% of success 100 100 100
2048 | SNRI -15.8 -15.8 -11.3
% of success 0 0 0

Table 12: Performance of TIFROM-CF, for each set of sources,

n = 200, vs STFT window sizes d and d' (in samples).
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A Set | d perf. criterion frequency width
156.25 Az | 312.5 Hz | 625 Hz
051 256 SNRI -17.1 -17.1 -17.1
% of success 0 0 0
512 SNRI 18.9 21.1 11.9
% of success 66.7 66.7 33.3
1024 | SNRI 11.5 9.7 9.7
% of success 33.3 33.3 33.3
2048 | SNRI 3.5 7.2 13.0
% of success 0 0 66.7
2 256 SNRI 17.2 24.4 16.4
% of success 33.3 100 66.7
512 SNRI 20.8 23.2 23.2
% of success 66.7 100 100
1024 | SNRI 22.0 38.0 38.0
% of success 33.3 100 100
2048 | SNRI 12.3 15.6 15.6
% of success 33.3 100 100
091 256 SNRI 0.7 8.5 11.3
% of success 0 66.7 66.7
512 SNRI 9.6 4.6 7.2
% of success 33.3 0 66.7
1024 | SNRI 6.1 9.7 2.7
% of success 0 66.7 33.3
2048 | SNRI invisible | invisible | invisible
% of success 0 0 0
2 256 SNRI 21.3 17.4 12.1
% of success 100 66.7 66.7
512 SNRI 22.0 22.0 22.0
% of success 100 100 100
1024 | SNRI 30.3 30.3 30.3
% of success 100 100 100
2048 | SNRI -15.2 -15.2 -12.4
% of success 0 0 0

Table 13: Performance of TIFROM-CF, for each set of sources, each value
n = 200, vs STFT window size d and width of constant-time analysis zones (in Hz).
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A Set | perf. criterion d
4096 | 8192 | 16384 | global
051 SNRI 19.6 | 17.9 5.9 16.8
% of success 66.7 | 33.3 0 33.3
2 SNRI 14.6 254 15.2 18.4
% of success 100 100 66.7 88.9
091 SNRI -3.9 -5.7 | invisible -4.6
% of success 33.3 0 0 11.1
2 SNRI -2.6 | -16.8 19.4 -0.0
% of success 33.3 0 100 44.4

Table 14: Performance of TIFROM-CT, for each set of sources, each value of A\ and
n =200, vs STFT window size d' (in samples).
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A Set | perf. criterion frequency width
156.25 | 312.5 | 625
051 SNRI 14.3 15.5 | 26.5
% of success 33.3 | 33.3| 333
2 SNRI 22.9 21.6 10.7
% of success 100 100 | 66.7
091 SNRI 1.0 -3.7 | -17.7
% of success 33.3 0 0
2 SNRI 5.7 -2.4 3.3
% of success 66.7 | 33.3 | 33.3

Table 15: Performance of TIFROM-CT, for each set of sources, each value of A\ and
n = 200, vs width of constant-time analysis zones (in Hz).
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