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Abstract. In this paper, we consider the problem of estimating the covariation of two diffusion processes
when observations are subject to non-synchronicity. Building on recent papers [18, 19], we derive second-
order asymptotic expansions for the distribution of the Hayashi-Yoshida estimator in a fairly general
setup including random sampling schemes and non-anticipative random drifts. The key steps leading to
our results are a second-order decomposition of the estimator’s distribution in the Gaussian set-up, a
stochastic decomposition of the estimator itself and an accurate evaluation of the Malliavin covariance. To
give a concrete example, we compute the constants involved in the resulting expansions for the particular
case of sampling scheme generated by two independent Poisson processes.

Résumé. Dans cet article, nous considérons le problème d’estimation de la covariation de deux processus
de diffusion observés de façon asynchrone. Nous nous plaçons dans le cadre présenté dans [18, 19] et
établissons un développement asymptotique au second ordre de la loi de l’estimateur de Hayashi-Yoshida.
Ce développement est valable pour les drifts aléatoires non-anticipatifs et pour des pas d’échantillonnage
irréguliers, éventuellement aléatoires, mais indépendant des processus observés. L’approche utilisée pour
obtenir les principaux résultats peut être décomposée en trois étapes. La première consiste à établir
un développement au second-ordre de la loi de l’estimateur dans le cadre Gaussien. La deuxième est
l’obtention d’une décomposition stochastique de l’estimateur lui-même et la dernire est l’évaluation de
la covariance de Malliavin. A titre d’exemple, nous calculons les constantes du développement au second
ordre dans le cas où l’échantillonnage est obtenu par deux processus de Poisson indépendants.

Keywords: Edgeworth expansion, covariation estimation, diffusion process, asynchronous observations, Poisson

sampling.

1. Introduction

In the last decade, studies on covariance estimation has attracted considerable attention thanks to
the applications in mathematical finance and econometrics; see e.g. Andersen and Bollerslev [1],
Comte and Renault [9], Andersen et al. [2, 3], Barndorff-Nielsen and Shephard [6]. All these papers
consider the situation where two diffusion processes are observed at the same discrete instants. In
contrast with this, covariance estimation under a “non-synchronous” sampling scheme has rarely
been treated theoretically in spite of its importance in the analysis of high-frequency financial
data [39, 27, 41]. The first contributions to the statistical inference for covariance estimation
with non-synchronous data have been made by Hayashi and Yoshida [18, 19]. They proposed
an estimator of the covariation and explored its statistical properties such as the consistency
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2 Dalalyan and Yoshida

and the asymptotic normality. Interestingly, it follows from the results in [19] that the drifts
of the observed diffusions do not affect the asymptotic variance of the covariance estimator.
The aim of the present paper is to complement the results in [18, 19] by establishing a second-
order asymptotic expansion for the distribution of the covariance estimator. In particular, we get
explicit expressions that have the advantage of reflecting the impact of drifts on the asymptotic
distribution of the estimator.

One common approach to cope with non-synchronicity is the following. First, two regularly
spaced time series are generated by interpolating the observed non-synchronous data. Then the
realized covariance estimator is computed for the interpolated time series. However, it is known
that such a synchronization technique causes estimation bias, which is often referred to as the
Epps effect [11]. Another estimator of the covariance, based on the harmonic analysis, has been
proposed by Malliavin and Mancino [28]. In the case where in addition to the non-synchronicity
the data is contaminated by a microstructure noise, estimators of the covariance have been
proposed by Palandri [33], Barndorff-Nielsen et al. [5] and Zhang [46]. A detailed account on
covariance estimation for non-synchronous data can be found in [20] and [46].

In order to present the framework and to describe our contributions, we need some notation.
Let X = (X1, X2) be a two dimensional diffusion process given by

dXt = βt dt+ diag(σt) dBt, (1)

where B = ((B1,t, B2,t)
T, t ≥ 0) is a two dimensional Gaussian process with independent

increments, zero mean and covariance matrix

E[Bt ·BT

t ] =

(

t
∫ t

0 ρs ds
∫ t

0 ρs ds t

)

, ∀t ≥ 0.

In (1), β = (β1, β2)
T is a progressively measurable process, σ = (σ1, σ2)

T is a deterministic
function and diag(σ) stands for the diagonal matrix having σi as i

th diagonal entry, i = 1, 2. In
what follows, we restrict our attention to the case when σ1, σ2 and ρ are deterministic functions;
the functions σi, i = 1, 2 take positive values while ρ takes values in the interval [−1, 1]. Note
that the marginal processes B1 and B2 are Brownian motions (BM). Moreover, we can define a

process B∗
t such that (B1,t, B

∗
t )t≥0 is a two-dimensional BM and dB2,t = ρtdB1,t +

√

1− ρ2t dB
∗
t

for every t ≥ 0.
We will assume that the processes X1 and X2 are observed respectively at the time instants

0 = S0 < S1 < . . . < SN1 = T and 0 = T 0 < . . . < TN2 = T . Let us denote Ii = (Si−1, Si]
and Jj = (T j−1, T j]. The families Π1 = {Ii, i = 1, . . . , N1} and Π2 = {Jj , j = 1, . . . , N2}
are partitions of the interval [0, T ]. We will also use the notation ∆iX1 = X1,Si − X1,Si−1 and
∆jX2 = X2,T j −X2,T j−1 .

In this paper, we are concerned with the problem of estimating the parameter

θ =

∫ T

0

ρtσ1,tσ2,t dt = 〈X1, X2〉T

based on the observations (X1,Si , X2,T j , i = 0, . . . , N1, j = 0, . . . , N2). The parameter θ represents
the covariance between the martingale parts of X1 and X2. Therefore, it can be used to evaluate
the correlation between the two BMs B1 and B2.

If the processes X1 and X2 are synchronously observed, the sum of cross products
∑N1

i=1 ∆iX1 ·
∆iX2 is a natural estimator of θ. Indeed, it converges in probability to θ when the maximum lag
of the sampling times tends to 0 in probability. In the field of statistical inference for stochastic
processes, this fact has been applied to estimating the volatility and the covariation between
semimartingales. The asymptotic distributions are well investigated; see Dacunha-Castelle and
Florens-Zmirou [10], Florens-Zmirou [12], Prakasa Rao [34, 35], Yoshida [44], Genon-Catalot and
Jacod [14], Kessler [26], and Mykland and Zhang [31].
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Expansion for the HY-estimator 3

An estimator of θ, which is unbiased when the drift β is identically zero, has been proposed
in [18]. Henceforth called HY-estimator, it is defined as follows:

θ̂ =

N1
∑

i=1

N2
∑

j=1

∆iX1 ·∆jX2 · 1(Ii ∩ Jj 6= ∅). (2)

It is established in [18] that under mild assumptions, θ̂ is consistent as the maximum lag of the
sampling times tends to 0 in probability. Kusuoka and Hayashi [17] extended the consistency
result to a more general sampling scheme. Asymptotic normality of the HY-estimator was proved
in Hayashi and Yoshida [19] under the assumption that the sampling times are independent of
the process X. For related literature, see Hoshikawa et al. [22], Griffin and Oomen [15], Robert
and Rosenbaum [37] and Voev and Lunde [43]. The general case of a sampling scheme depending
on the process X has been studied in Hayashi and Yoshida [20, 21], where a stochastic analytic
proof of the asymptotic mixed normality of the HY-estimator is presented. An estimator for the
variance of the HY-estimator under the assumption that the observed process X has no drift has
been recently proposed by Mykland [30].

In the present work, the main emphasis is put on the higher-order asymptotic behavior of
the HY-estimator. Note that the theory of asymptotic expansions is one of chapters of statistics
that received a revival of interest owing to its usefulness for exploring properties of bootstrap-
based statistical methods. For a comprehensive introduction to this subject we refer the reader to
Hall [16]. Results on asymptotic expansions in other contexts can be found in Bose [8], Mykland
[29], Koul and Surgailis [25], Bertail and Clémençon [7], Zhang et al. [47], Fukasawa [13] and the
references therein.

Section 3 contains an asymptotic expansion of the distribution of the HY-estimator. As a
first step for deriving asymptotic expansions for the distribution of the HY-estimator, we give
in Section 3.2 a representation of the cumulants of θ̂ as functionals of the sampling times, and
obtain asymptotic estimates for them. This is used to derive a second-order asymptotic expansion
of the characteristic function of the estimator while the asymptotic normality is also proved as
an application of those estimates.

The application of these results in the setup of Poisson sampling schemes is presented in Section
4. We assume that the Poisson processes generating the sampling times have constant intensities
np1 and np2, where n is a parameter guaranteeing the high-frequency of the observations (n →
∞). This setup has the advantage of making it possible to compute all the quantities involved in
the asymptotic expansion. We show that the residual term in the proposed asymptotic expansion
of the distribution of

√
n(θ̂n − θ) behaves nearly like n−1, as n goes to infinity.

When there are (possibly random) drift terms in the stochastic differential equation of Xt,
some additional terms appear in the asymptotic expansion. In order to identify these terms, we
derive in Section 5 a stochastic decomposition of the HY-estimator and explore the asymptotic
behavior of the variables appearing in the second-order terms. Since the asymptotics we get is
non-Gaussian, the classical techniques leading to Edgeworth expansions can not be used. Instead,
our arguments rely on the limit theory for semimartingales.

The asymptotic expansion of the distribution of the HY-estimator is carried out in Section 6
using a perturbation method. We apply the Malliavin calculus first to ensure the regularity of the
distribution of the principal part—a quadratic form of Gaussian random variables—and then to
extend this property to the model under the perturbation. To enhance the legibility, we postpone
the most technical proofs to the last three sections.

2. Elementary properties of θ̂

As noticed by Mykland [30], the estimator θ̂ is the Maximum Likelihood Estimator (MLE) of

θ. Let us present here some computations that not only show that θ̂ is the MLE of θ, but also
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4 Dalalyan and Yoshida

give some interesting insight concerning the efficiency properties of the HY-estimator θ̂. Let
us deal with a slightly more general setup. Assume that ξ ∈ RN is a random vector having
centered Gaussian distribution with unknown covariance matrix Σ. The entries of the matrix Σ
are σℓ,ℓ′ = E[ξℓξℓ′ ] for ℓ, ℓ

′ = 1, . . . , N . We want to estimate a linear combination

θ =

N
∑

ℓ,ℓ′=1

aℓ,ℓ′σℓ,ℓ′ ,

where aℓ,ℓ′ ∈ R, ℓ, ℓ′ = 1, . . . , N are some known numbers verifying aℓ,ℓ′ = aℓ′,ℓ.
In order to use results on the exponential family, it is convenient to consider the parametrization

by the entries of the inverse, denoted by V = Σ−1, of the covariance matrix Σ. Set p = (N2+N)/2
and write

V =











v1 v2 . . . vN
v2 vN+1 . . . v2N−1

...
...

. . .
...

vN v2N−1 . . . vp











.

The log-likelihood function can now be written as follows:

ℓ(V ) =
1

2
log |V | − 1

2

p
∑

k=1

vkTk(ξ), (3)

where |V | denotes the determinant of the matrix V and T(ξ) = (T1(ξ),T2(ξ), . . .) is defined by

T1(ξ) = ξ21 , T2(ξ) = 2ξ1ξ2, T3(ξ) = 2ξ1ξ3, . . . , Tp(ξ) = ξ2N .

It follows from (3) that the distribution PV of the Gaussian vector ξ ∼ NN (0, V −1) belongs to
the (simple) exponential family. This implies that the statistic T(ξ) is the MLE of the parameter

τ = E[T(ξ)] = (σ11, 2σ12, . . . , σNN )T. Hence, the MLE of θ =
∑

ℓ,ℓ′ aℓ,ℓ′σℓ,ℓ′ is θ̂ =
∑

ℓ,ℓ′ aℓ,ℓ′ξℓξℓ′ .
It is easily seen that this estimator is unbiased. Furthermore, since T(ξ) is a complete sufficient

statistic, the MLE θ̂ =
∑

ℓ,ℓ′ aℓ,ℓ′ξℓξℓ′ is the best unbiased estimator of θ in the sense that any

other unbiased estimator will have a variance at least as large as that of θ̂.
We can now return to our model. The vector

ξ = (∆1X1, . . . ,∆N1X1,∆1X2, . . . ,∆N2X2)
T

is drawn from an N = N1 + N2 dimensional centered Gaussian distribution. In addition, the
parameter θ = Cov(X1,T , X2,T ) can be represented in the form

∑

ℓ,ℓ′ aℓ,ℓ′σℓ,ℓ′ with

aℓ,ℓ′ =
1

2
1(ℓ ≤ N1, ℓ

′ > N1, I
ℓ ∩ Jℓ′−N1 6= ∅)

for every ℓ ≤ ℓ′ and aℓ,ℓ′ = aℓ′,ℓ for ℓ > ℓ′. Therefore, the arguments presented above yield the
following result.

Proposition 1. The estimator θ̂ defined by (2) is the MLE of θ. Moreover, it is the estimator
having the smallest quadratic risk among all unbiased estimators of θ.

This proposition advocates for using the HY-estimator in the case where β ≡ 0. If the latter
condition is not satisfied, θ̂ is not necessarily unbiased, but under very mild assumptions it is
consistent [18] and asymptotically normal [19] as the maximum lag of the sampling times tends
to 0. This explains the popularity of the HY-estimator motivating our interest in its second-order
asymptotic expansion. At a heuristical level, the construction of the HY-estimator can be derived
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Expansion for the HY-estimator 5

from the decomposition θ =
∑

i,j 1(I
i ∩ Jj 6= ∅)

∫

Ii∩Jj σ1,tσ2,tρt dt. Indeed, each term of that
decomposition is nearly equal to the covariance of the increments ∆iX1 and ∆jX2, since the mar-
tingale part of a small increment of a semi-martingale dominates the increment of the bounded-
variation part. Hence, if Ii and Jj are small, it is reasonable to estimate

∫

Ii∩Jj σ1,tσ2,tρt dt by

the product ∆iX1 ·∆jX2 and, therefore, to estimate θ by the HY-estimator θ̂.

3. Asymptotic expansion of the distribution in Gaussian setup

3.1. Notation and main results

In this section, we will derive the second-order asymptotic expansion of the distribution of

b
−1/2
n (θ̂n − θ), where bn is a suitably chosen normalization factor, for the model (1) without
drifts. We will treat a model with drifts in Section 5, where we will resort to the Malliavin
calculus for dealing with general nonlinear Wiener functionals.

Given positive numbersM and γ, let E(M,γ) denote the set of measurable functions f : R → R

satisfying |f(x)| ≤M(1 + |x|γ) for all x ∈ R. For positive numbers C, η, r0 and c
∗ we set

E0 = E0(C, η, r0, c
∗) =

{

f :

∫

R

ω̄f (z, r)φ(z; c
∗)dz ≤ Crη, ∀r ≤ r0

}

,

where

ω̄f (z, r) = sup
x:|x|≤r

|f(z + x)− f(z)|

and φ(z; Σ) is the density of the centered normal distribution with variance Σ. Note that this
class is large enough to contain most functions that are encountered in practice. In particular,
all functions satisfying the generalized Hölder condition |f(z + x) − f(z)| ≤ F (z)|x|η with some
function F such that

∫

F (z)φ(z; c∗) dz ≤ C belong to E0(C, η,∞, c∗). It is also easy to check that

the set of all indicator functions of intervals of R is included in E0(
√
2πc∗, 1,∞, c∗) for any c

∗ > 0.
Our aim is now to get uniformly in f ∈ E∗ an asymptotic expansion for the sequence

E[f(b
−1/2
n (θ̂n − θ))] with E∗ = E(M,γ) ∩ E0(C, η, r0, c

∗). To this end, define hr(z; Σ) as the
r-th Hermite polynomial given by

hr(z; Σ) = (−1)rφ(z; Σ)−1∂rzφ(z; Σ), ∀z ∈ R.

In particular, h2(z; Σ) = (z2 − Σ)/Σ2 and h3(z; Σ) = (z3 − 3Σz)/Σ3. Along with the Hermite
polynomials, it is customary to express the second-order asymptotic expansion of a distribution
in terms of the first-order and the second-order cumulants. To define this quantities in the present
framework, let us denote, for any Borel set S ⊂ R,

v(S) =

∫

S

ρtσ1,tσ2,t dt, v1(S) =

∫

S

σ2
1,t dt, v2(S) =

∫

S

σ2
2,t dt, (4)

and introduce

µ2 =
1

2

{

∑

I,J

v1(I)v2(J)KIJ +
∑

I∈Π1

v(I)2 +
∑

J∈Π2

v(J)2 −
∑

I,J

v(I ∩ J)2
}

, (5)

µ3 =
1

4

{

∑

I∈Π1

v(I)3 +
∑

J∈Π2

v(J)3 + 2
∑

I,J

v(I ∩ J)3 + 3
∑

I,J

v1(I)v2(J)v(I ∪ J)KIJ

− 3
∑

I,J

[v(I ∩ J)2(v(I) + v(J)) − v(I ∩ J)v(I)v(J)]
}

, (6)

where KIJ = 1(I∩J 6= ∅) and
∑

I,J =
∑

I∈Π1

∑

J∈Π2 . Since we are dealing with the asymptotics

of high frequency data, we will assume that all the intervals Ii = Iin and Jj = Jj
n depend on some
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6 Dalalyan and Yoshida

parameter n—representing the frequency of the sampling—that is large. To make the dependence
on n explicit, we will write µ2,n and µ3,n instead of µ2 and µ3. Furthermore, as the time interval
[0, T ] is fixed, the maximal sampling step rn = [(maxi |Iin|) ∨ (maxj |Jj

n|)] is assumed to tend to
zero as n→ ∞. Using this notation, we define

λ̄2,n = 2 b−1
n µ2,n, and λ̄3,n = 8 b−2

n µ3,n, (7)

for some deterministic sequence bn, tending to zero as n→ ∞. To some extent, one can think of
bn as the rate of convergence of µ2,n to zero. This point will become clearer in Section 4, where
the concrete example of the Poisson sampling scheme is analyzed.

We introduce a σ[Π]-dependent random signed-measure ΨΠ
n on R by the density

p3,n(z) = φ(z; λ̄2,n)
[

1 +
b
1/2
n

6
λ̄3,n h3(z; λ̄2,n)

]

.

It is not hard to check that the Fourier transform of ΨΠ
n is given by

Ψ̂Π
n (u) = e−

1
2 λ̄2,nu2

[

1 +
b
1/2
n

6
λ̄3,n(iu)

3
]

.

In the case where no assumption on the convergence of µ2,n is made, the measure ΨΠ
n will serve

as the second-order approximation to the distribution of Xn = b
−1/2
n (θ̂n − θ). However, for many

sampling schemes one can prove the convergence of λ̄2,n to some constant c, implying that the

estimator θ̂n is asymptotically normal with asymptotic variance c. It is therefore natural to
address the issue of approximating the distribution of Xn by a measure similar to ΨΠ

n but based
on the Gaussian density with variance c. To this end, we define the signed measure Ψ̃Π

n on R by
the density

p̃3,n(z) = φ(z; c)
[

1 +
1

2
(λ̄2,n − c)h2(z; c) +

b
1/2
n

6
λ̄3,n h3(z; c)

]

.

The following result, the proof of which is deferred to Section 7, asserts that p3,n and p̃3,n are

good approximations to the density of (θ̂n − θ)/
√
bn.

Theorem 1. LetM,γ, η,C, r0, c
∗ > 0 be the parameters describing the set of functions of interest.

For a ∈ (34 , 1) and c, c0, c1 ∈ (0, c∗) set

Pn(c0, c1, a) = { c0 < λ̄2,n < c1, rn ≤ ban },
An(a) = { (λ̄2,n − c)2 ≤ b2a−1

n , rn ≤ ban },

where rn is the maximal lag of the sampling times and λ̄2,n = 2b−1
n µ2,n. Then, there exists a

sequence ǫn = ǫn(M,γ, η,C, r0, a, c0, c1) such that ǫn = O(b2a−1
n ) and the inequalities

sup
f∈E(M,γ)∩E0(C,η,r0,c∗)

∣

∣EΠ[f(Xn)]−ΨΠ
n [f ]

∣

∣ ≤ ǫn, ∀Πn ∈ Pn(c0, c1, a), (8)

sup
f∈E(M,γ)∩E0(C,η,r0,c∗)

∣

∣

∣E
Π[f(Xn)]− Ψ̃Π

n [f ]
∣

∣

∣ ≤ ǫn, ∀Πn ∈ An(a), (9)

hold true, where Xn = b
−1/2
n (θ̂n − θ).

Remark 1. The approximating measure ΨΠ
n provided by Theorem 1 contains the Gaussian

density with variance λ̄2,n, which depends on n. One can easily deduce from that result that the

distribution of (bnλ̄2,n)
−1/2(θ̂n − θ) can be approximated by the measure

[

1 +

√
bnλ̄3,n
6

(

z3 − 3

λ̄2,n
z
)]

φ(z; 1) dz.
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Expansion for the HY-estimator 7

The following result is an immediate consequence of (9) and provides an unconditional asymp-

totic expansion for the distribution of Xn = b
−1/2
n (θ̂n − θ).

Theorem 2. Under the notation of Theorem 1, if P(An(a)
c) = o(bpn) for every p > 1, and

E[λ̄2,n − c] = O(b2a−1
n ), then

sup
f∈E(M,γ)∩E0(C,η,r0,c∗)

∣

∣

∣

∣

E[f(Xn)]−
∫

R

f(z) p∗n(z) dz

∣

∣

∣

∣

= O(b2a−1
n ), (10)

where p∗n(z) = φ(z; c)
[

1 +
b1/2n

6 E[λ̄3,n] h3(z; c)
]

. Moreover, if supn∈N E[λ̄3,n] < ∞, then relation

(10) holds with p∗n replaced by

p+n (z) =
max(0, p∗n(z))

∫

R
max(0, p∗n(u)) du

,

which is a probability density.

3.2. Gaussian analysis and expansion of the characteristic function

The goal of this section is to prepare the ground for the proof of Theorem 1. To this end, we
present in Section 3.2.1 general results on the characteristic function of a random variable that can
be written as a quadratic functional of a standard Gaussian vector. As usual, this characteristic
function involves the cumulants that take a simplified form in the context of the HY-estimator.
Section 3.2.2 is devoted to proving that the second and the third cumulants for the HY-estimator
can be computed using formulae (5) and (6). These results lead to a second-order expansion of the
characteristic function of the HY-estimator, which is rigorously stated and proved in Section 3.2.3.
Finally, the proof of Theorem 1 is presented in Section 3.3.

3.2.1. General Gaussian setup
In order to determine the asymptotic expansion of the distribution of θ̂, we start with expanding
its characteristic function. It will be useful for our purposes to consider the more general setup
defined via Gaussian vector ξ and the matrix A = (aℓ,ℓ′)

N
ℓ,ℓ′=1, see Section 2.

Recall that
θ̂ = ξTAξ and ξ ∼ NN (0,Σ).

In other terms, θ̂ is a quadratic form of a centered Gaussian vector. The aim of the present
subsection is twofold. Firstly, we compute the cumulants of any quadratic form Q of a Gaussian
vector ξ as functions of the matrix associated to the quadratic form Q and the covariance matrix
of ξ. Among other things, this computation allows us to give a simple condition implying the weak
convergence of a series of quadratic forms of Gaussian vectors. The second goal of the present
subsection is to show that the tails of the characteristic function of a quadratic form of a Gaussian
vector have at least polynomial decay. To achieve this second goal, we establish an explicit upper
bound for the characteristic function of interest. It should be pointed out that most results and
conditions are stated in terms of the spectral characteristics of the matrix Σ1/2AΣ1/2.

Since A is a symmetric matrix, the N -by-N matrix Σ1/2AΣ1/2 is symmetric and therefore
diagonalizable. Let Λ and U be respectively the N -by-N diagonal and orthogonal matrices such
that Σ1/2AΣ1/2 = UTΛU . Let ζ be a Gaussian NN (0, IN ) vector such that ξ = Σ1/2 ·UTζ. Such
a vector exists always and it is unique if Σ is invertible. In this notation, we have

θ̂ = ζ
TΛζ =

N
∑

ℓ=1

λℓζ
2
ℓ ,
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8 Dalalyan and Yoshida

where λ1, . . . , λN are the eigenvalues of the matrix Σ1/2AΣ1/2 and ζ1, . . . , ζN are independent
Gaussian random variables. This implies that ζ2ℓ s are independent and distributed according to

the χ2
1 distribution. Hence E[eiuζ

2
ℓ ] = (1 − 2iu)−1/2 and

ϕθ̂(u) := E[eiuθ̂] =
N
∏

ℓ=1

(1− 2iλℓu)
−1/2.

By taking the logarithm and using its Taylor series we get

logϕθ̂(u) = −1

2

N
∑

ℓ=1

log(1− 2iλℓu) =
1

2

N
∑

ℓ=1

∞
∑

k=1

(2iλℓu)
k

k
,

as soon as |u| < 1/(2maxℓ |λℓ|). Since all the series in the above formula are absolutely convergent,
we can change the order of summation. This yields

logϕθ̂(u) =

∞
∑

k=1

(2iu)k

2k
µk, |u| < 1/(2‖λ‖∞), (11)

with ‖λ‖∞ = maxℓ |λℓ| and µk =
∑N

ℓ=1 λ
k
ℓ = Tr[(Σ1/2AΣ1/2)k] = Tr[(Σ · A)k], where the last

equality follows from the property Tr(M1 ·M2) = Tr(M2 ·M1) provided that both products are
well defined. Separating the first two terms in the RHS of (11), we arrive at

logϕθ̂(u) = iθu− u2µ2 +

∞
∑

k=3

(2iu)k

2k
µk, |u| < 1/(2‖λ‖∞). (12)

Let us define ᾱ = ‖λ‖∞/‖λ‖2. Using simple inequalities, one checks that |µk| ≤ ᾱk−2µ
k/2
2 for

every k ≥ 3. Therefore,

∣

∣

∣

∣

∞
∑

k=3

(2iu)kµk

2k

∣

∣

∣

∣

≤ 2µ2|u|2
∑

k≥0

(2|u|ᾱ√µ2)
k+1

k + 1
= −2µ2|u|2 log(1− 2|u|ᾱ√µ2),

for every u satisfying |u| < (2ᾱ
√
µ2)

−1. This leads to the inequality

| logϕθ̂−θ(v/
√

2µ2) +
v2

2
| ≤ −v2 log(1−

√
2|v|ᾱ), (13)

for every |v| < (
√
2ᾱ)−1. As a first application of our approach, we obtain a central limit theorem

for θ̂n.

Proposition 2. Suppose that the matrices A = An and Σ = Σn as well as the number N = Nn

depend on n ∈ N. If λ1,n, . . . , λN,n, the eigenvalues of Σ
1/2
n AnΣ

1/2
n , satisfy limn→∞ ‖λn‖2∞/µ2,n =

0, then

θ̂n − θn
√

2µ2,n

D−−−−→
n→∞

N (0, 1),

where θ̂n = ξTAnξ, θn = E[θ̂n] = Tr[ΣnAn], µ2,n = Tr[(ΣnAn)
2] and

D−→ stands for the conver-
gence in distribution.

Proof. Set µk,n = Tr[(ΣnAn)
k] =

∑

ℓ λ
k
ℓ,n and ηn = (θ̂n − θn)/

√

2µ2,n. The inequality (13) and

the condition limn→∞ ‖λn‖2∞/µ2,n = 0 imply that the characteristic function of ηn converges
pointwise to the characteristic function of a standard Gaussian distribution. This completes the
proof of the proposition.
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Expansion for the HY-estimator 9

This result states that the distribution of the estimator θ̂n is well approximated by a Gaussian
distribution. In order to give a more precise sense to this approximation and to obtain more
accurate approximations, we focus our attention on a second-order asymptotic expansion of the
distribution of θ̂n. To this end, we prove first that the tails of this distribution are sufficiently
small.

Lemma 1. If for some p ∈ N the inequality ‖λ‖2∞ ≤ µ2/(2p) holds, then for every j ∈ N

∣

∣

∣

∣

dj

duj
E[eiu(θ̂−θ)]

∣

∣

∣

∣

≤ j!(2N‖λ‖∞ + |θ|)j(p/2)p/4(1 + µ2u
2)−p/4, ∀u ∈ R.

Proof. Thanks to the fact that ζ2ℓ is distributed according to the χ2
1 distribution, one easily

checks that
∣

∣ϕθ̂(u)
∣

∣ =
∣

∣

∏N
ℓ=1(1−2iuλℓ)

−1/2
∣

∣ =
∏N

ℓ=1(1+4u2λ2ℓ )
−1/4. In view of the assumptions

of the lemma, for every i = 1, . . . , p, there exists an integer ℓi verifying µ
−1
2

∑ℓi
ℓ=1 λ

2
ℓ < i/p and

µ−1
2

∑ℓi+1
ℓ=1 λ2ℓ ≥ i/p. For this sequence ℓi, we get µ−1

2

∑ℓi+1

ℓ=ℓi+1 λ
2
ℓ ≥ (i + 1)/p − 1/(2p) − i/p =

1/(2p) and therefore

N
∏

ℓ=1

(1 + 4u2λ2ℓ )
−1/4 ≤

p
∏

i=1

(

1 + 4u2
ℓi+1
∑

ℓ=ℓi+1

λ2ℓ

)−1/4

≤ (p/2)p/4(1 + µ2u
2)−p/4. (14)

This gives the desired estimate in the case where j = 0.
For j > 0, the explicit form of ϕθ̂ allows one to check that

ϕ
(j)

θ̂
(u) =

∑

j1+...+jN=j

j!

j1! . . . jN !

N
∏

ℓ=1

djℓ

dujℓ
(1− 2iuλℓ)

−1/2.

Simple computations yield

∣

∣

∣

djℓ

dujℓ
(1− 2iuλℓ)

−1/2
∣

∣

∣
≤
∣

∣

∣

jℓ! (2iλℓ)
jℓ

(1− 2iuλℓ)jℓ+1/2

∣

∣

∣
≤ jℓ!‖2λ‖jℓ∞

(1 + 4u2λ2ℓ )
1/4

.

Therefore,
∣

∣

∣

dj

duj
ϕθ̂(u)

∣

∣

∣ ≤ j!(2N‖λ‖∞)j
N
∏

ℓ=1

(1 + 4u2λ2ℓ )
−1/4

and the desired inequality for θ = 0 follows from (14). For θ different from zero, it suffices to use

the relation |ϕ(j)

θ̂−θ
(u)| ≤∑j

k=0 C
k
j |iθ|k|ϕ

(j−k)

θ̂
(u)| and the obtained estimate for |ϕ(j−k)

θ̂
(u)|.

Remark 2. We will use the result of Lemma 1 in the asymptotic setup described in Proposition 2,
essentially for bounding the tails of the derivatives of the characteristic function ϕθ̂−θ(u) of θ̂−θ,
when the absolute value of u is larger than N q0/

√
µ2 for some q0 > 0. As we see later, in the

asymptotic setup, the ratio ‖λ‖2∞/µ2 tends to zero under mild assumptions on the sampling
schemes. This will allow us to take the parameter p of Lemma 1 large enough to guarantee
suitable decay properties for the tails of the derivatives of ϕθ̂−θ.

3.2.2. Computation of µk in our setup
We showed in the previous subsection that the asymptotic expansion of the characteristic function
of θ̂ involves the traces of integer powers of the matrix Σ ·A. In our setup, both matrices A and
Σ have special forms. In particular, they contain only a small number of nonzero entries and,
therefore, the expression of µk takes a simplified form.

Prior to presenting the formula for µk, we need a definition. Let k > 0 be an integer.
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10 Dalalyan and Yoshida

Definition 1. We call chain of length k, any vector (i, j) ∈ {1, . . . , N1}k × {1, . . . , N2}k such
that Iip ∩ Jjp 6= ∅ and Jjp ∩ Iip+1 6= ∅ for all p ∈ {1, . . . , k} with the convention ik+1 = i1. The
set of all chains of length k will be denoted by Ck.

In the definition of Ck, ip (resp. jp) stands for the pth coordinate of i (resp. j).

Proposition 3. The coefficients µ2 and µ3 can be computed by the formulae

µ2 =
1

2

∑

(i,j)∈C2

2
∏

p=1

v(Iip ∩ Jjp) +
1

2

∑

(i,j)∈C1

v1(I
i)v2(J

j),

µ3 =
1

4

∑

(i,j)∈C3

3
∏

p=1

v(Iip ∩ Jjp) +
3

4

∑

(i,j)∈C2

v1(I
i1 )v2(J

j1 )v(Ii2 ∩ Jj2),

where v, v1 and v2 are defined by (4).

Proof. We give only the proof of the second formula. The proof of the first formula is analogous
but simpler, therefore it is omitted. Since µ3 = Tr[(Σ · A)3], we have

µ3 =

N
∑

ℓ1,...,ℓ6=1

σℓ1ℓ2aℓ2ℓ3σℓ3ℓ4aℓ4ℓ5σℓ5ℓ6aℓ6ℓ1 . (15)

In our setup, the entries of the matrix A are

aℓ,ℓ′ =
1

2
· 1(ℓ ≤ N1, ℓ

′ > N1, I
ℓ ∩ Jℓ′−N1 6= ∅) +

1

2
· 1(ℓ > N1, ℓ

′ ≤ N1, I
ℓ′ ∩ Jℓ−N1 6= ∅),

(16)

and those of Σ are

σℓ,ℓ′ =































v(Iℓ ∩ Jℓ′−N1), if ℓ ≤ N1, ℓ
′ > N1,

v(Iℓ
′ ∩ Jℓ−N1), if ℓ′ ≤ N1, ℓ > N1,

v1(I
ℓ), if ℓ = ℓ′ ≤ N1,

v2(J
ℓ−N1), if ℓ = ℓ′ > N1,

0, otherwise.

(17)

To compute the sum in the right hand side of (15), we consider different cases separately.
Case A: ℓ1 ≤ N1 Our aim now is to compute

µ3,A =
∑

ℓ1≤N1

N
∑

ℓ2,...,ℓ6=1

σℓ1ℓ2aℓ2ℓ3σℓ3ℓ4aℓ4ℓ5σℓ5ℓ6aℓ6ℓ1 .

This can be done by considering the following four subcases:

Case A.1 ℓ1 6= ℓ2 and ℓ3 6= ℓ4, Case A.2 ℓ1 = ℓ2 and ℓ3 = ℓ4,
Case A.3 ℓ1 6= ℓ2 and ℓ3 = ℓ4, Case A.4 ℓ1 = ℓ2 and ℓ3 6= ℓ4.

In the case A.1, in order that the corresponding term in (15) be nonzero, the indices ℓi, i ≤ 6,
should satisfy ℓ1 ≤ N1, ℓ2 > N1, ℓ3 ≤ N1, ℓ4 > N1, ℓ5 ≤ N1 and ℓ6 > N1. Moreover, if we set
i = (ℓ1, ℓ3, ℓ5) and j = (ℓ2, ℓ4, ℓ6), then (i, j) should belong to C3. Therefore, σipjp = v(Iip ∩Jjp)
for p = 1, 2, 3 and

σℓ1ℓ2aℓ2ℓ3σℓ3ℓ4aℓ4ℓ5σℓ5ℓ6aℓ6ℓ1 =
1

8
1((i, j) ∈ C3)

3
∏

p=1

v(Iip ∩ Jjp). (18)
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Expansion for the HY-estimator 11

In the case A.2, in order to get nonzero term in (15), the indices ℓi, i ≤ 6, should satisfy
ℓ1 = ℓ2 ≤ N1, ℓ3 = ℓ4 > N1, ℓ5 ≤ N1 and ℓ6 > N1. Moreover, if we set i = (ℓ1, ℓ5) and
j = (ℓ3, ℓ6), then (i, j) should belong to C2. Therefore,

σℓ1ℓ2aℓ2ℓ3σℓ3ℓ4aℓ4ℓ5σℓ5ℓ6aℓ6ℓ1 = σi1i1ai1j1σj1j1aj1i2σi2j2aj2i1

=
1

8
1((i, j) ∈ C2)v1(I

i1)v2(J
j1)v(Ii2 ∩ Jj2). (19)

In the cases A.3 and A.4, it is easily seen that the corresponding summand in the right hand
side of (15) is 6= 0 only if ℓ5 = ℓ6. Using the symmetry of aℓℓ′s and σℓℓ′s, we infer that the results
in these cases are equal and equal to the result of the case A.2.

Case B: ℓ1 > N1 We want to evaluate the term

µ3,B =
∑

ℓ1>N1

N
∑

ℓ2,...,ℓ6=1

σℓ1ℓ2aℓ2ℓ3σℓ3ℓ4aℓ4ℓ5σℓ5ℓ6aℓ6ℓ1 .

In view of the symmetry of matrices A and Σ, we can rewrite µ3,B in the form

µ3,B =
∑

ℓ1>N1

N
∑

ℓ2,...,ℓ6=1

σℓ6ℓ5aℓ5ℓ4σℓ4ℓ3aℓ3ℓ2σℓ2ℓ1aℓ1ℓ6 .

Since aℓ1ℓ6 6= 0 and ℓ1 > N1 entails ℓ6 ≤ N1, and aℓ1ℓ6 6= 0 and ℓ6 ≤ N1 entails ℓ1 > N1, we

get µ3,B =
∑

ℓ6≤N1

∑N
ℓ1,ℓ2,...,ℓ5=1 σℓ6ℓ5aℓ5ℓ4σℓ4ℓ3aℓ3ℓ2σℓ2ℓ1aℓ1ℓ6 . By reordering the indices we get

µ3,B = µ3,A and the assertion of the proposition follows.

Corollary 1. The terms µ2 and µ3 may alternatively be computed by formulae (5)-(6).

Proof. Let us prove the second equality. Let us denote by T1 and T2 respectively the first and
the second sums in the expression of µ3 given in Proposition 3. In this notation, 4µ3 = T1 +3T2.

On the one hand, (i, j) ∈ C2 implies that both Ii1 and Ii2 have non-empty intersections with
each of Jj1 and Jj2 . This obviously implies that i1 = i2 or j1 = j2. Therefore,

T2 =
∑

(i,j)∈C2

v1(I
i1)v2(J

j1)v(Ii2 ∩ Jj2)

=
∑

I,J,J′

v1(I)v2(J)v(I ∩ J ′)KIJ +
∑

I,I′,J

v1(I)v2(J)v(I
′ ∩ J)KIJ −

∑

I,J

v1(I)v2(J)v(I ∩ J),

the last term resulting from the fact that the terms with i1 = i2 and j1 = j2 are present both in
the first and in the second sums of the right hand side. Since the set of intervals Π2 = {Jj} forms
a partition of [0, T ], we have

∑

J′ v(I ∩ J ′) = v(I). Similarly,
∑

I′ v(I ′ ∩ J) = v(J). Therefore

T2 =
∑

I,J

v1(I)v2(J)[(v(I) + v(J))KIJ − v(I ∩ J)] = v(I ∪ J)KIJ . (20)

To compute the term T1, we decompose the sum
∑

(i,j)∈C3
into the sum of three terms

T1q =
∑

(i,j)∈C3

#{j1,j2,j3}=q

3
∏

p=1

v(Iip ∩ Jjp), q = 1, 2, 3.

If q = 1, then Jj1 = Jj2 = Jj3 := J and using the same arguments as for evaluating T2, we
get T11 =

∑

J v(J)
3. If q = 2, then j1 = j2 6= j3 or j1 = j3 6= j2 or j1 6= j2 = j3. Because of
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12 Dalalyan and Yoshida

the symmetry, it suffices to consider one of these cases. Let j1 = j2 6= j3 and set J = Jj1 and
J ′ = Jj3 . The relations (i, j) ∈ C3 implies that both J and J ′ have non-empty intersections with
both Ii1 and Ii3 . Therefore, Ii1 = Ii3 := I and setting Ii2 = I ′ we get

T12 = 3
∑

J 6=J′,I,I′

v(I ∩ J)v(I ′ ∩ J)v(I ∩ J ′) = 3
∑

J 6=J′,I

v(I ∩ J)v(J)v(I ∩ J ′)

= 3
∑

I,J

v(I ∩ J)v(J)[v(I) − v(I ∩ J)].

In the case when all indices j1, j2 and j3 are different, it is easily seen that (i, j) ∈ C3 entails
i1 = i2 = i3. Therefore,

T13 =
∑

I,J,J′,J′′

#{J,J′J′′}=3

v(I ∩ J)v(I ∩ J ′)v(I ∩ J ′′)

=
∑

I,J,J′,J 6=J′

v(I ∩ J)v(I ∩ J ′)[v(I) − v(I ∩ J ′)− v(I ∩ J)]

=
∑

I,J,J′,J 6=J′

v(I ∩ J)v(I ∩ J ′)v(I) − 2
∑

I,J 6=J′

v(I ∩ J)2v(I ∩ J ′).

Using the identity
∑

J′:J 6=J′ v(I ∩ J ′) = v(I) − v(I ∩ J) we get T13 =
∑

I v(I)
3 −∑I,J v(I ∩

J)2[3v(I)− 2v(I ∩ J)]. Summing up the terms T11, T12, T1,3 and T2 we get equality (6). Equality
(5) can be proved along the same lines.

Remark 3. If the observations are synchronous, that is Π1 = Π2 = Π, then µ2 and µ3 have the
following simple expressions:

2µ2 =
∑

I∈Π

[v(I)2 + v1(I)v2(I)], 4µ3 =
∑

I∈Π

[v(I)3 + 3v1(I)v2(I)v(I)].

Lemma 2. Assume that we are given two sequences of partitions Π1
n = {Iin, i ≤ N1,n} and

Π2
n = {Jj

n, j ≤ N2,n} of the interval [0, T ]. Define the matrices An and Σn by (16) and (17). If
the functions σ1 and σ2 are bounded on [0, T ] by some constant σ, then

max
ℓ
λ2ℓ,n = ‖(Σ1/2

n AnΣ
1/2
n )2‖ ≤ 3σ4r2n,

where rn = [(maxi |Iin|) ∨ (maxj |Jj
n|)].

Proof. Let us define a new partition Π̃1
n as follows: I ∈ Π̃1

n if and only if either I ∈ Π1
n and it

has non-empty intersection with two distinct intervals from Π2
n or there is J ∈ Π2

n such that I
is the union of all intervals from Π1

n included in J . The partition Π̃2
n is defined analogously. It

is easy to check that the estimator θ̂n based on (Π̃1
n, Π̃

2
n) is equal to the one based on (Π1

n,Π
2
n).

It follows that µp,n = µ̃p,n for every p ∈ N. Therefore, the relation maxℓ λ
2
ℓ,n = limp→∞ µ

1/p
2p,n

implies that maxℓ λ
2
ℓ,n = maxℓ λ̃

2
ℓ,n. It is clear that rn = r̃n, but the advantage of working with

(Π̃1
n, Π̃

2
n) is that

max
J∈Π̃2

∑

I∈Π̃1

KIJ ≤ 3, max
I∈Π̃1

∑

J∈Π̃2

KIJ ≤ 3. (21)

In the remaining of this proof, without loss of generality we assume that (21) is fulfilled for

partitions (Π1,Π2). The estimate ‖(Σ1/2
n AnΣ

1/2
n )2‖ ≤ ‖Σn‖2‖An‖2 implies that it suffices to

imsart-aihp ver. 2010/04/27 file: Dalalyan_Yoshida_final.hyper4714.tex date: August 2, 2010



Expansion for the HY-estimator 13

estimate ‖An‖ and ‖Σn‖. To bound from above ‖An‖2, we use ‖An‖2 = maxu:|u|=1 |Anu|2 and

|Anu|2 =
1

4

∑

i

(

∑

j

KIiJjuN1+j

)2

+
1

4

∑

j

(

∑

i

KIiJjui

)2

.

Applying the Cauchy-Schwarz inequality and changing the order of summation, we get the in-

equalities
∑

i

(
∑

j KIiJjuN1+j

)2 ≤ 3
4

∑

j u
2
N1+j and

∑

j

(
∑

iKIiJjui
)2 ≤ 3

4

∑

i u
2
i , which imply

that ‖An‖2 ≤ 3/4.
On the other hand,

‖Σn‖ = max
u:|u|=1

N
∑

ℓ,ℓ′=1

σℓ,ℓ′uℓuℓ′ = max
u:|u|=1

(

N
∑

ℓ=1

σℓ,ℓu
2
ℓ + 2

∑

i,j

v(Iin ∩ Jj
n)uiuN1+j

)

.

Since σℓ,ℓ′s are given by (17), the first sum in the right hand side is bounded by σ2(maxi |Iin|) ∨
(maxj |Jj

n|), whereas the second sum can be bounded using the inequality relating the geometrical
and the arithmetical means :

2
∑

i,j

v(Iin ∩ Jj
n)uiuN1+j ≤

∑

i,j

v(Iin ∩ Jj
n)u

2
i +

∑

i,j

v(Iin ∩ Jj
n)u

2
N1+j

=
∑

i

v(Iin)u
2
i +

∑

j

v(Jj
n)u

2
N1+j

≤ |u|2σ2(max
i

|Iin|) ∨ (max
j

|Jj
n|).

This completes the proof of the lemma.

As a by-product of the preceding lemma, we give below a simple sufficient condition for the
asymptotic normality of θ̂n.

Corollary 2. In the notation of Lemma 2, if

lim
n→∞

r2n
µ2,n

= 0, (22)

then (θ̂n − θ)/
√

2µ2,n converges in distribution to a standard Gaussian random variable.

Proof. According to Proposition 2, it is enough to show that limn→∞
‖(Σ1/2

n AnΣ
1/2
n )2‖

Tr[(ΣnAn)2)]
= 0. This

convergence follows from assumption (22) and Lemma 2.

3.2.3. Expansion of the characteristic function for random sampling schemes
We assume now that the partitions Π1

n and Π2
n are random and independent of {X1,t−X1,0, X2,t−

X2,0}t∈[0,T ]. We denote by EΠ the conditional expectation given Πn, where Πn = (Π1
n,Π

2
n).

Since in this setup the quantities rn and µ2,n — introduced in Lemma 2 and in Proposition 2,
respectively — are random, Corollary 2 can not be applied directly. The following result gives
a sufficient condition for the convergence in distribution of Corollary 2 to hold in the setup of
random sampling scheme.

Proposition 4. Let rn be defined as in Lemma 2. If r2n/µ2,n tends to zero in probability as

n→ ∞, then (θ̂n − θn)/
√

2µ2,n converges in distribution to a standard normal random variable.

If moreover, 2µ2,n/bn
P−−−−→

n→∞
c for some deterministic sequence {bn} and some positive constant

c, then (θ̂n − θ)/
√
bn

D−−−−→
n→∞

N(0, c).
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14 Dalalyan and Yoshida

Proof. Denote σ[Π] = σ[Πn, n ∈ N]. Our aim is to show that for every u ∈ R the conver-

gence E
[

exp
(

iu(θ̂n − θn)/
√

2µ2,n

)]

−−−−→
n→∞

E[e−
1
2u

2

] holds. Let us denote an = E
[

exp
(

iu(θ̂n −

θn)/
√

2µ2,n

)]

and a = E[e−
1
2u

2

]. To show the desired convergence, it suffices to check that ev-

ery convergent subsequence of {an} converges to a. For checking this property, one can simply
remark that for any subsequence {ank

}, there is a sub-subsequence {nkj} such that r2nkj
/µ2,nkj

converges almost surely. Then, Corollary 2 implies that ankj
converges to a as j → ∞. Therefore,

a is also the limit of the sequence {ank
} and the first assertion of the proposition follows. The

second assertion follows from the first one by a simple application of the Slutsky lemma.

From now on, we assume that the assumptions of Proposition 4 are fulfilled and aim at finding
the asymptotic expansion of the distribution of the random variable Xn = (θ̂n − θ)/

√
bn as

n→ ∞. The first step in deriving the asymptotic expansion of a distribution is the expansion of
the characteristic function. As usual, the desired expansion involves the r-th conditional cumulant
ofXn given Π, henceforth denoted by κr[Xn]. Let λ̄r,n be the normalized r-th conditional cumulant
of Xn:

λ̄r,n = b
− r−2

2
n κr[Xn] = 2r−1(r − 1)! b−r+1

n µr,n.

Note that this notation is consistent with those introduced in (7).

Lemma 3. For every positive integer r, we have

|µr,n| ≤
∑

ℓ

|λℓ,n|r ≤ max
ℓ

|λℓ|r−2µ2,n ≤ (αn

√

bn)
r−2µ2,n, (23)

where αn =
√
3σ2rnb

−1/2
n . In terms of the conditional cumulants, this is equivalent to |κr[Xn]| ≤

crα
r−2
n λ̄2,n, where cr = 2r−2(r − 1)!.

Proof. This is an immediate consequence of Lemma 2.

Proposition 5. Let the sequence {bn} be as in Proposition 4. For some fixed c1 > 0, let

Pn(δ) =
{

Π : αn < δ, λ̄2,n < c1

}

, ∀δ > 0.

Then, for every j ∈ Z+, there exist some positive constants C and q such that

dj

duj

(

EΠ[eiuXn ]
)

=
dj

duj

{

e−
λ̄2,nu2

2

(

1 +
(iu)3b

1/2
n

6
λ̄3,n

)}

+O(δ2)(1 + |u|q)e−
λ̄2,n

2 u2

for every u satisfying |u| ≤ Cδ−1/3 and for every Πn ∈ Pn(δ). In this formula, O(δp) stands
for a random variable depending only on partitions Πn = (Π1

n,Π
2
n) and satisfying the condition

lim supδ→0 supn supΠn∈Pn(δ) |O(δp)|δ−p <∞.

Proof. Let us define a0(u) = −λ̄2,nu2/2, a1,n(u) =
(iu)3b1/2n λ̄3,n

6 and rn(u) =
∑∞

k=4
(2iu)kµk,n

2kb
k/2
n

.

Using (11) and the fact that in our setup maxℓ |λℓ| is bounded by
√
3σ2rn, we get

EΠ[eiuXn ] = exp

{ ∞
∑

k=2

(2iu)kµk,n

2kb
k/2
n

}

= exp

{

− λ̄2,nu
2

2
+

(iu)3b
1/2
n λ̄3,n
6

+ rn(u)

}

for every u ∈ R such that |u| < 1/(2δ). One easily checks that

EΠ[eiuXn ]− ea0(u)(1 + a1,n(u)) = ea0(u)(a1,n(u) + rn(u))
2

∫ 1

0

∫ 1

0

vetv(a1,n(u)+rn(u)) dtdv

+ rn(u)e
a0(u). (24)
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Expansion for the HY-estimator 15

Inequalities (23) imply that there exists some constant C > 0 such that for every ℓ ≤ j and for
every Πn ∈ Pn(δ), it holds that

∣

∣

∣

∣

dℓrn(u)

duℓ

∣

∣

∣

∣

≤ C
(1 + u4)α2

nµ2,n

bn
≤ C1(1 + u4)δ2,

as soon as |u| ≤ 1/(4αn). Similarly, for every ℓ ∈ N,

∣

∣

∣

dℓ

duℓ
a1,n(u)

∣

∣

∣ ≤ C2(1 + |u|3)αnµ2,n

3bn
≤ C2(1 + |u|3)δ, if Πn ∈ Pn.

These inequalities in conjunction with Eq. (24) yield the estimate

dj

duj

(

EΠ[eiuXn ]− ea0(u)(1 + a1,n(u))
)

= O(δ2)(1 + |u|q)ea0(u).

This completes the proof of the proposition

Remark 4. As usual in asymptotic expansions, the coefficient of the second order term (i.e., the

coefficient of (iu)3b
1/2
n ) in the obtained decomposition is given by the normalized third cumulant

divided by 6. It also admits the following representations:

b
1/2
n

6
λ̄3,n =

1

6
κ3[Xn] =

4µ3,n

3bn
√
bn

where µ3,n is defined by (6).

3.3. Proof of Theorem 1

Let us start by proving relation (8). Let h(x) = 1 + |x|γ . Let K be a probability density on
R such that the Fourier transform K̂ of K is compactly supported,

∫

R
|x|γ+2K(x) dx < ∞ and

∫ 1

−1
K(x) dx ≥ 2/3. Let K > 0. For ǫ > 0, define the measure Kǫ by Kǫ(x) = K(ǫ−1x) for all

x ∈ R. Using the modified version of the Sweeting lemma [42] stated in Babu and Singh [4,
Lemma 1], we get:

|EΠ[f(Xn)]−ΨΠ
n [f ]| ≤ 9γM(PXn|Π + |ΨΠ

n |)[h]
(

A0 + A1 + A2

)

+ A3, (25)

where

A0 =

∫

R

h(x)
∣

∣KbKn
∗ (PXn|Π −ΨΠ

n )
∣

∣(dx), A1 = bKn

∫

R

|x|γ+2K(x) dx, A2 = 21−b−K/4
n

A3 = sup
|x|≤bKn

∫

R

ωf (x− y, 2bKn )|ΨΠ
n |(dy).

As we already mentioned, the Rosenthal inequality yields that PXn|Π[h] = 1 + EΠ[|Xn|γ ] is
bounded uniformly in n. Furthermore, it is obvious that the term |ΨΠ

n |[h] is bounded uniformly
in n.

If n is sufficiently large, [x− y − 2bKn , x− y + 2bKn ] ⊂ [−y − 3b
K/4
n ,−y + 3b

K/4
n ] and therefore

A3 ≤ 2

∫

R

ωf (−y, 3bK/4
n )|ΨΠ

n |(dy) ≤ C
◦

∫

R

ωf(y, 3b
K/4
n )φ(y; c∗) dy ≤ CbKη/4

n .

On the other hand, A0 admits the estimate

A0 ≤
2+γ
∑

α=0

∫

R

∣

∣

∣∂αu

[ (

ϕΠ
Xn

(u)− Ψ̂Π
n (u)

)

K̂(bKn u)
]∣

∣

∣ du,
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16 Dalalyan and Yoshida

where ϕΠ
Xn

(u) = EΠ[eiuXn ]. Let δn = b
a−1/2
n . By virtue of Proposition 5 and Lemma 1, we have

∫

R

∣

∣

∣∂αu

[(

ϕΠ
Xn

(u)− Ψ̂Π
n (u)

)

K̂(bKn u)
]∣

∣

∣ du

≤
∫

u:|u|≤Cδ
−1/3
n

∣

∣

∣
∂αu

[(

ϕΠ
Xn

(u)− Ψ̂Π
n (u)

)

K̂(bKn u)
]∣

∣

∣
du

+

∫

u:|u|>Cδ
−1/3
n

∣

∣

∣∂αu

[ (

ϕΠ
Xn

(u)− Ψ̂Π
n (u)

)

K̂(bKn u)
]∣

∣

∣ du

≤
∫

u:|u|≤Cδ
−1/3
n

O(δ2n)(1 + |u|q)e−µ2,nu
2/2 du+

∫

u:|u|>Cδ
−1/3
n

C2

1 + |u|L du

+

2+γ
∑

α′=0

∫

u:|u|>Cδ
−1/3
n

|∂α′

u Ψ̂Π
n (u)| du

≤ C3[O(δ2n) + δ(L−1)/3
n ] ≤ C4δ

2
n,

where L can be chosen as large as we need, therefore A0 ≤ C5δ
2
n. Combining all these estimates,

we get

|EΠ[f(Xn)]−ΨΠ
n [f ]| ≤ C

(

b2a−1
n + bKn + 2−b−K/4

n + bKη/4
n

)

.

Choosing K > max(2a− 1, 4(2a− 1)/η), we get the relation stated in (8).

To prove (9), we notice that |λ̄3,n(λ̄2,n− c)| = O(b−1
n rn×ba−1/2

n ) = O(b
2a− 3

2
n ) = o(1) uniformly

on the event An. Expanding φ(z; λ̄2,n) in ΨΠ
n around c we get the desired result.

4. Poisson sampling scheme

As an application of previous results let us consider the case when the partitions Π1
n and Π2

n are
generated by Poisson point processes. Let Pi,n = (Pi,n

t , t ≥ 0), i = 1, 2, be two independent
homogeneous Poisson processes with intensities npi, i = 1, 2. Moreover, assume that these pro-
cesses are independent of B. Let the sampling times S1, . . . , SN1 and T 1, . . . , TN2 be the time
instants corresponding to the jumps of P1,n and P2,n occurred before the instant T . Note that
Sis and T js depend also on n. However, for simplicity of exposition this dependence will not be
reflected in our notation.

Prior to stating the main result of this section, let us recall several notation. We denote by
h(t) the function σ1,tσ2,tρt and by x+ the positive part of a real x. Finally, we write g1(z) ∝ g2(z)
if for some Cg ∈ R the equality g1(z) = Cgg2(z) holds for every z.

Theorem 3. Let the sampling scheme be generated by two independent Poisson processes with
intensities np1 and np2, independent of the driving BM B. If the functions σ1, σ2 and ρ are
Lipschitz continuous then, for every a ∈ (34 , 1), it holds that

sup
f∈E(M,γ)∩E0(C,η,r0,c∗)

∣

∣

∣

∣

E[f(
√
n(θ̂n − θ))] −

∫

R

f(z) p◦n(z) dz

∣

∣

∣

∣

= O(n1−2a), (26)

where

p◦n(z) ∝
1√
2πc

[

1 +
2κ(z3 − 3cz)√

n c3

]

+
e−z2/(2c)

is a probability density with

c =

(

2

p1
+

2

p2

)∫ T

0

σ2
1,tσ

2
2,t(1 + ρ2t )dt−

2

p1 + p2

∫ T

0

(σ1,tσ2,tρt)
2dt,

κ =

(

1

p21
+

1

p22

)∫ T

0

h(t)3 dt+
3p21 + 2p1p2 + 3p22

p21p
2
2

∫ T

0

σ2
1,tσ

2
2,th(t) dt.
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Expansion for the HY-estimator 17

Before proceeding with the proof of this theorem, let us note that it extends the asymptotic
normality result proved in Hayashi and Yoshida [19], providing the second-order term in the

asymptotic expansion of the distribution of θ̂n. Note however that the price to pay for getting
this expansion is a slightly stronger assumption on the functions σ1, σ2 and ρ. Indeed, we assume
in Theorem 3 that these functions are Lipschitz, while in [19] only the continuity of these functions
was required.

Remark also that the constant of proportionality in the definition of p◦n can be replaced by
one. Indeed, p◦n(z) is the positive part of the function

z 7→ 1√
2πc

[

1 +
2κ(z3 − 3cz)√

n c3

]

e−z2/(2c), (27)

whose integral over R is equal to one. Moreover, for some c > 0, the function (27) is positive
on the interval [−cn1/6, cn1/6] and its absolute value is bounded by an exponentially decreasing
function outside the interval [−cn1/6, cn1/6]. This implies that the proportionality constant in

the definition of p◦n is 1 +O(e−n1/3/(4c)) and, consequently, its exact value is unimportant.

Proof of Theorem 3. We want to apply Theorem 2. To this end, we have to accomplish the
following tasks:

[T1] prove that λ̄2,n = 2nµ2,n is very close to c in expectation and in probability,
[T2] check that the maximal sampling step rn is smaller than ban with high probability,
[T3] determine the asymptotic behavior of E[λ̄3,n],

with bn = 1/n and some a < 1. In fact, we will show that any a < 1 can be used.
Concerning the task [T1], it is proved in [19] that 2nµ2,n converges in probability to c. In the

present work, we need a result providing the rate of convergence of 2nµ2,n to c. It is done in the
following

Proposition 6. If the functions σ1, σ2 and ρ are Lipschitz continuous, then there exists a
constant C > 2 depending only on p1 and p2 such that, for every x > C logn and for every
n ≥ 2, it holds that

P

(

|2nµ2,n − c| > C log3 n

n
+

x√
n

)

≤ Cne−x/C . (28)

Furthermore, E[2nµ2,n] = c+O(n−1 log3 n) as n goes to infinity.

The proof of this proposition is deferred to Section 7.
The task [T2], consisting in bounding the probability of the event rn > ban = n−a is done using

the following lemma.

Lemma 4. There exists a constant C depending only on p1 and p2 such that, for every x > 0,
the inequality P(nrn > x) ≤ Cne−x/C holds.

Proof. We start with bounding P(maxI∈Π1
n
n|I| > x). According to the Markov inequality, for

every u > 0,

P(max
I∈Π1

n

n|I| > x) ≤ e−uxE
[

∑

I∈Π1
n

eun|I|
]

.

The last sum can be bounded by the sum of N1 independent random variables each of which
has the same law as euζ/p1 , with ζ being exponentially distributed with mean 1. In view of the
Wald equation, this yields E

[
∑

I∈Π1
n
eun|I|

]

= np1TE[euζ/p1]. Choosing u smaller than p1 and

repeating the same arguments for maxJ∈Π2
n
n|J |, we obtain the desired result.
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18 Dalalyan and Yoshida

Replacing x by n
1
2−a in (28) and by n1−a in Lemma 4, we obtain that the probability of the

event An(a)
c is exponentially small as n→ ∞. Therefore, P(An(a)

c) = o(bpn) = o(n−p) for every
p > 0. One also deduces from Proposition 6 that E[λ̄2,n] − c = o(n1−2a) as n → ∞. Thus, it
remains to accomplish the task [T3], which is done using the following proposition, the proof of
this proposition is deferred to Section 7.

Proposition 7. Under the assumptions of Theorem 3, it holds that E[µ3,n] =
3
2κn

−2+O( log
3 n

n3 ).

Combining these results, we get the assertion of Theorem 3.

5. Stochastic decomposition for θ̂n in a model with drift terms

So far we have considered a Gaussian system (X1,t −X1,0, X2,t −X2,0) as the underlying model
and essentially finite dimensional Gaussian calculus served as a tool. In this section, we will treat
a system that has random drift terms. It will be seen that the principal part of the estimator
is the same as in the case without drifts. Thus, the contribution of the principal part to the
asymptotic expansion of the estimator has already been assessed in the previous section.

Beyond being a useful tool for deriving asymptotic expansions of the distribution of θ̂n, the
stochastic decomposition of the HY-estimator that we obtain below bridges the problem of esti-
mating the covariance and that of signal detection in Gaussian white noise. The latter problem
has been extensively studied in the statistical literature and we believe that the methodology
developed for the problem of signal detection may be of interest for our problem.

To state the main result of this section, let us recall that we deal with processes X1 and X2

given by
{

dX1,t = β1,t dt+ σ1,t dB1,t, t ∈ [0, T ],

dX2,t = β2,t dt+ σ2,t dB2,t, t ∈ [0, T ],

where βi,t are progressively measurable processes and assumed to be unknown to the observer.
We will assume that these drift processes admit the following stochastic decompositions:

dβi,t = β
[0]
i,tdt+ β

[1]
i1,t dB1,t + β

[1]
i2,t dB2,t, i = 1, 2,

where β
[0]
i , β

[1]
ij , i, j = 1, 2 are progressively measurable processes with respect to the filtration

{σ(Bs, s ≤ t)}t∈[0,T ].
In this section, we will separate the assumptions on the sampling scheme from those on ρ

and on the drifts and volatilities of X1 and X2. For this reason, let us introduce the following
measures on ([0, T ]2,B[0,T ]2):

VI
n(·) = b−1

n | · ∩ {∪II × I}|, VJ
n (·) = b−1

n | · ∩ {∪JJ × J}|,
VI∩J
n (·) = b−1

n | · ∩ {∪I,J (I ∩ J)× (I ∩ J)}|,
VI,J
n (·) = b−1

n

∑

I,J

KIJ | · ∩ (I × J)|.

Note that these measures depend on the sampling schemes and, therefore, they are random
if the sampling schemes are random. Similarly, let VI,I′,J

n (·) = b−2
n | · ∩{∪JJ × I(J) × I(J)}|,

VI,J,J′

n (·) = b−2
n | · ∩{∪II × J(I)× J(I)}| and VJ(I),I(J),J∩I

n (·) = b−2
n | · ∩{∪I,JJ(I)× I(J)× J ∩ I}|

be (random) measures defined on ([0, T ]3,B[0,T ]3).

Assumption P1 The random measures VI
n, VJ

n , VI∩J
n and VI,J

n converge weakly to some deter-
ministic measures VI , VJ , VI∩J and VI,J in probability, as n → ∞. These measures are
concentrated on the diagonal D2

T = {(s, t) ∈ [0, T ]2 : s = t} and absolutely continuous
w.r.t. the Lebesgue measure on the line.
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Expansion for the HY-estimator 19

Assumption P2 As n → ∞, the random measures VI,I′,J
n , VI,J,J′

n and VJ(I),I(J),I∩J
n converge

weakly to some deterministic measures VI,I′,J , VI,J,J′

and VJ(I),I(J),I∩J in probability. These
measures are concentrated on the diagonal D3

T = {(s, t, u) ∈ [0, T ]3 : s = t = u} and
absolutely continuous w.r.t. the Lebesgue measure on the line.

The weak convergence of VI
n to VI in probability should be understood as follows: for every

continuous function ϕ : [0, T ]2 → R, the sequence of random variables
∫

[0,T ]2
ϕdVI

n converges in

probability to
∫

[0,T ]2
ϕdVI as n tends to infinity. For the purposes of the present work, it is prob-

ably possible to slightly relax Assumption P2 by replacing the weak convergence by the tightness
condition. However, to avoid additional technicalities we assume that the weak convergence of
measures stated in Assumption P2 holds.

Recall that according to our assumptions Π is independent of B, where Π is the collection of
random intervals Ii := (Si−1 ∧ T, Si ∧ T ], Jj := (T j−1 ∧ T, T j ∧ T ] with i = 1, . . . , N1 and j =
1, . . . , N2. In what follows, the following notation will be used: for two functions f, g : [0, T ] → R,

we denote by f · g the function t 7→
∫ t

0 fs dgs and we often write I or J instead of 1I or 1J . Thus

the estimator θ̂n can be rewritten as

θ̂n =

N1
∑

i=1

N2
∑

j=1

Kij{Ii ·X1}T × {Jj ·X2}T .

We want to derive an asymptotic expansion of the distribution of this estimator using a pertur-
bation method based on a stochastic expansion of the estimator θ̂n itself. The main term in this
stochastic expansion is

Mn
T = b−1/2

n

(

∑

i,j

Kij{(Iiσ1) · B1}T {(Jjσ2) · B2}T − θ
)

.

Note that the asymptotic expansion of the distribution of Mn
T has already been obtained in

preceding sections. In this section, we will need a representation of Mn as a stochastic integral
with respect to the BM (B1, B2) that can be written—using the Itô formula—as follows:

Mn = H
1,n ·B1 +H

2,n ·B2, (29)

where H1,n =
∑

I,J b
−1/2
n KIJ(Jσ2 ·B2)Iσ1 and H2,n =

∑

I,J b
−1/2
n KIJ(Iσ1 ·B1)Jσ2.

Lemma 5. Assume that σ1, σ2 and ρ are bounded and β
[ℓ−1]
ij s are bounded in L4 uniformly in

[0, T ] for every i, j, ℓ ∈ {1, 2}. If r3n = op(b
2
n), then

b−1/2
n (θ̂n − θ) =Mn

T + b1/2n (Nn
T +An

T ) + op(b
1/2
n ),

where dNn
t = G

1,n
t dB1,t +G

2,n
t dB2,t is a local martingale with

G
1,n = b−1

n

∑

i,j

Kij{((Jjβ2) · t)(Iiσ1)}+ b−1
n

∑

i,j

Kij{(T j − T j−1 ∨ ·)+Iiσ1β2,Si−1},

G
2,n = b−1

n

∑

i,j

Kij{((Iiβ1) · t)(Jjσ2)}+ b−1
n

∑

i,j

Kij{(Si − Si−1 ∨ ·)+Jjσ2β1,T j−1},

and An is a bounded variation process defined by

An = b−1
n

∑

i,j

Kij

{

Jj{[Iiσ1(β[1]
21 + β

[1]
22 ρ)] · s}+ Ii{[Jjσ2(β

[1]
11 ρ+ β

[1]
12 )] · s}

}

· t

+ b−1
n

∑

i,j

Kij{(Iiβ1) · t} × {(Jjβ2) · t}.
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20 Dalalyan and Yoshida

Lemma 5 provides a stochastic decomposition of the HY-estimator with a RHS depending on
n. Under the assumptions P1 and P2 of the convergence of random measures associated to the
sampling scheme, it is possible to obtain a refinement of this result with a RHS depending on n
exclusively through bn. To this end, limit theorems for martingales will be used. An important
step for proving limit theorems for martingales is the computation of the limits of their quadratic
variations and covariations, which will be treated below.

5.1. Convergence of quadratic variations and covariations

To establish an asymptotic expansion of b
−1/2
n (θ̂n−θ) that is more explicit than the one given by

Lemma 5, we need to identify the limiting distribution of the martingale (B1, B2,M
n, Nn) as n

goes to infinity. The convergence of the quadratic variation-matrix is a classical tool for proving
the convergence of a martingale. Most results of the present section being quite technical, we
postponed their proofs to Section 8.

We start with the cross terms 〈Mn, B1〉 and 〈Mn, B2〉. In view of (29), for ν = 1, 2, we have

〈Mn, Bν〉 = H
1,n · 〈B1, Bν〉+H

2,n · 〈B2, Bν〉
=
∑

I,J

b−1/2
n KIJ

[

{(Jσ2 ·B2)Iσ1} · 〈B1, Bν〉+ {(Iσ1 · B1)Jσ2} · 〈B2, Bν〉
]

.

Lemma 6. If σ1, σ2 and ρ are bounded in [0, T ] and r2n = op(bn), then

sup
ν=1,2

∣

∣

∣

∣

∑

I,J

b−1/2
n KIJ

(

{(Jσ2 ·B2)Iσ1} · 〈B1, Bν〉
)

t

∣

∣

∣

∣

P−−−−→
n→∞

0,

sup
ν=1,2

∣

∣

∣

∣

∑

I,J

b−1/2
n KIJ

(

{(Iσ1 ·B1)Jσ2} · 〈B2, Bν〉
)

t

∣

∣

∣

∣

P−−−−→
n→∞

0,

for every t ∈ [0, T ]. As a consequence, for every t ∈ [0, T ], maxν=1,2 |〈Mn, Bν〉t| tends to zero in
probability as n→ ∞.

We study now the behavior of the quadratic variation

〈Mn,Mn〉t =
2
∑

c,d=1

(Hc,n
H

d,n) · 〈Bc, Bd〉t (30)

as n tends to infinity. First, we note that

H
1,n

H
2,n =

∑

i,j,i′,j′

b−1
n KijKi′j′(J

jσ2 ·B2)I
iσ1(I

i′σ1 ·B1)J
j′σ2

=
∑

i,j,i′,j′

b−1
n KijKi′j′(J

jσ2 ·B2)J
j′σ21{j≤j′}(I

i′σ1 · B1)I
iσ11{i′≤i}

Denote by Rn(i, i′, j, j′) the summand on the right-hand side of the last equation. This term is
different from zero only if the conditions Ii ∩ Jj 6= ∅, Ii ∩ Jj′ 6= ∅, Ii

′ ∩ Jj′ 6= ∅, j ≤ j′ and
i′ ≤ i are fulfilled. If i′ < i, then these conditions are fulfilled only if j = j′. Similarly, the terms
with j < j′ are non-zero only if i = i′. This leads to

H
1,n

H
2,n =

∑

i,j,j′: j≤j′

b−1
n KijKij′(J

jσ2 ·B2)J
j′σ2(I

iσ1 · B1)Iσ1

+
∑

i′,j,i : i′≤i

b−1
n KijKi′j(J

jσ2 ·B2)J
jσ2(I

i′σ1 ·B1)I
iσ1

−
∑

I,J

b−1
n Kij(J

jσ2 ·B2)J
jσ2(I

iσ1 · B1)I
iσ1.
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Sum them up in j′ and in i respectively and use

(Jjσ2 ·B2)I
∑

j′ : j≤j′

Kij′J
j′ = (Jjσ2 · B2)I1[T j−1,T ] = (Jjσ2 · B2)I,

(Ii
′

σ1 · B1)J
∑

i: i′≤i

KijI
i = (Ii

′

σ1 ·B1)J1[Si−1,T ] = (Ii
′

σ1 ·B1)J.

to obtain H1,nH2,n = b−1
n

∑

I,J σ1σ2KIJ (Jσ2 · B2)(Iσ1 ·B1)(I + J − IJ). This implies that

H
1,n

H
2,n · 〈B1, B2〉t =

∫ t

0

σ1,sσ2,s
∑

I,J

K̃n
IJ (s)(Jσ2 ·B2)s(Iσ1 ·B1)s d〈B1, B2〉s,

where K̃n
IJ(t) = b−1

n KIJ (It + Jt − ItJt).

Lemma 7. Assume that r3n = op(b
2
n) and the functions σ1, σ2 and ρ are continuous. If Assump-

tion P1 is fulfilled then, for any t ∈ [0, T ],
∫ t

0

H
1,n
s H

2,n
s d〈B1, B2〉s P−−−−→

n→∞

1

2

∫ t

0

h2s {VI(ds) + VJ(ds)− VI∩J(ds)},
∫ t

0

(H1,n
s )2 d〈B1, B1〉s +

∫ t

0

(H2,n
s )2 d〈B2, B2〉s P−−−−→

n→∞

∫ t

0

σ2
1,sσ

2
2,s VI,J (ds)

and consequently

〈Mn,Mn〉t P−−−−→
n→∞

∫ t

0

h2s {VI(ds) + VJ (ds)− VI∩J(ds)} +
∫ t

0

σ2
1,sσ

2
2,s VI,J(ds).

Using the claims of two last lemmas, one can already derive the asymptotic distribution of
the martingale (B1, B2,M

n) as n → ∞. However, for our purposes, it is crucial to know the
asymptotics of the joint distribution of the triplet (B1, B2,M

n) with the martingale Nn.

Lemma 8. If σ1, σ2 and ρ are bounded, supt∈[0,T ]E[β2
i,t] < ∞, i = 1, 2 and r4n = op(b

3
n) as

n → ∞, then for any t ∈ [0, T ] the sequence of random variables 〈Mn, Nn〉t tends in probability
to zero as n tends to infinity.

An interesting fact revealed by this lemma is the orthogonality of Mn and Nn in terms of
quadratic covariation. This indicates that the limiting distribution of (Mn, Nn) is that of two
independent martingales. This statement will be rigorously proved at the end of this section.
Prior to presenting that proof, we wish to investigate the structure of the limiting distribution of
Nn and how it relates to the BM B.

Lemma 9. Assume that r3n = op(b
2
n) and that supt∈[0,T ] E[(β

[ℓ−1]
ij,t )2] <∞ for every i, j, ℓ ∈ {1, 2}.

Then, under Assumption P1, for every fixed t ∈ [0, T ], we have

〈Nn, B1〉t P−−−−→
n→∞

∫ t

0

(β2,sσ1,s + β1,sσ2,sρs)VI,J(ds),

〈Nn, B2〉t P−−−−→
n→∞

∫ t

0

(β1,sσ2,s + β2,sσ1,sρs)VI,J(ds)

This lemma describes the parts of the limit of Nn that can be described or explained by B1

and B2. This is however not enough. One also needs to evaluate the limiting quadratic variation
of the process Nn.

Lemma 10. If Assumption P2 is fulfilled, then for every t ∈ [0, T ], we have

〈Nn, Nn〉t P−−−−→
n→∞

∫ t

0

β2
2σ

2
1 dVI,J,J′

+

∫ t

0

β2
1σ

2
2 dVI,I′,J + 2

∫ t

0

β2β1σ1σ2ρ dVJ(I),I(J),I∩J .
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The last step before stating the main result on the convergence of the processes involved in the
stochastic decomposition presented in Lemma 5 is the proof of the convergence of the bounded
variation process An. Recall that the latter is defined by

An = b−1
n

∑

I,J

KIJ

{

J{[Iσ1(β[1]
21 + β

[1]
22 ρ)] · s}+ I{[Jσ2(β[1]

11 ρ+ β
[1]
12 )] · s}

}

· t

+ b−1
n

∑

I,J

KIJ{(Iβ1) · t} × {(Jβ2) · t}.

Obviously, it can be written as An
t = A1,n

t +A2,n
t , where

A1,n
t = b−1

n

∑

I,J

KIJ

∫

I

∫

J

{

σ1,u(β
[1]
21,u + β

[1]
22,uρu) + σ2,s(β

[1]
11,sρs + β

[1]
12,s)

}

1{u≤s≤t} du ds

A2,n
t = b−1

n

∑

I,J

KIJ

∫

I

∫

J

β1,uβ2,s1{u∨s≤t} du ds =

∫

[0,t]2
β1,uβ2,s VI,J

n (du, ds).

Using Assumption P1 and the fact that the measures VI,J
n are concentrated on the diagonal of

the square [0, t]2, we get An
t = A∞

t + op(1) with

A∞
t =

1

2

∫ t

0

{σ1,u(β[1]
21,u + β

[1]
22,uρu) + σ2,u(β

[1]
11,uρu + β

[1]
12,u) + 2β1,uβ2,u}VI,J(du). (31)

Proposition 8. Assume that the functions σ1, σ2 and ρ are continuous in [0, T ] and that

supt∈[0,T ]E[(β
[ℓ−1]
ij )4] < ∞ for every i, j, ℓ ∈ {1, 2}. If assumptions P and P1 are fulfilled,

then the sequence of two dimensional processes (Mn, Nn + An) converges weakly to a process
(M∞, N∞ +A∞). Furthermore, N∞ +A∞ is independent of M∞.

Proof. We already did the major part of the proof by showing the convergence in probability
of the sequences of quadratic variations-covariations and that of An

t . Now, if we apply Theorem
2-1 from [23] to the semimartingale Zn = (Mn, Nn + An)T with B serving as a martingale
of reference (denoted by Mn in [23]), we obtain the weak convergence of Zn to a process Z.
Moreover, it follows from (ii) of the aforementioned theorem that Z may be constructed on
an enlargement of the original probability space on which there is a two-dimensional Brownian
motion B̃ independent of B such that

Zt =

(

0
A∞

t

)

+

∫ t

0

dVI,J

dt
(s)

(

0 0
β2,sσ1,s β1,sσ2,s

)

dBs +

∫ t

0

(

ms 0
0 ws

)

dB̃s,

where

m
2
s = h2s

{dVI

ds
+
dVJ

ds
− dVI∩J

ds

}

+ σ2
1,sσ

2
2,s

dVI,J

ds

stands for the Radon-Nikodym derivative of limn→∞〈Mn,Mn〉t with respect to the Lebesgue
measure (cf. Lemma 7) and ws is a predictable process (hence independent of B̃). If we denote

(M∞, N∞) = ZT − (0, A∞), we get M∞
t =

∫ t

0 ms dB̃1,s and N∞
t =

∫ t

0 n1,s dB1,s +
∫ t

0 n2,s dB2,s +
∫ t

0 w1,s dB̃2,s with a predictable process ns = (n1, n2), and the assertion of the proposition follows.

This result implies in particular that E[N∞
t + A∞

t |M∞
t ] = E[N∞

t + A∞
t ] = E[A∞

t ] for every
t ∈ [0, T ]. Therefore, using (31), we get

A = E[N∞
T +A∞

T |M∞
T ]

=
1

2

∫ T

0

{σ1,uE(β
[1]
21,u + β

[1]
22,uρu) + σ2,uE(β

[1]
11,uρu + β

[1]
12,u) + 2E[β1,uβ2,u]}VI,J(du).
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As we see in the next section, this expression of A appears in the asymptotic expansion of the

distribution function of b
−1/2
n (θ̂n − θ).

6. Expansion of the distribution for a model with drift terms

The aim of this section is to obtain an asymptotic expansion for the distribution of the HY-
estimator in the case where the diffusions X1 andX2 have non-zero drifts. As shows the stochastic
expansion of θ̂n obtained in Lemma 5, the main term in the expansion of b

−1/2
n (θ̂n − θ) is inde-

pendent of the drifts. Therefore, asymptotic expansions for its distribution are already obtained
in Sections 3 and 4. This indicates that the influence of the drifts on the distribution of θ̂n can
be regarded as a small perturbation of the distribution in the case where there is no drift. Before
stating the main result of this section, let us give a theorem that allows to derive the second-order
expansion of the distribution of a random variable defined on the Wiener space in presence of a
random perturbation.

6.1. Perturbation

Since the drift terms are possibly non-linear functionals of the Brownian motion B, we need the
Malliavin calculus to carry out computations on the infinite-dimensional Gaussian space.

The basis of our arguments is a perturbation method for deriving asymptotic expansion. It
was used in [45] for the perturbation of a martingale but the proof was written inseparably from
the martingale structure. In order to apply this methodology to the present situation, we will
begin with generalizing Theorem 2.1 of Sakamoto and Yoshida [38].

We consider a probability space equipped with a differential calculus in Malliavin’s sense, an
integration-by-parts formula and the Sobolev spaces Dp,ℓ equipped with the norm ‖ · ‖p,ℓ. For
positive numbers M and γ, let E(M,γ) be the set of all measurable functions f : Rd → R

satisfying |f(x)| ≤M(1 + |x|γ) for all x ∈ Rd. Let E ′ be a subset of E(M,γ).
Let Xn and Yn be Rd-valued Wiener functionals and put

Zn = Xn + snYn

for some sequence of positive numbers sn tending to 0 as n → ∞. We write Gn(f) = ō(sn) if
s−1
n supf∈E |Gn(f)| → 0 as n→ ∞.

Theorem 4. Let ℓ be an integer such that ℓ > d+ 2. Suppose that the following conditions are
satisfied:

(1) supn ||Xn||p,ℓ + supn ||Yn||p,ℓ <∞ for any p > 1,

(2) (Xn,Yn)
D→ (X∞,Y∞) for some random variables X∞ and Y∞.

In addition, assume that there exists a functional τn such that

(3) supn ||τn||p,ℓ−1 <∞ for any p > 1.
(4) P[|τn| > 1/2] = o(sαn) for some α > 1.
(5) supn E[1{|τn|<1}(det σXn)

−p] <∞ for any p > 1.
(6) There is a sequence of signed measures Ψn on Bd such that for any positive numbers M and

γ, E[f(Xn)] = Ψn[f ] + ō(sn) as n→ ∞ for f ∈ E ′. Moreover, for every polynomial π(x) in
x, there exists a constant cπ such that |Ψn[e

iu·xπ(x)]| ≤ cπ(1 + |u|ℓ−1)−1 for all u ∈ Rd.

Then X∞ has a density pX∞ with respect to the Lebesgue measure and, for any positive numbers
M and γ,

E[f(Zn)] = Ψn[f ] + sn

∫

R

f(x)g∞(x) dx+ ō(sn) (32)

for f ∈ E ′, where g∞(x) = −divx
(

E[Y∞ | X∞ = x] pX∞(x)
)

.
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24 Dalalyan and Yoshida

6.2. Asymptotic expansion of the distribution

We are now in a position to state and to prove the main result of this section, which provides an
unconditional asymptotic expansion of the distribution of the HY-estimator. It is also possible to
derive asymptotic expansions conditionally to the processes generating the sampling times, but
they have more complicated form and are not presented here.

Theorem 5. Suppose that Assumptions P1 and P2 are satisfied and

sup
t∈[0,T ]

‖β[l−1]
i,t ‖p,4 <∞, for all p > 1 and i, l ∈ {1, 2}.

Let us define

c =

∫ T

0

σ2
1,tσ

2
2,tVI,J (dt) +

∫ T

0

σ1,tσ2,tρt
{

VI(dt) + VI(dt) − VI∩J(dt)
}

,

A =
1

2

∫ T

0

{σ1,uE(β
[1]
21,u + β

[1]
22,uρu) + σ2,uE(β

[1]
11,uρu + β

[1]
12,u) + 2E[β1,uβ2,u]}VI,J(du).

Under the notation of Theorem 1, if for some a ∈ (3/4, 1), P(An(a)
c) = o(bpn) for every p > 1,

and E[2µ2,n − c] = O(b2a−1
n ), then

sup
f∈E(M,γ)∩E0(C,η,r0,c∗)

∣

∣

∣

∣

E[f(b−1/2
n (θ̂n − θ))] −

∫

R

f(z) p∗n(z) dz

∣

∣

∣

∣

= o(b1/2n ), (33)

where

p∗n(z) =
e−z2/(2c)

√
2πc

[

1 +
b
1/2
n

6c3
(

E[λ̄3,n](z
3 − 3cz) + 6Ac2z

)

]

.

Moreover, if supn∈N
E[λ̄3,n] <∞, then inequality (33) holds with p∗n replaced by

p+n (z) =
max(0, p∗n(z))

∫

R
max(0, p∗n(u)) du

,

which is a probability density.

Proof. We apply Theorem 4 to Zn = b
−1/2
n (θ̂n − θ) with ℓ = 4, Xn =Mn

T and Yn = b
−1/2
n (Zn −

Mn
T ). Thus, we need to check that all the 6 conditions of Theorem 4 are fulfilled. In view of

Lemma 5 and Proposition 8, (Xn,Yn) converges in distribution to some random vector (X∞,Y∞).
Thus the second condition of Theorem 4 is verified.

We have already seen in Section 3.2.1 that the principal part Xn of b
−1/2
n (θ̂n−θ) can be written

in the form Xn = b
−1/2
n (ξTAξ − θ) = b

−1/2
n

∑N
ℓ=1 λℓ,n(ζ

2
ℓ,n − 1), where

ξ = ({I1σ1 ·B1}T , . . . , {IN1σ1 ·B1}T , {J1σ2 · B2}T , . . . , {JN2σ2 ·B2}T , )T ∼ NN (0,Σ)

and the entries of the matrices Σ and A are given by (17) and (16) respectively. Recall that the
vector ζ ∈ RN is obtained as a linear transformation of ξ and is distributed according to N (0, I).

LetW = C0([0, T ],R
2) be the Wiener space of continuous functions from [0, T ] to R2 vanishing

at the origin. Recall that W is a measurable space equipped with the Borel σ-field induced by
the uniform topology. The reference measure on W is the measure generated by the standard
Wiener process (in our case, the two-dimensional Brownian motion).

Let w = (w1, w2) be the canonical process on W . Then, (B1, B2) can be defined by

B1,t = w1,t, B2,t =

∫ t

0

ρs dw1,s +

∫ t

0

√

1− ρ2s dw2,s.
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Obviously, for every ℓ = 1, . . . , N , there is some function φℓ ∈ L2([0, T ],R2) such that ζℓ,n =
∫ T

0
φℓ1,t dw1,t +

∫ T

0
φℓ2,t dw2,t := w(φℓ).

The process w is an isonormal Gaussian process on H = L2([0, T ],R2) (see [32, Def. 1.1.1])
Using the definition of the Malliavin derivative (see [32, Def. 1.2.1]) and the chain rule [32, Prop.
1.2.3], we get the following expression for the Malliavin derivative of Xn:

DtXn = 2b−1/2
n

N
∑

ℓ=1

λℓ,nζℓ,nφ
ℓ
t .

Since the components of ζ are non-correlated with variance equal to one, the family {φℓ}ℓ≤N

is orthonormal. As a first consequence of this fact, we get that supn ‖Xn‖p,4 < ∞ for every
p > 1. To show this, Rosenthal’s inequality and the result of Lemma 3 can be used. As a second
consequence, we obtain that the Malliavin covariance of Xn is

σXn = 4b−1
n

n
∑

ℓ=1

λ2ℓ,nζ
2
ℓ,n = 4b−1

n µ2,n + 4b−1
n

n
∑

ℓ=1

λ2ℓ,n(ζ
2
ℓ,n − 1). (34)

Let us introduce the random variable τn that will play a role of truncation:

τn = −
(

2− 8µ2,n(cbn)
−1
)

+
+ 8(cbn)

−1
N
∑

ℓ=1

λ2ℓ,n(ζ
2
ℓ,n − 1).

In this notation, we have σXn ≥ c+ cτn
2 and, therefore, 1{|τn|<1}|σ−1

Xn
| < 2/c. Thus, the condition

(5) of Theorem 4 is obviously fulfilled. Let us check now that τn satisfies conditions (3) and (4)
of the aforementioned theorem.

To verify condition (3) of Theorem 4, we remark that

Dτn = 16(cbn)
−1

N
∑

ℓ=1

λ2ℓ,nζℓ,nφ
ℓ, D2τn = 16(cbn)

−1
N
∑

ℓ=1

λ2ℓ,nφ
ℓ ⊗ φℓ

Dkτn ≡ 0 for every k ≥ 3. Therefore,

‖Dτn‖2H = 256(cbn)
−2

N
∑

ℓ=1

λ4ℓ,nζ
2
ℓ,n, ‖D2τn‖2H⊗H = 256(cbn)

−2
N
∑

ℓ=1

λ4ℓ,n.

In view of the Rosenthal inequality, we get

EΠ[‖Dτn‖pH ] ≤ C(p)b−p
n (µ

p/2
4,n + µ2p,n + µ

p/4
8,n ),

for every p ≥ 2. Using the definition of µk,n, one can check that µ2k,n ≤ µ
k/2
4,n . In view of inequality

(23) and the obvious bound µ2,n ≤ Crn, we get

EΠ[‖Dτn‖pH ] ≤ Cb−p
n r3p/2n , EΠ[‖D2τn‖pH⊗H ] ≤ Cb−p

n r3p/2n , ∀p ≥ 4.

Similar arguments yield

E[τpn ] = EΠ[τpn ] ≤ C(1 + b−p
n E[r3p/2n ]) ≤ C(1 + b−p

n b9p/8n + T 3p/2b−p
n P[An(a)

c]) <∞.

To check condition (4) of Theorem 4, we use the inequality

P(|τn| > 1/2) ≤ P
(

2− 8µ2,n(cbn)
−1 > 0

)

+P

(

8(cbn)
−1
∣

∣

∣

N
∑

ℓ=1

λ2ℓ,n(ζ
2
ℓ,n − 1)

∣

∣

∣
> 1/2

)

.
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On the one hand, since the event {2 − 8µ2,n(cbn)
−1 > 0} = {λ̄2,n − c < −c/2} is included in

An(a)
c, its probability is o(bpn) for every p > 1. On the other hand, combining the Tchebychev

and the Rosenthal inequalities, for every k ≥ 16 we get

P

(

8(cbn)
−1
∣

∣

∣

N
∑

ℓ=1

λ2ℓ,n(ζ
2
ℓ,n − 1)

∣

∣

∣ > 1/2

)

≤ Cb−k
n E[µ

k/2
4,n + µ2k,n] ≤ Cb−k

n E[r3k/2n ]

≤ Cb−k+9k/8
n + Cb−k

n P(An(a)
c) = O(b2n).

Thus, we proved that conditions (2)-(5) of Theorem 4 are fulfilled and that supn ‖Xn‖p,4 <
∞. Condition (6) is ensured by Theorem 2. To complete the proof, it remains to check that
supn ‖Yn‖p,4 < ∞. This inequality can be proved using the identity Yn = b−1

n (Φ2
n + Φ3

n), where
Φ2

n and Φ3
n are the random variables defined in the proof of Lemma 5. The proof is rather

technical, but is based on the arguments that we have already used several times in this and the
previous sections. Therefore it will be omitted.

In the case when the sampling scheme is generated by two Poisson processes, we get the
following consequence of the last theorem.

Proposition 9. Let the sampling times of processes X1 and X2 be generated by two independent
Poisson processes with intensities np1 and np2, p1p2 > 0. If

• the sampling times are independent of the process X,
• the functions σ1, σ2 and ρ are Lipschitz continuous,

• supt∈[0,T ] ‖β[l−1]
i,t ‖p,4 <∞ for all p > 1, i, l ∈ {1, 2},

then

sup
f∈E(M,γ)∩E0(C,η,r0,c∗)

∣

∣

∣

∣

E[f(n1/2(θ̂n − θ))]−
∫

R

f(z) p◦n(z) dz

∣

∣

∣

∣

= o(n−1/2), (35)

where

p◦n(z) ∝
e−z2/(2c)

√
2πc

[

1 +
1√
nc3
(

2κz3 − 6κcz + Ac
2z
)

]

+

is a probability density with

c =

(

2

p1
+

2

p2

)∫ T

0

σ2
1,tσ

2
2,t(1 + ρ2t )dt−

2

p1 + p2

∫ T

0

(σ1,tσ2,tρt)
2dt,

κ =

(

1

p21
+

1

p22

)∫ T

0

h(t)3 dt+
3p21 + 2p1p2 + 3p22

p21p
2
2

∫ T

0

σ2
1,tσ

2
2,th(t) dt,

A =

(

1

p1
+

1

p2

)∫ T

0

{σ1,tE(β
[1]
21,t + β

[1]
22,tρt) + σ2,tE(β

[1]
11,tρt + β

[1]
12,t) + 2E[β1,tβ2,t]}dt.

Proof. Lemmas 16-19 (cf. Section 9) imply that the partitions generated by independent Poisson
processes satisfy Assumptions P1 and P2. Therefore, using Theorems 5 and 3, we get the desired
result.
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7. Proofs of theorems and propositions

Proof of Proposition 6. Let us recall the relations

n
∑

I,J

v1(I)v2(J)KIJ
P−−−−→

n→∞
2(p−1

1 + p−1
2 )

∫ T

0

σ2
1,tσ

2
2,tdt,

n
∑

I∈Πi

v(I)2
P−−−−→

n→∞
2p−1

i

∫ T

0

(σ1,tσ2,tρt)
2 dt, i = 1, 2

n
∑

I,J

v(I ∩ J)2 P−−−−→
n→∞

2(p1 + p2)
−1

∫ T

0

(σ1,tσ2,tρt)
2 dt

proved in Hayashi and Yoshida [19]. The aim of the present proposition is to show that the rate
of convergence in these relations is 1/

√
n and to get an exponential control of the probabilities

of large deviations. Thus, let us denote T1 = n
∑

I,J v1(I)v2(J)KIJ and show that

P

(∣

∣

∣

∣

T1 − 2(p−1
1 + p−1

2 )

∫ T

0

σ2
1,tσ

2
2,tdt

∣

∣

∣

∣

≥ x√
n

)

≤ Cne−x/C .

Let N(x) = ⌈nT/x⌉ be the smallest positive integer such that N(x)x > nT and let us set
Li = [iTN(x)−1, (i + 1)TN(x)−1]. The intervals Li define a uniform deterministic partition of
[0, T ] with a mesh-size of order x/n. Let E be the event “for every i = 1, . . . , 4N(x), the interval

[ iT
4N(x) ,

(i+1)T
4N(x) ] contains at least one point from Π1

n and one point from Π2
n”. The total probability

formula implies that

P

(∣

∣

∣

∣

T1 −
∫ T

0

h̄(t)dt

∣

∣

∣

∣

≥ x√
n

)

≤ P

(∣

∣

∣

∣

T1 −
∫ T

0

h̄(t) dt

∣

∣

∣

∣

≥ x√
n

∣

∣

∣

∣

E
)

+P(Ec),

where Ec denotes the complementary event of E and h̄(t) = 2(p−1
1 + p−1

2 )σ2
1,tσ

2
2,t. Easy computa-

tions show that P(Ec) ≤ Cnx−1e−x/C for some C > 0.
Let now li be a point in Li such that

∫

Li
h̄(t) dt = h̄(li)|Li|. Let us denote by aI the left

endpoint of the interval I and define the random variables

η◦i = nh̄(li)
∑

I,J

|I||J |KIJ1{aI∈Li}, i = 1, . . . , N(x).

In what follows, we denote by EE the conditional expectation given E . It holds that T1 −
∫ T

0
h̄(t) dt = T11 + T12 + T13 +O(n|L1|2) on E , where

T11 = EE

[N(x)
∑

i=1

η◦i

]

−
∫ T

0

h̄(t) dt, T1s =
[N(x)/2]
∑

i=1

(η◦2i+s−2 −EE [η◦2i+s−2]), s = 2, 3.

For evaluating the remainder term in T1, we have used the Lipschitz continuity of σ1 and σ2, as
well as the fact that rn ≤ |L1|/2 on E .

Remark that in view of Lemma 4, for any p > 0, we have

E[rpn] = n−p

∫ ∞

0

P((nrn)
p ≥ t) dt ≤ Cn−p

∫ ∞

0

(ne−t1/p) ∧ 1 dt = Cn−pO(logp n). (36)

On the one hand, since |∑N(x)
i=1 η◦i | ≤ Cnrn, we have

∣

∣

∣

∣

EE
[

N(x)
∑

i=1

η◦i

]

−E
[

N(x)
∑

i=1

η◦i

]

∣

∣

∣

∣

≤ nE[rn1Ec ]

P(E) .

imsart-aihp ver. 2010/04/27 file: Dalalyan_Yoshida_final.hyper4714.tex date: August 2, 2010



28 Dalalyan and Yoshida

Using the inequality of Cauchy-Schwarz, as well as the bounds P(Ec) ≤ Cne−x/C and (36), we

get
∣

∣EE
[
∑N(x)

i=1 η◦i
]

−E
[
∑N(x)

i=1 η◦i
]∣

∣ ≤ Cne−x/C , for some constant C and for every x > C log n.
On the other hand, in view of Lemma 15 presented in Section 9 below, we have

E[η◦i ] ≤ nh̄(li)E

[

∑

I:aI∈Li

(

|I|2 + 2|I|
np2

)

]

≤ CnE[(rn + n−1)(|Li|+ rn)].

Therefore, using (36), we get E[η◦i ] = O(n−1 log3 n) for every i ≤ N(x). Using once again
Lemma 15, we get

E
[

N(x)
∑

i=1

η◦i

]

=

N(x)−1
∑

i=2

nh̄(li)E
[

∑

I:aI∈Li

|I| · EΠ1
(

∑

J∈Π2

|J |KIJ

)]

+O
( log3 n

n

)

=

N(x)−1
∑

i=2

nh̄(li)E
[

∑

I:aI∈Li

(

|I|2 + 2|I|/(np2)
)

]

+O
( log3 n

n

)

.

Wald’s equality yields E
[

∑

I:aI∈Li
|I|k
]

= E[N1(Li)] · E[ζk/(np1)
k] + O(e− log2 n/C), for every

k > 0 and for every i ≤ N(x)− 1. Here, N1(Li) is the number of points of P1,n lying in Li and
ζ ∼ E (1), the exponential distribution with parameter one. Putting all these estimates together,
we get

E
[

N(x)
∑

i=1

η◦i

]

=

N(x)−1
∑

i=2

nh̄(li)
(2|Li|
np1

+
2|Li|
np2

)

+O
( log3 n

n

)

=
( 2

p1
+

2

p2

)

N(x)
∑

i=1

h̄(li)|Li|+O
( log3 n

n

)

.

Since li has been chosen such that h̄(li)|Li| =
∫

Li
h̄(t) dt, the last relation implies that T11 =

O(n−1 log3 n).
The advantage of working with η◦i s is that, conditionally to E , the random variables η◦2i,

i = 1, . . . , [N(x)/2], are independent. Indeed, one easily checks that conditionally to E , η◦2i depends
only on the restrictions of P1,n and P2,n onto the interval [ (4i−1)T

2N(x) ,
(4i+3)T
2N(x) ]. Since these intervals

are disjoint for different values of i ∈ N, the restrictions of Poisson processes Pk,n, k = 1, 2, onto
these intervals are independent. Therefore, η◦2i, i = 1, . . . , [N(x)/2], form a sequence of random

variables that are independent conditionally to E . Moreover, they verify |η◦i | ≤ Cn|Li|2 = C log4 n
n .

These features enable us to use the Bernstein inequality in order to bound the probabilities of
large deviations of T12 as follows:

PE
(

|T12| ≥ x/
√
n
)

≤ 2 exp
(

− x2

C(1 + xn−1/2 log4 n)

)

≤ 2e−x/C ,

for every x > 1. Obviously, the same inequality holds true for the term T13. These inequalities
combined with the bound on the error term T11 complete the proof of (28).

Moreover, since T12 and T13 are zero mean random variables, conditionally to E , and Ec has a
probability bounded by Cne−x/C , it follows from the computations above that

E[T1] = 2(p−1
1 + p−1

2 )

∫ T

0

σ2
1,tσ

2
2,t dt+O(n−1 log3 n).

Similar arguments entail that E[2nµ2,n] = c+O(n−1 log3 n).
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Proof of Proposition 7. The assertion of the theorem follows from the following relations:

E
[

∑

I∈Πi

v(I)3
]

=
6

n2p2i

∫ T

0

h(t)3 dt+O
( log3 n

n3

)

, i = 1, 2,

E
[

∑

I,J

v(I ∩ J)3
]

=
6

n2(p1 + p2)2

∫ T

0

h(t)3 dt+O
( log3 n

n3

)

,

E
[

∑

I,J

v(I ∩ J)2v(I)
]

=
18p1 + 12p2
n2p1(p1 + p2)2

∫ T

0

h(t)3 dt+O
( log3 n

n3

)

,

E
[

∑

I,J

v(I ∩ J)2v(J)
]

=
18p2 + 12p1
n2p2(p1 + p2)2

∫ T

0

h(t)3 dt+O
( log3 n

n3

)

,

E
[

∑

I,J

v(I ∩ J)v(I)v(J)
]

=
4

n2p2p1

∫ T

0

h(t)3 dt+O
( log3 n

n3

)

,

E
[

∑

I,J

v(I ∪ J)v1(I)v2(J)
]

=
6p21 + 4p1p2 + 6p22

n2p21p
2
2

∫ T

0

h(t)3

ρ2t
dt+O

( log3 n

n3

)

.

Let us prove in detail the fifth relation. The proofs of the other relations are based on similar
arguments and are easier than that of fifth relation.

Using the Lipschitz continuity of the function h, one can check that v(I ∩ J)v(I)v(J) =
h(aI)

3|I| · |J | · |I ∩ J |+O(r3n)|I ∩ J |, where aI is the left endpoint of the interval I.

In view of (36), we have E
[

∑

I,J r
3
n|I ∩ J |

]

≤ TE[r3n] = O
(

log3 n
n3

)

. On the other hand

E
[

∑

I∈Π1

h(aI)
3|I|

∑

J∈Π2

|J | |I ∩ J |
]

= E
[

∑

I∈Π1

h(aI)
3|I|EI

(

∑

J∈Π2

|J | |I ∩ J |
)]

,

where EI is the conditional expectation given I. According to Lemmas 13 and 15, presented in
Section 9 below,

EI
(

∑

J∈Π2

|J | |I ∩ J |
)]

=
2|I|
np2

− (1− e−np2|I|)(e−np2aI + e−np2(T−bI ))

n2p22
.

Now, let us show that

T1 :=
2

np2
E
[

∑

I∈Π1

h(aI)
3|I|2

]

=
4

n2p1p2

∫ T

0

h3(t) dt+O(n−3),

T2 := E
[

∑

I∈Π1

h(aI)
3|I| (1− e−np2|I|)e−np2aI

n2p22

]

= O(n−3),

T3 := E
[

∑

I∈Π1

h(aI)
3|I| (1− e−np2|I|)e−np2(T−bI )

n2p22

]

= O(n−3).

To this end, we use the characterization of a Poisson process as a renewal process with exponential
waiting times. Let (ζk, k ≥ 1) be a sequence of i.i.d. random variables drawn from the exponential
distribution with mean 1/(np1). ThenN1, S

i can be defined by N1 = inf{k ≥ 1 : ζ1+. . .+ζk ≥ T }
and Si = (ζ1 + . . .+ ζi) ∧ T for i = 1, . . . , N1. In this notation,

T1 =
2

np2
E
[

N1−1
∑

i=1

h(Si)3ζ2i+1

]

+O(n−3), |T2| ≤ ‖h‖3∞E
[

N1−1
∑

i=1

ζi+1e
−np2S

i

n2p22

]

+O(n−3),
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where ‖h‖∞ = maxt∈[0,T ] |h(t)|. Remark that N1 is a stopping time with respect to the filtration
Fk = σ(ζ1, . . . , ζk), k ≥ 1. It is easily seen that

Mk =
k−1
∑

i=1

h(Si)3(ζ2i+1 −E[ζ2i+1]), M ′
k =

k−1
∑

i=1

(

ζi+1 −E[ζ1]
)

e−np2S
i

are Fk-martingales for which the conditions of the optional stopping theorem are fulfilled. There-
fore

T1 =
2

np2
E[ζ21 ]E

[

N1−1
∑

i=1

h(Si)3
]

+O(n−3),

T2 ≤ ‖h‖3∞
n2p22

E[ζ1]E
[

N1−1
∑

i=1

e−np2S
i
]

+O(n−3).

These relations imply that

T1 =
4

n2p1p2

∫ T

0

h(t)3 dt+O(n−3), |T2| ≤
‖h‖3∞
n2p22

∫ T

0

e−np2t dt+O(n−3) = O(n−3).

In the above inequalities we used the fact that for any integrable function f on [0, T ], the equality

E[
∑N1−1

i=1 f(Si)] = np1
∫ T

0
f(t) dt holds true.

The term T3 can be bounded in the same way as T2 by using the fact that if {t1, . . . , tN} is a
realization of a homogeneous Poisson point process in [0, T ], then {T−t1, . . . , T −tN} can be seen
as a realization of the same Poisson point process. This completes the proof of the proposition.

Proof of Theorem 4. Let ψn be some truncation functional to be defined later and let ζ(x) =
1 + |x|2m (x ∈ Rd), where m is an integer such that 2m > γ + d. We have

E[f(Zn)] = E[f(Zn)ψn] +E[f(Zn)(1 − ψn)] =

∫

Rd

f(x)p̃n(x) dx +E[f(Zn)(1− ψn)],

where p̃n(x) =
1

(2π)d

∫

Rd e
−iu·x ĝ0n(u) du, with ĝ

0
n(u) = E[eiu·Znψn].

We will show below (cf. (38)) that the term E[f(Zn)(1 − ψn)] is ō(sn) and is negligible with
respect to E[f(Zn)ψn]. To deal with this latter term, let us introduce the notation

h0n(x) =
1

(2π)d

∫

Rd

e−iu·xĥ0n(u) du,

ĥ0n(u) = Ψn[e
iu·x] + snE

[

eiu·X∞ iu · Y∞

]

,

ĝn(u) = E[eiu·Znψnζ(Zn)],

ĥn(u) = ζ(−i∂u)ĥ
0
n(u) = Ψn[e

iu·xζ(x)] + snE
[

ζ(−i∂u)(e
iu·y iu)

∣

∣

∣

y=X∞

· Y∞

]

.

Using the Integration By Parts (IBP) formula, we get

ζ(x)p̃n(x) =
1

(2π)d

∫

Rd

e−iu·xĝn(u) du, ζ(x)h0n(x) =
1

(2π)d

∫

Rd

e−iu·xĥn(u) du.

Further, there is a linear form ζ2(x, y)[·] of polynomial elements such that

ζ(x + y) = ζ(x) + ∂ζ(x)[y] + ζ2(x, y)[y
⊗2]
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for x, y ∈ Rd. We also notice that, for all u, y ∈ Rd,

ζ(−i∂u)(e
iu·y iu) = ζ(−i∂u)∂ye

iu·y = ∂y(ζ(−i∂u)e
iu·y)

= ∂y(e
iu·yζ(y)) = eiu·yζ(y)iu+ eiu·y∂ζ(y).

Let ϕ(x) = f(x)/ζ(x) and Λn = {u ∈ Rd; |u| ≤ s−1
n }. Then

(2π)d
∫

Rd

f(x)
{

p̃n(x)− h0n(x)
}

dx = A(n) + snB(n) + snC(n) + s2nD(n) + E(n),

where

A(n) =

∫

Rd

dxϕ(x)

∫

Λn

e−iu·x
{

E
[

eiu·Xnψnζ(Xn)
]

−Ψn

[

eiu·xζ(x)
]}

du,

B(n) =

∫

Rd

dxϕ(x)

∫

Λn

e−iu·x
{

E
[

eiu·Xn iu · Yn

∫ 1

0

exp(isnu · Yns)ds ψnζ(Xn)
]

−E
[

eiu·X∞ iu · Y∞ζ(Xn)
]}

du,

C(n) =

∫

Rd

dxϕ(x)

∫

Λn

e−iu·x
{

E
[

eiu·Znψn∂ζ(Xn)[Yn]
]

−E[eiu·X∞∂ζ(X∞)[Y∞]
]}

du,

D(n) =

∫

Rd

dxϕ(x)

∫

Λn

e−iu·xE
[

eiu·Znψnζ2(Xn, snYn)[Y⊗2
n ]
]

du

E(n) =

∫

Rd

dxϕ(x)

∫

Λc
n

e−iu·x
(

ĝn(u)− ĥn(u)
)

du.

Since
∫

Rd

dxϕ(x)

∫

Rd

e−iu·xE
[

eiu·Xnψnζ(Xn)
]

du = (2π)dE
[

ϕ(Xn)ψnζ(Xn)
]

and
∫

Rd dxϕ(x)
∫

Rd e
−iu·xΨn

[

eiu·xζ(x)
]

du = (2π)dΨn[ϕζ], we have

|A(n)| ≤ (2π)d
∣

∣

∣
E
[

ϕ(Xn)ψnζ(Xn)
]

−Ψn[ϕζ]
∣

∣

∣
+ F (n)

≤ (2π)d
∣

∣

∣E
[

ϕ(Xn)(1 − ψn)ζ(Xn)
]∣

∣

∣+ F (n) + ō(sn)

from condition (6) of Theorem 4, where

F (n) = (2π)d
∫

Rd

|ϕ(x)| dx×
∫

Λc
n

{∣

∣

∣E
[

eiu·Xnψnζ(Xn)
]∣

∣

∣+
∣

∣

∣Ψn

[

eiu·xζ(x)
]∣

∣

∣

}

du.

In what follows C denotes a generic constant independent of n and u and it varies from line to
line.

To evaluate F (n), we need the explicit form of ψn. Let us denote by ψ a smooth function from
R into [0, 1] such that ψ(t) = 1 if |t| ≤ 1/2 and ψ(t) = 0 if |t| ≥ 1. We can write

det
[

Id + snσ
−1
Xn

(〈Xn,Yn〉+ 〈Yn,Xn〉)
]

= 1 + sn detσ
−d
Xn

Kn

with a certain functional Kn satisfying, for every p > 1, the condition supn ‖Kn‖p,ℓ−1 <∞. Let

ψn = ψ(τn)ψ
(

2sn detσ
−d
Xn
Kn

)

. Obviously, ψn ∈ ∩p>1Dp,ℓ−1; in order to prove it, replace σXn by
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σXn + k−1Id, differentiate, and take limits in Lp-spaces as k → ∞. Furthermore, we infer that
supn ‖ψn‖p,ℓ−1 <∞ for every p > 1. If ψn > 0, then det(σ−1

Xn
σZn) ≥ 1/2 leading to

detσZn ≥ 1

2
detσXn . (37)

By applying the IBP formula and the non-degeneracy assumption for Xn under truncation, we
find that supn

∣

∣E
[

eiu·Xnψnζ(Xn)
]∣

∣ ≤ C

1+|u|ℓ−1 for all u ∈ Rd. Combined with condition (6), this

implies that F (n) = Ō(s2n) = ō(sn). Besides,

∣

∣

∣
E
[

ϕ(Xn)(1− ψn)ζ(Xn)
]∣

∣

∣
≤ Cq‖1− ψn‖q = ō(sn). (38)

Here q is arbitrary constant such that q ∈ (0, 1). Consequently, A(n) = ō(sn).

Taking the limit of supn
∣

∣E
[

ζ(−i∂u)(e
iu·y iu)

∣

∣

∣

y=Xn

· Yn

]∣

∣ ≤ C

1+|u|ℓ−2 , we get

∣

∣

∣E
[

ζ(−i∂u)(e
iu·y iu)

∣

∣

∣

y=X∞

· Y∞

]∣

∣

∣ ≤ C

1 + |u|ℓ−2

for all u ∈ Rd. On the other hand, from the IBP formula in view of the uniform nondegeneracy
of Zn under truncation deduced from that of Xn by (37), it follows that supn |ĝn(u)| ≤ C

1+|u|ℓ−1

for all u ∈ Rd. From these estimates, we have E(n) = Ō(s2n) = ō(sn). Similar argument yields
the estimate supn |D(n)| <∞.

To obtain C(n) = ō(1), we apply Lebesgue’s dominated convergence theorem in conjunction
with the estimate

sup
n

∣

∣

∣E
[

eiu·Znψn∂ζ(Xn)[Yn]
]

−E
[

eiu·X∞∂ζ(X∞)[Y∞]
]∣

∣

∣ ≤ C

1 + |u|ℓ−1

for all u ∈ Rd. In the same way, we can obtain B(n) = ō(1). However, we have to use more
elaborately the estimate

sup
n

1Λn(u)
∣

∣

∣E
[

eiu·Xn iu · Yn

∫ 1

0

exp(isnu · Yns)ds ψnζ(Xn)
]∣

∣

∣ ≤ C

1 + |u|ℓ−2

(C is independent of u) and its limiting version
∣

∣E
[

eiu·X∞ iu · Y∞ζ(X∞)
]∣

∣ ≤ C

1+|u|ℓ−2 .

Combining all the estimates, we get
∫

Rd f(x)p̃n(x) dx −
∫

Rd f(x)h
0
n(x) dx = ō(sn) as n → ∞.

From the definition of h0n(x), it is easy to show that X∞ has a differentiable density pX∞ and that

h0n(x) =
dΨn

dx (x)−sndiv
{

E[Y∞ |X∞ = x]pX∞(x)
}

. The existence of the integral
∫

Rd f(x)h
0
n(x)dx

is ensured as a consequence under the assumptions of Theorem 4.

8. Convergence of martingales and quadratic variations

This section collects the proofs of technical results stated in Section 5. The major part of them
make use of stochastic analysis and aim at controlling quadratic variations and covariations of
some martingales.
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Proof of Lemma 5. Let us denote by Φ1
n the difference b

−1/2
n (θ̂n − θ)−Mn

T and write it in the

form Φ1
n = b

−1/2
n (Φ2

n +Φ3
n), where

Φ2
n =

∑

I,J

KIJ

(

{(Iβ1) · t}T × {(Jσ2) ·B2}T + {(Jβ2) · t)}T × {(Iσ1) · B1}T
)

,

Φ3
n =

∑

I,J

KIJ{(Iβ1) · t}T × {(Jβ2) · t}T

Since we will be interested in applying martingale limit theorems, it is convenient to decompose
Φℓ

ns in a sum of a martingale and a bounded variation process. This is achieved by the Itô formula,

Φ2
n =

∑

I,J

KIJ

({

{((Iβ1) · t)(Jσ2)} ·B2

}

T
+
{

{((Jβ2) · t)(Iσ1)} ·B1

}

T

)

+
∑

I,J

KIJ

({

{((Jσ2) ·B2)(Iβ1)} · t
}

T
+
{

{((Iσ1) · B1)(Jβ2)} · t
}

T

)

.

The last two terms in this expression need some further analysis. Let us introduce the notation
Φ21

n =
∑

I,J KIJ

{

{((Jσ2) ·B2)(Iβ1)} · t
}

T
. Since ((Jjσ2) · B2)s = 0 for s ∈ (0, T j−1),

Φ21
n =

∑

i,j

Kij

{

{((Jjσ2) · B2)I
i[β1,T j−1 + (1(T j−1,∞)β

[0]
1 ) · t

+(1(T j−1,∞)β
[1]
11 ) ·B1 + (1(T j−1,∞)β

[1]
12 ) ·B2]} · t

}

T

=
∑

i,j

Kij

({

(Jjσ2) · B2

}

Iiβ1,T j−1

)

· tT +
∑

I,J

KIJ

(

I{(Jσ2β[1]
11 ) · 〈B2, B1〉}

)

· tT

+
∑

I,J

KIJ

(

I{(Jσ2β[1]
12 ) · 〈B2, B2〉}

)

· tT + oP (bn). (39)

Let us explain how the last oP (bn) is obtained. In fact, the remainder term in the last equation
contains five summands which can all be treated similarly. Let us do it for one of them, which

has the form Ψn =
∑

I,J KIJ

{

([{

(Jσ2) ·B2

}

β
[1]
11

]

·B1

)

I
}

· tT . We first use that

Ψn =
∑

I

{

[({

(J(I)σ2) · B2

}

β
[1]
11

]

·B1

)

I
}

· tT

=

∫ T

0

(

∫ s

0

[

∫ T

s

∑

I

1I(t)1J(I)(u) dt
]

σ2,u dB2,u

)

β
[1]
11,s dB1,s.

Then, by the Cauchy-Schwarz inequality and the martingale property of the stochastic integral,
we get

EΠ[Ψ2
n] ≤

∫ T

0

(

∫ s

0

[

∫ T

s

∑

I

1I(t)1J(I)(u) dt
]2

σ2
2,u du

)

(

EΠ[(β
[1]
11,s)

4]
)1/2

ds

≤ C

∫ T

0

∫ s

0

[

∑

I

|I|1J(I)(u)1J(I)(s)
]2

du ds ≤ C
∑

I,I′

|I| |I ′| |J(I) ∩ J(I ′)|2 ≤ Cr3n

under the assumption that maxt∈[0,T ]E[(β
[1]
11,t)

4] and maxt∈[0,T ] σ2,t are finite. Now, interchanging
the order of integrations, the first summand in the RHS of (39) can be rewritten as follows

{((Jσ2) ·B2)Iβ1,T j−1} · tT =
{

{(Si − Si−1 ∨ ·)+Jσ2β1,T j−1} · B2

}

T
. (40)
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Using the same kind of arguments, one can check that the term Φ22
n = Φ2

n − Φ21
n admits the

representation

Φ22
n :=

∑

I,J

KIJ

{

{((Iσ1) · B1)(Jβ2)} · t
}

T

=
∑

i,j

Kij

({(

(T j − T j−1 ∨ ·)+Iσ1β2,Si−1

)

·B1

}

T

+
∑

I,J

KIJ

(

J
{

(Iσ1β
[1]
22 )·〈B2, B1〉+ (Iσ1β

[1]
21 ) · 〈B1, B1〉

})

· tT + op(bn). (41)

Combining (39)-(41) and using that 〈B1, B1〉t = 〈B2, B2〉t = t, 〈B2, B1〉t =
∫ t

0 ρs ds we get the
desired result.

Proof of Lemma 6. We will prove only the first relation, the proof of the second being quite
similar. Consider the case ν = 1, the case ν = 2 can be treated similarly in view of the relation
〈B1, B2〉t =

∫ t

0 ρs ds and the boundedness of ρ. To simplify subsequent formulae, let us denote

ξ[11] = b
−1/2
n

∑

ij KIJ{(Jσ2 ·B2)Iσ1} · 〈B1, B1〉. In other words, ξ[11] is a random process indexed
by t ∈ [0, T ] defined by

b1/2n ξ
[11]
t =

∑

I,J

KIJ

∫ t

0

1I(u)σ1,u

∫ u

0

1J (s)σ2,s dB2,s du

=
∑

I,J

KIJ

∫ t

0

1J(s)σ2,s

∫ t

s

1I(u)σ1,u du dB2,s

=

∫ t

0

∑

J

1J (s)σ2,s

∫ t

s

1I(J)(u)σ1,u du dB2,s.

The latter expression implies that conditionally to Πn, ξ
[11] is a Gaussian process with zero mean.

Moreover,

EΠ[(ξ
[11]
t )2] = b−1

n

∑

J

∫ t

0

1J(s)σ
2
2,s

(∫ t

s

1I(J)(u)σ1,u du

)2

ds

≤ b−1
n ‖σ2

1‖∞‖σ2
2‖∞

∑

J

|J ||I(J)|2 ≤ Cb−1
n r2n,

where C is a positive constant. This yields the desired result.

Proof of Lemma 7. One easily checks that

∫ t

0

H
1,n
s H

2,n
s d〈B1, B2〉s =

∫ t

0

∑

I,J

hsK̃
n
ij(s)(Jσ2 ·B2)s(Iσ1 · B1)s ds. (42)

To prove the convergence of this expression, we apply the Itô formula to the product (Jσ2 ·
B2)s(Iσ1 ·B1)s:

(Jσ2 ·B2)s(Iσ1 ·B1)s = {(Jσ2 ·B2)Iσ1 · B1}s + {(Iσ1 · B1)Jσ2 · B2}s + {(IJh) · t}s.

One can show that the contribution of the first two terms is asymptotically negligible, that is

∫ t

0

∑

I,J

hsK̃
n
ij(s)({(Jσ2 ·B2)Iσ1 · B1}s + {(Iσ1 · B1)Jσ2 · B2}s) ds p−−−−→

n→∞
0, (43)
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Thus, the main term is
∫ t

0

∑

I,J

hsK̃
n
ij(s){(IJh) · t}s ds. (44)

To prove (43), we show the convergence in L2. More rigorously, using the notation Ǩn
IJ(s) =

∫ t

s K̃IJ
n
(s)hs ds and interchanging the order of integrals, we get

EΠ
(

∫ t

0

∑

I,J

hsK̃
n
ij(s){(Jσ2 ·B2)Iσ1 · B1}s ds

)2

= EΠ
({

∑

I,J

Ǩn
ij(Jσ2 · B2)Iσ1 · B1

}

t

)2

≤
∫ t

0

EΠ
[(

∑

I,J

Ǩn
IJ(u)(Jσ2 ·B2)uIuσ1,u

)2]

du

=

∫ t

0

∫ u

0

(

∑

I,J

Ǩn
IJ(u)Iuσ1,uJvσ2,v

)2

dvdu

≤ Cb−2
n

∫ T

0

∫ T

0

r2n
∑

I,J

(

KIJ1I(u)1J(v)
)

dvdu ≤ Cb−2
n r3n.

Let us show now that the term (44) converges in probability. Simple algebra allows us to rewrite
that term in the form

1

2bn

∑

I

(

∫ t

0

hs1I(s) ds
)2

+
1

2bn

∑

J

(

∫ t

0

hs1J(s) ds
)2

− 1

2bn

∑

I,J

(

∫ t

0

hs1I∩J(s) ds
)2

,

which in turn is nothing else but
∫

[0,t]2
hshs′1{s∨s′≤t} {VI

n + VJ
n − VI∩J

n }(ds, ds′). The weak con-

vergence of measures stated in Assumption P1 completes the proof of the first assertion. The
proof of the second assertion is quite similar and therefore is omitted.

Proof of Lemma 8. Using the representations of Mn and Nn as stochastic integrals, we get

〈Mn, Nn〉t =
∫ t

0

(

H
1,n
s G

1,n
s +H

1,n
s G

2,n
s ρs +H

2,n
s G

1,n
s ρs +H

2,n
s G

2,n
s

)

ds. (45)

Let us denote by G11,n the first summand b−1
n

∑

I,J KIJ{((Jβ2) · t)(Iσ1)} in G1,n and let us show

that
∫ t

0
H1,n

s G11,n
s ds tends to zero in probability as n→ ∞. Simple algebra yields

∫ t

0

H
1,n
s G

11,n
s ds = b−3/2

n

∫ t

0

∑

I

Isσ
2
1,s

∫ s

0

J(I)uβ2,u du

∫ s

0

J(I)uσ2,u dB2,u ds

= b−3/2
n

∫ t

0

∑

I

Isσ
2
1,sβ2,aJ(I)

(s− aJ(I))

∫ s

0

J(I)uσ2,u dB2,u ds

+ b−3/2
n

∫ t

0

∑

I

Isσ
2
1,s

∫ s

0

J(I)u(β2,u − β2,aJ(I)
) du

∫ s

0

J(I)uσ2,u dB2,u ds

:= T1,n + T2,n,
where we denoted by aJ(I) the left endpoint of the interval J(I). Let us show that both T1,n and
T2,n tend to zero in probability. Indeed,

EΠ[T 2
1,n] = b−3

n EΠ
[

∫ t

0

σ2
2,u

(

∑

I

J(I)u

∫ t

u

Isσ
2
1,s(s− aJ(I)) dsβ2,aJ(I)

)2

du
]

≤ Cb−3
n EΠ

[

∫ t

0

(

∑

I

J(I)u|I||J(I)||β2,aJ(I)
|
)2

du
]

≤ Cb−3
n r4n sup

t∈[0,T ]

E[β2
2,t],
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and, after applying the Cauchy-Schwarz inequality several times,

EΠ[T 2
2,n] ≤ b−3

n EΠ
[

∫ t

0

∑

I

Isσ
4
1,s

(

∫ s

0

J(I)u(β2,u − β2,aJ(I)
) du

∫ s

0

J(I)uσ2,u dB2,u

)2

ds
]

≤ Cb−3
n EΠ

[

∫ t

0

∑

I

Is|J(I)|4 ds
]

≤ b−3
n r4n.

Similar arguments yield the convergence to zero of the sequence E[(
∫ t

0
H1,n

s G12,n
s ds)2]. Thus

∫ t

0
H1,n

s G1,n
s ds tends to zero in probability as n→ ∞. The convergence to zero of the other terms

of the sum in the right-hand side of (45) can be shown similarly.

Proof of Lemma 9. Let us prove the first assertion, the proof of the second one being com-
pletely similar. Since Nn = G1,n · B1 + Gn,2 · B2 with G1,n and G2,n defined in Lemma 5, we
have 〈Nn, B1〉t =

∫ t

0 (G
1,n
s +Gn,2

s ρs) ds. It is easily seen that

∫ t

0

G
1,n
s ds = b−1

n

∑

i,j

Kij

∫ t

0

(

((Jjβ2) · t)sIisσ1,s + (T j − T j−1 ∨ s)+Iisσ1,sβ2,Si−1

)

ds

=

∫ t

0

∫ t

0

(

β2,uσ1,s1(u ≤ s) + 1(u > s)σ1,sβ2,s
)

VI,J
n (ds, du)

+ b−1
n

∑

i,j

Kij

∫ t

0

(T j − T j−1 ∨ s)+Iisσ1,s(β2,Si−1 − β2,s) ds.

Since β2 is an Itô process with β
[0]
2 , β

[1]
21 and β

[1]
22 being uniformly bounded in L2-norm, the

expectation EΠ[|β2,Si−1 − β2,s|] is bounded up to a constant factor by |I|1/2. This implies that

the second term in the last formula is op(b
−1
n

∑

I,J KIJ |I|3/2|J |) = op(r
3/2
n b−1

n ), while the first

term converges to
∫ t

0
β2,sσ1,s VI,J(ds) in view of Assumption P1.

Identical arguments imply the convergence of
∫ t

0
Gn,2

s ρs ds to
∫ t

0
β1,sσ2,sρsVI,J(ds) and the

assertion of the lemma follows.

Proof of Lemma 10. Since Nn = G
1,n · B1 + G

2,n · B2, its quadratic variation is given by
〈Nn, Nn〉 =

[

(G1,n)2 +2G1,nG2,nρ+ (G2,n)2
]

· t. Using the semimartingale decomposition of β2,
one checks that

∫ t

0

(G1,n
s )2 ds = b−2

n

∫ t

0

(

∑

I,J

KIJ

∫ t

0

Juβ2,u du Isσ1,s

)2

ds+ op(r
3
nb

−2
n )

= b−2
n

∫ t

0

∑

I

Isσ
2
1,s

(

∫ t

0

J(I)uβ2,u du
)2

ds+ op(r
3
nb

−2
n )

=

∫

[0,t]3
σ2
1,sβ2,uβ2,u′ VI,J,J′

n (ds, du, du′) + op(r
3
nb

−2
n ).

Analogous computations show that

∫ t

0

(G2,n
s )2 ds =

∫

[0,t]3
β1,sβ1,s′σ

2
2,u VI,I′,J

t (ds, ds′, du) + op(r
3
nb

−2
n ),

∫ t

0

G
1,n
s G

2,n
s ρs ds =

∫

[0,t]3
β2,uβ1,s′σ1,sσ2,sρs VJ(I),I(J),I∩J

t (du, ds′, ds) + op(r
3
nb

−2
n ).

Now, the desired result follows from Assumption P2.
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9. Technical results on Poisson point processes

Lemma 11. For every λ > 0 it holds that
∑∞

k=0
λk

k!(k+2) = λ−2(λeλ − eλ + 1).

Proof. It follows from the equality 1/(k!(k + 2)) = 1/((k + 1)!) − 1/((k + 2)!) and the power
series expansion of the exponential function.

Lemma 12. Let P be a homogeneous Poisson point process on R with intensity λ > 0 and
let a ∈ R. For every ω, let Ia(w) be the interval that contains a and that is an element of the
partition of R generated by P. Then |Ia| is distributed according to the law Gamma(2, λ).

Proof. W.l.o.g. we can assume that a = 0. Since the restrictions of P on (−∞, 0) and [0,∞) are
two independent Poisson processes, the law of |Ia| coincides with the law of the sum of two i.i.d.
random variables exponentially distributed with parameter λ. Thus the assertion of the lemma
follows from the well known properties of the Gamma distribution.

Lemma 13. Let P be a homogeneous Poisson point process on R with intensity λ > 0 and let
I = [a, b] ⊂ R be some interval. For every ω, let us denote by N = N(ω) the number of points of
P(ω) lying in I and by ti = ti(ω), i = 1, . . . , N the ordered sequence of these points. Then

E

[ N
∑

i=0

(ti+1 − ti)
2

]

=
2(|I|λ− 1 + e−|I|λ)

λ2
,

where we used t0 = a and tN+1 = b.

Proof. Without loss of generality, we assume that I = [0, 1]. We use the fact that conditionally
to N(ω) = k, the random vector (t1, . . . , tk) have the same distribution as (U(1), . . . , U(k)), where
U1, . . . , Uk are independent uniformly in [0, 1] distributed random variables and U(1), . . ., U(k)

are the corresponding order statistics. Since the joint density of (U(i), U(i+1)) is given by

f(U(i),U(i+1))(x, y) =
k!

(i− 1)!(k − i− 1)!
xi−1(1− y)k−i−11{x≤y},

the expectation E[(U(i+1) − U(i))
2] is equal to 2/[(k + 1)(k + 2)]. It is easily seen that E[U2

(1)] =

E[(1− U(k))
2] = 2/[(k + 1)(k + 2)]. Therefore,

E

[ N
∑

i=0

(ti+1 − ti)
2

]

=

∞
∑

k=0

( k
∑

i=0

2

(k + 1)(k + 2)

)

P(N = k) =

∞
∑

k=0

2e−λλk

k!(k + 2)
.

The desired result follows now from Lemma 11.

Lemma 14. Let ζ1 ∼ E (λ1) and P2 be a Poisson process with intensity λ2 independent of ζ1.
Let us denote by Π2

ζ the partition of [0, ζ1] generated by P2. Then

E

[

ζ1
∑

J∈Π2
ζ

|J |2
]

=
6λ1 + 4λ2
λ21(λ1 + λ2)2

.

Proof. By rescaling and by using Lemma 13, we get

E

[

∑

J∈Π2
ζ

|J |2
∣

∣ ζ1

]

=
2ζ21 (λ2ζ1 − 1 + e−λ2ζ1)

λ22ζ
2
1

.

imsart-aihp ver. 2010/04/27 file: Dalalyan_Yoshida_final.hyper4714.tex date: August 2, 2010



38 Dalalyan and Yoshida

Therefore,

E

[

ζ1
∑

J∈Π2
ζ

|J |2
]

=
2

λ2
E[ζ21 ]−

2

λ22
E[ζ1] +

2

λ22
E[ζ1e

−λ2ζ1 ]

=
4

λ2λ21
− 2

λ22λ1
+

2

λ22

λ1
(λ1 + λ2)2

=
6λ1 + 4λ2
λ21(λ1 + λ2)2

.

This completes the proof of the lemma.

Lemma 15. Let I = [a, b] be an interval of [0, T ]. If P is a Poisson point process with intensity
λ and Π is the partition of [0, T ] generated by P, then

E
[

∑

J∈Π

|J |KIJ

]

= |I|+ 2λ−1 − λ−1(e−λa + e−λ(T−b)),

E
[

∑

J∈Π

|J \ I| · |J ∩ I|
]

= λ−2(1− e−λ|I|)(2− e−λa − e−λ(T−b)).

Proof. We can consider the Poisson point process P on [0, T ] as the union of three independent
Poisson point processes: Pa on [0, a], PI on I = [a, b] and Pb on [b, T ]. Let t1 ≤ . . . ≤ tNa (resp.
t′′1 ≤ . . . ≤ t′′Nb

) be the points of Pa (resp. Pb). Then E[
∑

J |J |KIJ ] = E[(a− tNa)+ |I|+(t′′1 −b)].
For every integer k ≥ 0, conditionally to Na = k, the random variable tNa has the same law as the
last order statistic U(k) of a sequence U1, . . . , Uk of i.i.d. uniformly in [0, a] distributed random
variables. Therefore, E[a− tNa |Na = k] = a/(k + 1) and

E[a− tNa ] =

∞
∑

k=0

(aλ)ka

k!(k + 1)
e−aλ =

1− e−aλ

λ
.

The same arguments yield E[t′′1 − b] = λ−1(1 − e−(T−b)λ) and the first assertion of the lemma
follows. Using the same notation, we have

∑

J |J \I| · |J ∩I| = (a− tNa)(t
′
1−a)+(b− t′NI

)(t′′1 −b),
where t′1 ≤ . . . ≤ t′NI

are the points of P lying in I. Thanks to the conditional independence
of tNa , (t

′
1, t

′
NI

) and t′′1 given Na, NI and Nb, as well as the representation by means of order
statistics of the uniform distribution we get the second assertion of the lemma.

Lemma 16. Let t > 0 and let P be a Poisson process on [0, t] with intensity λ. We denote by
Π the random partition of [0, t] generated by P. For every continuous function h : [0, t]2 → R, it
holds that

λ
∑

I∈Π

∫

I×I

h(s, s′) ds ds′
L1(P )−−−−→
λ→∞

2

∫ t

0

h(s, s) ds.

Proof. Let K be a positive integer and let as denote by

wh(δ) = max{|h(s, s′)− h(u, u′)| : (s, s′, u, u′) ∈ [0, T ]4 and |s− u| ≤ δ, |s′ − u′| ≤ δ} (46)

the modulus of continuity of h. Since h is continuous and [0, t]2 is compact, we have wh(t/K) → 0
as K → ∞.
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It holds that λ
∑

I∈Π

∫

I×I
h(s, s′) ds ds′ = 2

∫ t

0
h(s, s) ds+ T1 + T3 + T3 with

T1 = λ
∑

I∈Π

∫

I×I

h(s, s′) ds ds′ − λ
K
∑

i=1

h
( it

K
,
it

K

)

∑

I∈ΠK
i

|I|2,

T2 =
K
∑

i=1

h
( it

K
,
it

K

)(

λ
∑

I∈ΠK
i

|I|2 − 2t

K

)

,

T3 = 2

K
∑

i=1

t

K
h
( it

K
,
it

K

)

− 2

∫ t

0

h(s, s) ds,

where ΠK
i is the restriction of the Poisson process P on the interval [(i − 1)t/K, it/K]. For the

first term, easy algebra yields

E[|T1|] ≤ λ‖h‖∞E
[

∑

I∈Π

|I|2 −
K
∑

i=1

∑

I∈ΠK
i

|I|2
]

+ λwh(t/K)

K
∑

i=1

E
[

∑

I∈ΠK
i

|I|2
]

.

This inequality combined with Lemma 13 implies that

lim sup
λ→∞

E[|T1|] ≤ lim sup
λ→∞

(

λ‖h‖∞
K

λ2
+ λwh(t/K)

2t

λ

)

= 2twh(t/K).

In order to bound E[|T2|], we evaluate E[|λ∑I∈ΠK
i
|I|2 − 2t

K |]. The value of this term being

independent of i, we only evaluate the term corresponding to i = 1. Let {ζj , j ∈ N} be a
family of i.i.d. exponentially distributed random variables with scaling parameter one and let
N = min{k : ζ1 + . . .+ ζk ≥ npt/K}. Then

∣

∣

∣λ
∑

I∈ΠK
i

|I|2 − 2t

K

∣

∣

∣ ≤ 1

λ

∣

∣

∣

N
∑

j=1

(ζ2j − 2)
∣

∣

∣+
∣

∣

∣

2(N − 1)

λ
− 2t

K

∣

∣

∣+
ζ2N + 2

λ
.

Note that E[ζ2N ] = 6 by virtue of Lemma 12. In view of the Cauchy-Schwarz inequality and

Wald’s identity [40, Ch. VII, Thm. 3, Eq. (15)], we get E[|∑N
j=1(ζ

2
j − 2)|] ≤ [Var(ζ21 )E(N)]1/2 =

O(λ1/2). Finally, it is clear that |T3| ≤ 2t wh(t/K). Putting these estimates together, we get
lim supλ→∞ E[|T1+T2+T3|] ≤ 4twh(t/K). Using the fact that wh(t/K) tends to zero as K → ∞,
we arrive at the desired result.

Lemma 17. Let t > 0 and let Pi, i = 1, 2, be two Poisson processes on [0, t] with intensities
λi, i = 1, 2. Let Πi be the random partition of [0, t] generated by Pi, i = 1, 2 and let λ0 =
λ1λ2/(λ1 + λ2). For every continuous function h : [0, t]2 → R there exists a constant C > 0 such

that for every x ∈ [C logλ0, Cλ
1/6
0 ] the inequality

P

(

∣

∣

∣λ0
∑

I,J

KIJ

∫

I×J

h(s, s′)− 2

∫ t

0

h(s, s) ds
∣

∣

∣ ≥ x√
λ0

+ Cx
( 1

λ0
+ wh

( x

λ0

))

)

≤ Cλ0e
−x/C

holds for sufficiently large λ0, with wh(·) being defined by (46).

Proof. W.l.o.g. we assume that t = 1. Set T = λ0
∑

I∈Π1,J∈Π2 KIJ

∫

I×J
h(s, s′) ds ds′ and h̄(s) =

h(s, s). Let us denote by N(x) = ⌈λ0/x⌉ the smallest positive integer such that N(x)x > λ0 and
let us set Li = [iN(x)−1, (i+1)N(x)−1]. The intervals Li define a uniform deterministic partition
of [0, 1] with a mesh-size of order x/λ0. Let E be the event “for every i = 1, . . . , 4N(x), the interval

imsart-aihp ver. 2010/04/27 file: Dalalyan_Yoshida_final.hyper4714.tex date: August 2, 2010



40 Dalalyan and Yoshida

[ i
4N(x) ,

(i+1)
4N(x) ] contains at least one point from Π1 and one point from Π2”. The total probability

formula implies that

P

(

∣

∣

∣
T − 2

∫ 1

0

h̄(s)ds
∣

∣

∣
≥ x√

λ0

)

≤ P

(

∣

∣

∣
T − 2

∫ 1

0

h̄(s) ds
∣

∣

∣
≥ x√

λ0

∣

∣

∣
E
)

+P(Ec),

where Ec denotes the complementary event of E . Easy computations show that, for some C > 0,
the inequality P(Ec) ≤ Cλ0x

−1e−x/C holds true.
Let now li be a point in Li such that

∫

Li
h̄(t) dt = h̄(li)|Li| and let aI be the left endpoint of

I. We define the random variables

η◦i = λ0h̄(li)
∑

I,J

|I||J |KIJ1{aI∈Li}, i = 1, . . . , N(x),

and write T1 = T11 + T12 + T13 +O(λ0|L1|wh(|L1|)) on E , where

T11 = EE

[N(x)
∑

i=1

η◦i

]

− 2

∫ 1

0

h̄(s) ds, T1s =

[N(x)/2]
∑

i=1

(η◦2i+s−2 −EE [η◦2i+s−2]), s = 2, 3.

Let us emphasize that for evaluating the remainder term in T1, we have used the fact that
r = maxI∈Π1 |I| ∨maxJ∈Π2 |J | ≤ |L1|/2 on E .

On the one hand, since |∑N(x)
i=1 η◦i | ≤ Cλ0r, we have

∣

∣

∣

∣

EE
[

N(x)
∑

i=1

η◦i

]

−E
[

N(x)
∑

i=1

η◦i

]

∣

∣

∣

∣

≤ λ0E[r1Ec ]

P(E) .

Using the inequality of Cauchy-Schwarz, as well as the bounds P(Ec) ≤ Cλ0e
−x/C and (36), we

get
∣

∣EE
[
∑N(x)

i=1 η◦i
]

−E
[
∑N(x)

i=1 η◦i
]∣

∣ ≤ Cλ0e
−x/C , for some constant C and for every x > C logλ0.

On the other hand, in view of Lemma 15, we have

E[η◦i ] ≤ λ0h̄(li)E

[

∑

I:aI∈Li

(

|I|2 + 2|I|
λ2

)

]

≤ Cλ0h̄(li)(λ
−1
1 + λ−1

2 )|Li| = O(xλ−1
0 ).

Using once again Lemma 15, we get

E
[

N(x)
∑

i=1

η◦i

]

=

N(x)−1
∑

i=2

λ0h̄(li)E
[

∑

I:aI∈Li

|I| ·EΠ1
(

∑

j∈Π2

KIJ |J |
)]

+O(xλ−1
0 )

=

N(x)−1
∑

i=2

λ0h̄(li)E
[

∑

I:aI∈Li

(

|I|2 + 2|I|/λ2
)

]

+O(xλ−1
0 ).

Wald’s equality yields

E
[

∑

I:aI∈Li

|I|k
]

= k!|Li|λ1−k
1 +O(λ−k

1 ), (47)

for every k > 0 and for every i ≤ N(x)− 1. Putting all these estimates together, we get

E
[

N(x)
∑

i=1

η◦i

]

=

N(x)−1
∑

i=2

nλ0h̄(li)
(2|Li|
λ1

+
2|Li|
λ2

)

+O(xλ−1
0 ) =

N(x)
∑

i=1

2h̄(li)|Li|+O(xλ−1
0 ).
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Since li is chosen to verify h̄(li)|Li| =
∫

Li
h̄(t) dt, we get T11 = O(xλ−1

0 ).
The advantage of working with η◦i s is that, conditionally to E , the random variables η◦2i,

i = 1, . . . , [N(x)/2], are independent. Indeed, one easily checks that conditionally to E , η◦2i depends
only on the restrictions of P1 and P1 onto the interval [ (4i−1)

2N(x) ,
(4i+3)
2N(x) ]. Since these intervals

are disjoint for different values of i ∈ N, the restrictions of Poisson processes Pk, k = 1, 2,
onto these intervals are independent. Therefore, η◦2i, i = 1, . . . , [N(x)/2], form a sequence of
random variables that are independent conditionally to E . Moreover, conditionally to E , they
verify |η◦i | ≤ Cλ0r|Li| ≤ Cx2/λ0. One can also check that EE [(η◦i )

2] = O(x2λ−2
0 ).

These features enable us to use the Bernstein inequality in order to bound large deviations of
T12 as follows:

PE
(

|T12| ≥ x/
√

λ0
)

≤ 2 exp
(

− x2/(2λ0)

C(N(x)x2λ−2
0 + x3λ

−3/2
0 )

)

≤ 2e−x/C , ∀x ∈ [1, λ
1/6
0 ]

Obviously, the same inequality holds true for the term T13. These inequalities combined with the
bound on the deterministic error term T11 complete the proof.

Lemma 18. Let T > 0 and let Pi
n, i = 1, 2, be two Poisson processes on [0, T ] with intensities

npi, i = 1, 2. For every continuous function h : [0, T ]3 → R, it holds that

n2
∑

I∈Π1
n

∫

I×J(I)×J(I)

h(s, t, u) ds dt du
P−−−−→

n→∞

( 6

p21
+

8

p1p2
+

6

p22

)

∫ T

0

h(s, s, s) ds.

Proof. Let us denote Tn = n2
∑

I∈Π1
n

∫

I×J(I)×J(I)
h(s, t, u) ds dt du and let us consider the uni-

form partition {Li =
[

(i − 1)/N, i/N
)

, i = 1, . . . , N} with N = [n1−ε] slightly smaller than n
(ε is a small positive number). For every integer i smaller than [n1−ε], we define li as the real
number such that h̄(li) = |Li|−1

∫

Li
h̄s ds, where h̄s = h(s, s, s). The continuity of h implies that

Tn = n2(1 + o(1))

N
∑

i=1

∑

I

h̄(li)|I| |J(I)|21Li(aI).

For every i, we set η◦i = n2
∑

I h̄(li)|I| |J(I)|21Li(aI). We first remark that

E
[

∑

I

h̄(li)|I| |J(I)|21Li(aI)
]

= N−1O(E[r2n]), ∀i = 1, . . . , N.

Let now i ∈ 2, . . . , N − 1 and I be an interval of Π1 satisfying aI ∈ Li, then
∣

∣|J(I)|−|I|−ξ◦1−ξ◦2
∣

∣ ≤
(ξ◦1 −N−1)+ + (ξ◦2 −N−1)+, where ξ

◦
1 and ξ◦2 are two random variables distributed according to

the exponential distribution with parameters np2 conditionally to Π1. Moreover, conditionally to
Π1, ξ◦1 and ξ◦2 are independent. Since N = O(n1−ε) and EΠ1

[(ξ◦j )
4] = O(n−4), by the Cauchy-

Schwarz inequality we have EΠ1

[(ξ◦j − N−1)2+] = O(n−2−4ε) for j = 1, 2. This implies that

EΠ1

[|J(I)|2] = |I|2 + 4|I|(np2)−1 + 6(np2)
2 + O(|I|n−1−2ε). Combining this estimate with (47),

we get

E[η◦i ] = h̄(li)|Li|
( 6

p21
+

8

p1p2
+

6

p22

)

+ n2|Li|O(n−1−2ε) =
( 6

p21
+

8

p1p2
+

6

p22

)

∫

Li

h̄(s) ds+ o(1).

By reasoning in a similar way, we get E[η◦i η
◦
j ] − E[η◦i ]E[η◦j ] = o(|Li|2) as soon as |i − j| > 2.

Standard arguments imply that Var[
∑

i η
◦
i ] = O(N maxiVar(η

◦
i )) + o(N2|L1|2). Since |η◦i | ≤

C(nrn)
2|L1| for every i, we get Var[

∑

i η
◦
i ] = O(N |L1|2E[(nrn)

4]) + o(1) = o(1) and the desired
convergence property follows from the convergence of Tn in L2.
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Lemma 19. Let T > 0 and let Pi
n, i = 1, 2, be two Poisson processes on [0, T ] with intensities

npi, i = 1, 2. There is a constant ν(p1, p2) depending only on p1 and p2 such that for every
continuous function h : [0, T ]3 → R

n2
∑

I∈Π1
n

∑

J∈Π2
n

∫

I(J)×J(I)×I∩J

h(s, t, u) ds dt du
P−−−−→

n→∞
ν(p1, p2)

∫ T

0

h(s, s, s) ds.

Proof. The proof of this lemma follows from the invariance of the law of a Poisson process under
scaling and translation, as well as from the independence of disjoint sets’ measures. It is similar
to the proofs of preceding lemmas and therefore will be omitted.
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