N
N

N

HAL

open science

Speed-up run-time reconfiguration implementation on
FPGAs

Florent Berthelot, Dominique Houzet, Fabienne Nouvel

» To cite this version:

Florent Berthelot, Dominique Houzet, Fabienne Nouvel. Speed-up run-time reconfiguration imple-
mentation on FPGAs. DASIP 2007 - Workshop on Design and Architectures for Signal and Image

Processing, Nov 2007, Grenoble, France. hal-00267782

HAL Id: hal-00267782
https://hal.science/hal-00267782
Submitted on 28 Mar 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-00267782
https://hal.archives-ouvertes.fr

Speed-up run-time reconfiguration implementation
on FPGAs

Florent Berthelot!, Dominique Houzet?, Fabienne Nouvel
LCNRS UMR 6164 IETR/INSA Rennes, 20 av des Buttes de Coesmes, 35043 Rennes, France
2GIPSA-lab INPG, 46 avenue Flix Viallet, 38031 Grenoble cedex, France
florent.berthelot @ens.insa-rennes.fr

Abstract— Reconfigurable computing is certainly one of the
most important emerging research topics over the last few
years, in the field of digital processing architectures. The
introduction of run-time reconfiguration (RTR) on FPGAs
requires appropriate design flows and methodologies to fully
exploit this new functionality. For that purpose we present an
automatic design generation methodology for heterogeneous
architectures based on Network on Chip (NoC) and FPGAs
that eases and speed-up RTR implementation. We focus on
how to take into account specificities of partially reconfigurable
components during the design generation steps. This method
automatically generates designs for both fixed and partially
reconfigurable parts of a FPGA with automatic management of
the reconfiguration process. Furthermore this automatic design
generation enables reconfiguration pre-fetching techniques to
minimize reconfiguration latency and buffer merging techniques
to minimize memory requirements of the generated design. This
concept has been applied to different wireless access schemes,
based on a combination of OFDM and CDMA techniques. The
implementation example illustrates the benefits of the proposed
design methodology.

Keywords: System-level design flow, Reconfigurable computing,
Run-time reconfigurable FPGA-based system.

I. INTRODUCTION

Applications such as multimedia, encryption or wireless
communication require highly repetitive parallel computations
and lead to incorporate hardware components into the designs
to meet stringent performance and power requirements. On
the other hand architecture flexibility is the key point for
developing new multi-standard and multi-application systems.
Application-specific integrated circuits (ASICs) are a partial
solution for these needs. They can reach high performance,
computation density or power efficiency but to the detriment
of architecture flexibility as the computation structure is fixed.
Furthermore, the non-recurring engineering costs (NREs) of
ASICs have been increasing dramatically and made them not
feasible or desirable for all applications especially in case
of bug-fixes, updates and functionality evolutions. Flexibil-
ity is the processor’s architecture paradigm. The algorithm
pattern is computed temporally and sequentially in the time
by few execution units from a program instruction stream.
This programmability potentially occurs at each clock cycle
and is applied to a general computation structure with a
limited parallelism computation capacity. The data-path can be
programmed to store data towards fixed memories or register
elements, but can not be truly reconfigured. This kind of

architecture suffers from the memory controller bottleneck
and power efficiency. These architectures have a very coarse-
grained reconfiguration, reported as system level. Reconfig-
urable architectures can provide an efficient platform for
satisfying the performance, flexibility and power requirements
of many embedded systems. These kinds of architectures are
characterized by some specific features. They are based on
a spatial computation scheme with high parallelism capacity
distributed over the chip. Control of operator behaviour is
distributed instead of being centralized by a global program
memory. Multiple reconfigurable architectures have been de-
veloped [1] [2], they can be classified by their reconfiguration
granularity. FPGAs have a logic level of reconfiguration.
Communication networks and functional units are bit-level
configurable. Their highly flexible structure allows to imple-
ment almost any application. A volatile configuration memory
allows to configure the data-path and the array of configurable
logic blocks.

Architecture granularity elevation allows either specializa-
tion and performance or the improvement of architecture flex-
ibility as for the processors. The introduction of dynamically
reconfigurable systems (DRS) has opened a new dimension
of using chip area. Recently run-time reconfiguration (RTR)
of FPGA parts has led to the concept of virtual hardware [3].
RTR allows more sections of an application to be mapped into
hardware through a hardware updating process. A larger part
of an application can be accelerated in hardware in contrast
to a software computation. Partial reconfiguration ability of
recent FPGAs allows updating only a specified part of the
chip while the other areas remain operational and unaffected
by the reconfiguration. These systems have the potential to
provide hardware with flexibility similar to that of software,
while leading to better performances.

However, cutting-edge applications require heterogeneous
resources to efficiently deal with the large variety of signal
and multimedia processing. This is achieved by mixing various
processing granularities offered by general purpose processors
(GPPs), digital signal processors (DSPs) and reconfigurable
architectures. These processing units need to communicate
through a flexible media managing heterogeneous commu-
nications. A Network on Chip (NoC) is an emerging solu-
tion. This paper presents our methodology allowing a fast
integration and use of run-time reconfigurable components,
namely FPGAs. This implies a convenient methodology and

conception flow which allows a fast and easy integration of
run-time reconfiguration onto applications and an automatic
management of reconfiguration process. Design space explo-
ration will benefit from this improvement as operations of
the application algorithm graph could be mapped either on
DSP/GPP devices or statically/dynamically on FPGA devices
thanks to run-time reconfiguration. The rest of the paper is or-
ganised as follows. Following the introduction, Section II gives
an overview of related approaches, especially those which
are focused on dealing with run-time reconfiguration from a
high-level design specification. Section III then addresses the
automatic design generation targeting run-time reconfigurable
architectures. This design flow and methodology has been
applied for the implementation of a transmitter system for
future wireless networks for 4G air interface presented in
section IV where two implementation examples based on a
Network On Chip (NoC) and point to point communication
scheme are presented. Finally section V provides a conclusion
of this work and gives some indication of future work.

II. RELATED WORK

Numerous researches are focused on reconfigurable archi-
tectures and the way to exploit efficiently their potentials.
Higher level of abstraction, design space exploration, hard-
ware/software partitioning and co-design, rapid prototyping,
virtual component design and integration for heterogeneous
architectures; all these topics are strong trends in architec-
tures for digital signal processing. Silva and Ferreira [5]
present a hardware framework for run-time reconfiguration.
The proposed architecture is based on a general-purpose CPU
which is tightly connected to a dynamically reconfigurable
fabric (DRF). A tool named BitLinker allows the relocation
and assembly of bitstreams of individual components and
is used to automate these steps which are very dependent
on the underlying hardware’s organisation. This approach is
architecture-centred and application mapping steps on this
specific platform is not addressed. This issue requires a higher
level of abstraction for design specification. PaDReH [6] is
a framework for the design and implementation of run-time
reconfigurable systems and deals only with the DRS hardware
design flow. The use of SystemC language enables a higher
level abstraction for design and validation. After a transla-
tion to the RTL level a space-time scheduling and hardware
partitioning is performed allowing the generation of a run-
time reconfiguration controller. Bitstreams generation is based
on Xilinx [7] Modular Design Flow. Craven and Athanas [§]
present a high-level synthesis (HLS) framework to create
HDL. The hardware/software partitioning is performed by
the designer. Reconfiguration simulations and reconfiguration
controller generation is allowed from a modified version of
the Impulse C ANSI C-based design language supporting
HLS from C to RTL HDL. Nevertheless, final implementation
steps are not addressed. The EPICURE project [9] is a
more comprehensive methodology framework based on an
abstraction tool that estimates implementation characteristics
from a C-level description of a task and a partitioning re-

' ! |

‘ Algorithm graph ‘

Architecture graph

\/

Heuristic
AAA
mapping and scheduling

Redesign

Performance
predictions

Libraries

Synchronized

Distributed Executive

Design Generation

Fig. 1.

SynDEx methodology flow

finement tool that realizes the dynamic allocation and the
scheduling of tasks according to available resources in the
dynamically reconfigurable processing unit (DRPU). An in-
telligent interface (ICURE) between the software unit and the
DRPU acts as a hardware abstraction layer and manages the
reconfiguration process. Overlapping between computations
and reconfigurations is not supported. Most of these above
methodologies frameworks assume a model of external con-
figuration control, mandating the use of a host processor or
are tightly coupled to a specific architecture [9] [5]. Hence
custom heterogeneous architectures are not supported. Few of
them address methods for specifying runtime reconfiguration
from a high-level down to the consideration of specific features
of partially reconfigurable components for the implementation.
Our proposed methodology deals with heterogeneous architec-
tures composed of processors, FPGA or any specific circuits
around a Network on Chip. The implementation of run-time
reconfiguration on hardware components, especially FPGAs, is
automated and eased by the use of a high-level application and
architecture specification. That is handled by the SynDEx tool
which allows the definition of both application and hardware
from a high level and realizes an automated Hardware/software
mapping and scheduling.

III. AUTOMATIC DESIGN FLOW TARGETING RUN-TIME
RECONFIGURABLE ARCHITECTURES

Figure 1 depicts our overall methodology flow based on
Syndex tool [10]. Each macrocode executive generated by
Syndex is translated toward a high-level language (HDL or
C/C++) for each HW or SW component. This translation pro-
duces an automatic dead-lock free code. Macro-code directives
are replaced by a corresponding code from libraries (C/C++
for software components, VHDL for hardware components).
Many libraries have been developed for heterogeneous plat-
forms and we have extended SynDEx capacities to handle
runtime reconfigurable components. In our methodology, the
algorithm graph application description is realized at the
functional level representing coarse-grained operations. This
description is handled during the design flow through the
use of libraries containing Ips definitions for code generation.
These coarse-grained IPs are supposed to be developed to fully

exploit parallelism of their final implementation targets.

A. Generic computation structure

After selection of candidates among all operators of the
algorithm graph for partial reconfiguration or parametrization,
we have a set of operators that must be implemented into a run-
time reconfigurable device. To achieve the design generation
a generic computation structure is employed. This structure is
based on buffer merging technique and functionality abstrac-
tion of operators. The aim is to obtain a single computation
structure able to perform through run-time reconfiguration or
parametrization the same functionalities as a static solution
composed of several operators. Encapsulation of operators
through a standard interface allows us to obtain a generic
interface access. This encapsulation eases IP integration pro-
cess with this design methodology and provides functionality
abstraction to operators. This last point is helpful to easily
manage reconfigurable operators with run-time reconfiguration
or configuration for parametrized operators. This encapsulation
is suitable for coarse-grained operators with data-flow compu-
tation. It is a conventional interface composed of an input data
stream, an output data stream along with ’enable’ and ’'ready’
signals to control computation. For the case of parametrized
operators a special input is used to select the configuration of
the operator. As operators can work on various data widths,
the resulting operator interface has to be scaled for the worst
case.

B. Design generation for run-time reconfiguration manage-
ment

In order to perform reconfiguration of the dynamic part
we have chosen to divide this process in two sub-parts: a
Configuration manager and a Protocol builder. The *Configu-
ration manager’ is automatically generated from our libraries
according to the sequencing of operations expressed in the
macro-code. A ’Configuration manager’ is attached to each
parametrizable operator or dynamic operator. The configu-
ration manager is in charge of operation selection which
must be executed by the configurable operator by sending
configuration requests. These requests are sent only when an
operation has completed its computation and if a different
operation has to be executed after. So reconfigurations are
performed as soon as the current operation is completed to
enable configuration prefetching as described before. This
functionality provides also information on the current state of
the operator. This is useful to start operator computations (with
signal ’enable’) only when the configuration process is ended.
Figure 2 shows a simple example based on two operations (j
and k) which are executed successively. Labels M and P show
where functionalities ’Configuration manager’ and ’Protocol
builder’ respectively are implemented. Case a) shows the
design generated for a non-reconfigurable component. The
two operators are physically implemented and are static.
Case b) is based on a parametrizable operator, the selection
of configurations is managed by the configuration manager.
There is no configuration latency, the operator is immediately

available for computation. The signal Config_Select is basically
a request of configuration, it results in the selection of a set of
parameter among all which are internally stored. The third
case c) is based on a dynamically reconfigurable operator
which implements successively the two operations thanks to
run-time reconfiguration. The reconfigurable part provides a
virtual hardware, so at a time only one operator is physically
implemented on this dynamic part. The configuration requests
are sent to the protocol builder which is in charge to construct
a valid reconfiguration stream in agreement with the used
protocol mode (e.g selectmap).

During reconfiguration process (parametrization or partial
reconfiguration) others communications or computations are
allowed. Encapsulation of operators with a standard interface
allows to reconfigure only the area containing the operator
without altering the design around. Buffers and functionalities
involved in the overall control of the dynamic area remain on
a static part of the circuit. This portioning allows to reduce
the size of the bitstream which must be loaded and decreases
the time needed to reconfigure.

enable
Buffer . Operator
P Operator k ready Controller
enable
Buffer ; Operator
J Operator j ready Controller
s
Stur_t _T L Operation
operation complete
General
computation
controller

a) Static operator based structure

Config_Select

4L@ enable [——————— S'}ale " @
recontigurat .
O Operator part | Configuration!

Buffer

k Param | rady | Controller manager
Start Operation
operation complete

Buffer
J

General
computation
controller

b) Parameterizable operator based structure

Bist | Protocol P |_configuration requests
istream ! <
memory contlguratlon acknowledgements
bitstream builder
------ 77 A 4
/1 cnable S‘Eale o
Buffer) Op_dyn Operator monp‘i‘:m °C0nﬁgurati0n M
k ready Controller manager
Start T Operation l—’
Buffer Reconfigurable part OPeration complete
J General
computation
controller

¢) Dynamic Operator based structure

Fig. 2. Architecture comparison between a fixed/parameterized or dynamic
computation based structure

input Data_Gen emetteur CNA_f]
nput data_out p—————{data_in | o|p—=1 op—ti
ol inpul_1 Conli Config o1 p—1i1

Channel_coding

Chip_mapping

. :

/ v
Config

A) Algorithm graph of the configurable transmitter

Fig. 3.

IV. RESULTS

Our design flow and methodology have been applied for
the implementation of a transmitter for future wireless net-
works in a 4G-based air interface [11]. In an advanced
wireless application, SDR does not just transmit. It receives
informations from the channels networks, probes the prop-
agation channel and configures the systems to achieve best
performance and respond to various constraints such as bit
error rate (BER) or power consumption. Hence we have
considered a configurable transmitter which can switch be-
tween three transmission schemes. The basic transmission
scheme is a multi-carrier modulation based on Orthogonal
Frequency Division Multiplexing (OFDM). OFDM is used
in many communications systems such as: ADSL, Wireless
LAN 802.11, DAB/DVB or PLC. The first scheme corresponds
to the most simple transmitter configuration named OFDM.
The second configuration uses a Multi-Carrier Code Division
Multiple Access (MC-CDMA) technique [11]. This multiple
access scheme combines OFDM with spreading allowing
the support of multiple users at the same time. The third
configuration uses a Spread-Spectrum Multi-Carrier Multiple-
Access with frequency hopping pattern (FHSS-MC-MA), as
used in 802.11b (WiFi). It is a Spread Spectrum Modulation
technique where signal is repeatedly switching frequencies
during radio communication, minimizing probability of jam-
ming/detection. SynDEXx algorithm graph, depicted by Figure 3
A), shows the numeric computation blocks of this configurable
multimode transmitter. These three transmission schemes use
channel coding and perform a forward correction error (FEC),
corresponding to the Channel coding block. The DSP can
change the FEC to select a Reed-Solomon encoder or a
convolutional encoder. Next a modulation block performs an
adaptive modulation between QPSK, QAM-16 or QAM-64
modulation. For MC-CDMA and FH-SS-MC-MA schemes
a Spreading block implements a Fast Hadamard Transform
(FHT). This block is inactive for OFDM scheme. A chip
mapping (Chip mapping block) is done in order to take into

FPGA
)
w D W foga_dyn_1 (fpga_dyn)
(54 i
]
0}

B) Prototyping board architecture graph

Algorithm and Architecture graph of the configurable transmitter

account the frequency diversity offered by OFDM modulation.
This block performs either an interleaving on OFMD symbols
for MC-CDMA, whereas the interleaving in FH-SS-MC-MA
scheme is a frequency hopping pattern (FH) to allow user data
to take advantage of the diversity in time and frequency. The
OFDM modulation is performed by an Inverse Fast Fourier
Transform thanks to IFFT block which also implements zero-
padding process. For complexity and power consumption this
IFFT can be implemented in radix-2 (IFFT-R2) or radix-4
(IFFT-R4) mode. Configuration selection (conditional entry
Config) and data generation are handle by the Data Gen block,
whereas CNA If block represents the interface to the CNA
device of the platform.

A. Implementation on a prototyping platform

This board is composed of one DSP C6701 from Texas
Instrument and one partially reconfigurable FPGA Xc2v2000
from Xilinx (10700 CLB slices). Communications between
DSP and FPGA are ensured by SHB (Sundance High-speed
Bus) and CP (Communication Port) communication medium
from Sundance technology. We have chosen to divide the
FPGA in four vertices. One is static (Interface) and represents
pre-developed logic for FPGA interfacing. The three remain-
ing (FPGA_Dyn, FPGA_Dyn_I and FPGA_Dyn_2) are run-
time reconfigurable vertices. Internal communications between
these parts are ensured by the LI media. Table I details the
configurations and complexities of the reconfigurable trans-
mitter computational blocks (depending on the transmission
schemes). These complexities are obtained on a Xilinx VirtexII
FPGA, where each slice includes two 4-input function gener-
ators (LUT). Some of these functions can be implemented
thanks to available Xilinx IPs [12].

1) Functions mapping: From the characterization of com-
putational blocks we can determine a possible implementa-
tion of the transmitter over the prototyping board. Table II
summarizes this mapping. IFFT block will be implemented
thanks to a parameterizable IP from Xilinx, and mapped

Transmitter Computational | Channel coding Modulation Spreading Chip mapping IFFT
configuration blocks
« Sampling frequency = A Reed-Solomon A QPSK, 16QAM, Interleaving: A IFFT-R2 (256-points, 16 bits):
20Mhz g | encoder: B | 64QAM FHT Al 186 slices, g | 752 slices, 3 BlockRam, 3 Mult18*18 —
« Number of users = 32 Configurations | ¢ | 120 slices. c B | (spreading | B| 2 Blockram. [¢ | 1P Xilinx COREGen xFFT va.1.
« FFT = 256 points and c | factor: 32)
+ OFDM symbol duration complexities Convolutional Parameterizable - 873 slices. Frequency IFFT-R4 (256-points, 16 bits): 1600 slices, 7 BlockRAM,
=128 us A | encoder: A | operator: Hopping A | 9 Mult18*18 — IP Xilinx COREGen xFFT v3.1.
« Erame duration B | 43 slices xilinx | g | 60 slices c| Pattern (FH): | g
=1.32ms c Egggsg“\?;o c 246 slices, C | Parameterizable operator: 1600 slices
o 2 Block-Ram. - IP Xilinx COREGen xFFT v3.1.
Transmission schemes: OFDM (A) , MC-CDMA (B) , FH-SS-MC-MA (C)
TABLE 1

CONFIGURATIONS AND COMPLEXITIES

Computation vertice FPGA_Interface FPGA_Dyn FPGA_Dyn_1 FPGA_Dyn_2 ?:i? CNA
Functional Data_Gen (1) IFFT (2) Chip Mapping (3) FHT (1) Input | Output
Block CNA_If (1) Reed Solomon Encoder(1) Modulation (2)
Convolutional Encoder (1)

(1) : Static operator (2) : Parameterizable operator (3) : dynamic operator

|Design automatically generatedl

TABLE I
FUNCTIONAL BLOCKS MAPPING

on the FPGA_Dyn vertex. Two static operators used for the
Reed-Solomon encoder and Convolutional encoder are also
mapped on FPGA_Dyn vertex. Functionalities Interleaving
and FH of the Chip mapping block will be sequentially
implemented by a dynamic operator with run-time reconfig-
uration on the FPGA_Dyn_I vertex. Spreading block (FHT)
will be performed through a static operator implemented on
the FPGA_dyn_2 vertex. On the same vertex the modulation is
a parameterizable operator. The Data_Gen and CNA_If block
are mapped on the Interface vertex to ensure DSP’s data and
configurations transmission. They will not be detailed as we
focus on generation for run-time reconfigurable vertices.

2) Resulting FPGA architecture: The code, both for fixed
and dynamic parts, has been automatically generated with
SynDEx thanks to the libraries. However, the generation of
bitstreams needs a specific flow from Xilinx called modular
design [7]. Modular Design is based on a design partitioning in
functional modules which are separately implemented and al-
located to a specific FPGA’s area. Each module is synthesized
to produce a netlist and then placed and routed separately.
Reconfigurable modules communicate with the other ones,
both fixed and reconfigurable, through a special bus macro
(3-state buffers) which is static. They guarantee that each
time partial reconfiguration is performed the routing channels
between modules remain unchanged. Partial bitstreams are
created from the individual modules designs. The Virtex II
integrates the ICAP FPGA primitive. ICAP is an acronym for
Internal Configuration Access Port providing a direct access
to the FPGA configuration memory and so enables a self
partial reconfiguration. Figure 4 shows the resulting design

of the reconfigurable transmitter which is compliant with
the modular design flow for partial reconfiguration. The non
reconfigurable part of the FPGA is composed of four areas
resulting of the design generation of the four architecture graph
vertices. Reconfigurable vertices architectures are detailed.
Each are composed of the general computation/communication
controller with buffers. Parametrizable and run-time reconfig-
urable operators have their own configuration manager. The
Dynamic operator configuration manager can address recon-
figuration requests to the protocol builder. The protocol builder
performs partial reconfigurations thanks to the ICAP primitive
and bistreams stored in external memory (Interleaving and
Frequency hopping bitstreams). Only the left FPGA side is
a run-time reconfigurable area and implements the dynamic
operator. Parametrizable and run-time reconfigurable operators
have their own configuration manager. The Dynamic operator
configuration manager can address reconfiguration requests
to the protocol builder. The protocol builder performs partial
reconfigurations thanks to the ICAP primitive and bistreams
stored in external memory (Interleaving and Frequency hop-
ping bitstreams). Dynamic operator encapsulated signals are
accessed through bus macros as circumscribed by the Modular
Design flow. The size of the reconfigurable area has to be
scaled to the most demanding function in logical resources,
here FH function (246 slices, 2 BlockRam). Besides the shape
of the reconfigurable area is constrained by the Modular
Design and leads to allocating a greater area size than really
necessary. In this case the area takes the full FPGA height and
12 slices width (1300 slices). This area is the only run-time
reconfigured, other areas remain unchanged and are defined

Memory

non reconfigurated part
"" > Header
Protocol builder
< Full
ICAP
_____________________________________ bitstream
: : 832 KB
C“‘f,;’;,’;‘,’l‘;ﬁfi’;n ' | Modulation Cmﬁ{’—l’r’;"; on |t
...... : iguration | .
H : Manager o |1 Mﬁmger Bitstream
. -) | Interleaving
io FPGA_Dyn 2 : . 69 KB
; % ; Computation-Communications E LI 2 FPGA_Dyn_I Bitstream
E E (o::llmls- ?uffm P —> . Compumtion-ComnxPnications Frequency
5 7y [T Controls - Buffers ! Hopping
: : 3 69 KB
;Encapsulated Operator signals LlO_]
< Interface CP
Lo 3 0 T 1 b REECRELRS] > DSP
Reed_Solomon || vrrr | FPGA_Dyn | LA m SHBB
Encoder . l—» TI C6701
............. ; SHBC
Il | T EJ . Communications | L] B
| Convolutional Encoder| Controls - Bufers — IM SHBD
Xilinx Xc2v2000 FPGA
Static operator | | Parameterizable operator | | Partially reconfigurable area I Logic automatically generated
CP :Low speed digital communication bus for transmitter configuration

SHB : High speed digital communication bus for data transmission
ICAP : Internal Configuration Access Port

Fig. 4. Reconfigurable transmitter architecture

once during the full FPGA configuration.

3) Numerical results of implementation: Reconfiguration
operates at 50Mhz. The first and full configuration of the
device takes 16 ms while the partial reconfiguration process
of chip mapping functionality (operator Op Dyn) is about
2ms. That is of the order of several data frames, hence
partial reconfiguration is suitable for a transmission scheme
switching, as in the case of chip mapping functionality which
is changed for MC-CDMA and FH-SS-MC-MA schemes. On
the other hand, partial reconfiguration is too time consuming
to be used for intra transmission scheme reconfiguration, it
is the case if the channel coding and IFFT are implemented
on the same dynamic operator. As shown in Table III, FPGA
resources usage needed to implement the operator logic con-
trols are more important with a dynamic reconfiguration im-
plementation scheme (107+550=657 slices) as for a static and
manual implementation (200 slices). The overhead is about of
450 slices to allow run-time reconfiguration of chip mapping
functionality. This overhead is due to the generic VHDL
structure generation, based on the macro code description.
However this gap is decreasing with a greater number of
configurations implemented on the dynamic operator. The aim
is to take advantage of the virtual hardware ability of the
architecture. However the flexibility given by this method-
ology and the automatic VHDL generation can overcome
this hardware resource overhead. For instance we can add
a Turbo convolutional encoder for the channel coding block
(1133 slices, 6 BlockRam - IP Xilinx 3GPP Compliant Turbo
Convolutional Codec v1.0). As the size of the reconfigurable
part is fixed by the designer, any design able to be satisfied

with this area constraint can be implemented.

B. Implementation based on a Network On Chip

Network on Chip (NoC) is a new concept developed since
several years and intended to improve the flexibility of IP
communications and the reuse of intellectual properties (IP)
blocks. NoCs provide designers with a systematic, flexible
and scalable framework to manage communications between a
large set of IP blocks. It can also reduce IP connection wires
and optimises their usage. The dynamic reconfigurability of
communication paths responds to the fluctuating processing
needs of embedded systems. Dataflow IPs can be connected
either through point to point links or through a NoC. Tools
have been proposed in order to design and customize NoCs
according to their application needs. We have developed
both a NoC and its corresponding tool. This NoC is one
possible target of the presented methodology. This NoC is
adapted and optimised to allow the plug and the management
of dynamically reconfigurable IPs. Reconfigurability is one
important source of flexibility when combined with a flexible
communication mechanism.

1) MicroSpider NoC presentation: Our NoC [13] is built
with routing nodes using a wormhole packet switching tech-
nique to carry messages. Operators are linked to the routing
nodes through Network Interfaces (NI) with a FIFOlike pro-
tocol. Our NoC is customizable through an associated CAD
tool [13]. Our CAD Tool is a decision and synthesis tool
to help designers to obtain the had-hoc NoC depending on
the application and implementation constraints. It is able to
configure the various functionality of our NoC. Finally, this

Chip mapping Manual (all static) Automatic (SynDEX) with run-time reconfiguration
implementation Controls IPs
Controls IPs (Interleaving+FH) Protocol Builder Overall dynamic part controls Reconfigurable area capacity (used)
CLB Slices : 200 186 + 246 = 432 107 550 1300 (246)
Block RAM (18Kbits) : 2 - - 2 14(2)
FPGA area: 1.8% 4% 1% 51% 12% (2.5%)
Switching latency : 2ms
TABLE III

STATIC-DYNAMIC IMPLEMENTATION COMPARISON

tool generates an optimized dedicated NoC VHDL code at
RTL level.

2) Specific features: The number of ports of a router is
configurable. By this way the network topology is flexible
and there is no unnecessary port created. We have opted for
source routing instead of a distributed one to avoid full rule
table distribution and to facilitate possible run-time routing
configuration. Finally, the routing technique can be simplified
if the NoC topology is regular. However, it can be useful
to have a routing technique that can be independent from
the topology. So, a choice between two routing techniques
is available. The first technique is called ’dimension-ordered
routing”. It can be used only in the case of a regular n-
dimension mesh topology. In dimension-ordered routing, each
packet is routed in one dimension at a time. The second tech-
nique, called “street-sign” allows the NoC to be independent
from its topology. But it imposes at source interface some
tables containing paths to the destinations. Virtual channels
(VC): Virtual channels are used to carry best effort (BE)
and guaranteed traffic (GT). The designer can choose the
number of virtual channels he wants in the NoC as well as
the arbitration technique. Virtual channels make possible the
separation between different traffics according to their priority
despite the use of a common physical medium. In our case,
priority level corresponds to its VC number. For each virtual
channel, it is possible to configure independently from other
virtual channels: the buffer depth, the routing technique, the
arbitration technique, and the flow control technique. Network
interfaces: Network interfaces are flexible and configurable
to be adapted with the connected processing elements. They
implement the network protocol. NIs connect IP blocks to the
NoC. For NoC standardisation reasons, we made the choice
of the OCP interface [14] for the communication between NI
and IPs. NI uses a table to transform OCP addresses map
in packet header routing information according to the NoC
configuration. The network interface architecture is strongly
related to SynDEx scheduling technique that requires a virtual
channel controller and buffering capabilities.

3) Implementation: The operations from the application
example (Figure 3 A)) are data-flow operations. Data-flow
operators have FIFO like protocols. We have added specific
features to our NoC in order to optimise the data-flow traffic
and the plug of IPs. We have also standardized the interfaces
of the NoC. A subset of OCP interface standard has been

FPGA : NoC Nodes

'

! [bridget (@ridge) | [ROauten]| [N (Node)| [RAZ2 (raten)] [N2 (Node) | [ROZ3 (routen)] N3 (Node) !

M & /)M & /o\ o o7 :
0 pl pl P’

Q7 S n2 n2 l/ : i

2 i pl]I§1 (I'Oul;n p3 p3 [|

! RDA8 (routen (R (routen]

NGB (Node) |§!6_6(rou1er)| N5 (Node) IFﬁ_E,(mmgr)l N4 (Node)
p0
/O\‘ [
p2

dsp_C67 (dsp)
cpl
cpl
3db0
sdbl

o
2
o
2

Fig. 5. Architecture graph of the NoC nodes and the DSP

Protocol Builder

p3
e NoCnode

NOC IP

: Op Dyn «{-|» Ctrl
: Operator
T | R &
p2]
7 y ”‘.4“!" i
o

Ack Op Select]
P

PicoBlaze

Network

Interface

)

Router !

—

oymmunication

Fig. 6. NoC Node detailed view

selected and implemented. We have implemented the previous
application on a six-node NoC (Figure 5) integrated in the
same FPGA, with one reconfigurable area per NoC routing
node, and one node dedicated to a bridge to the external C6701
DSP. Each of the five remaining nodes can be the target of any
application task. Several tasks can be grouped on the same
node either to be dynamically reconfigured, parametrized or
fixed and simply scheduled in time. We have evaluated latency
and throughput of the unloaded NoC links. These figures are
introduced in SynDEX heuristic. Table IV shows the functions
mapping on this NoC. As SynDEx schedules transfers in
time, we use virtual channels in order to guarantee priority

of first scheduled transfers. Thus the latency is deterministic
and accurate. The M4 code generated by our methodology
provides all the scheduling of treatments and communications
as well as the source and target of each communication. These
informations are extracted and translated to a C code [15] for
a Xilinx Picoblaze micro-controller in charge of the dynamic
operators and parametrizable operators. Figure 6 details a NoC
node structure. There is one Picoblaze for each NoC interface
linked to dynamically reconfigurable operators. The Picoblaze
controls the scheduling of operators, the size, the target
and the starting of data transfers from the running operator.
A NoC IP is the grouping of the operators, the picoblaze
processor and the operators control and OCP adaptation logic.
The scheduling of communications is managed with virtual
channels in the NoC interfaces. They are configured by the
Picoblaze. Implementation results are presented in table V.
The NoC cost is similar to the point to point solution with all
the advantages of flexibility and scalability. With this solution
there is no need to design a dedicated architecture graph for
each new application. One general purpose 2-D mesh can be
selected for the architecture graph. Also, the coupling of a
NoC with dynamically reconfigurable operators allow a new
level of flexibility and optimisation.

V. CONCLUSION

We have designed and presented a flexible hardware plat-
form for partial dynamic reconfiguration based on a heteroge-
neous NoC targeted to FPGA. We have integrated the dynamic
reconfiguration manager directly in the NoC nodes in order
to make the reconfigurable parts manageable like software
tasks on a processor. We have used a methodology flow
to manage automatically the partially reconfigurable parts of
the FPGA. It allows to map applications over heterogeneous
architectures and fully exploit advantages given by partially
reconfigurable components. This design flow has the main
advantage to target software components as well as hardware
components to implement complex applications from a high-
level functional description. This methodology is independent
of the final implementation of the run-time reconfiguration
which is device dependent and achieved with back-end tools.
This modelling can be applied on various components of
different granularities. This methodology can easily be used
to introduce dynamic reconfiguration on pre-developed fixed
design as well as for fast IP block integration on fixed or
reconfigurable architectures. This top-down design approach
makes it possible to accurately evaluate system implemen-
tation, according to functions complexity and architecture
properties. Besides, the benefits of this approach fit into the
SoftWare Radio requirements for efficient design methods, and
adds more flexibility and adaptation capacities through partial
run-time reconfiguration on FPGA-based systems.

REFERENCES

[1] R. Tessier and W. Burleson, ‘“Reconfigurable computing and digital
signal processing: A survey,” Journal of VLSI Signal Processing, pp.
pp 7-27, May/June 2001.

N1 \ N2 \ N3 \ N4 \ N5 \ N6
Turbo Reed Solomon | Modulation | Spreading Chip IFFT
encoder encoder(3) 2) (€)) mapping 2)
(1) Convolutional 3)
encoder(3)
TABLE IV

1: STATIC OPERATOR, 2: PARAMETERIZABLE OPERATOR, 3: DYNAMIC
OPERATOR APPLICATION FUNCTION MAPPING ON THE NOC

1P \ Nb Slices \ Freq (MHz) \ Nb BRAM
PicoBlaze 110 200 1
NoC Node 430 200 2
TABLE V

NOC NODE RESOURCES USAGE

[2] R. Hartenstein, “A decade of reconfigurable computing: a visionary
retrospective,” Proceedings of the conference on Design, automation and
test in Europe,Munich, Germany, pp. 642 — 649, 2001.

[3] E. L. Horta, J. W. Lockwood, D. E. Taylor, and D. Parlour, “Dynamic
hardware plugins in an fpga with partial runtime reconfiguration,”
Design Automation Conference (DAC), 2002.

[4] “Joint tactical radio system website,” http://enterprise.spawar.navy.mil.

[5] M. L. Silva and J. C. Ferreira, “Support for partial run-time reconfigu-
ration of platform fpgas,” Journal of Systems Architecture, vol. 52, pp.
709-726, 2006).

[6] E. Carvalho, N. Calazans, E. Briao, and F. Moraes, ‘“Padreh - a frame-
work for the design and implementation of dynamically and partially
reconfigurable systems,” In Proc SBCCI’04 ACM Press New York, USA,
pp. 10-15, 2004.

[7] “Xapp290: Two flows for partial reconfiguration: Module based or
difference based,” http://direct.xilinx.com/bvdocs/appnotes/xapp290.pdf.

[8] S. Craven and P. Athanas, “A high-level development framework for
run-time reconfigurable applications,” Proceedings of the 9th Annual
Conference on Military and Aerospace Programmable Logic Devices,
MAPLD, Washington, 2006.

[9] J. P. Diguet, G. Gogniat, J. L. Philippe, Y. L. Moullec, S. Bilavarn,
C. Gamrat, K. B. Chehida, M. Auguin, X. Fornari, and P. Kajfasz,
“Epicure: A partitioning and co-design framework for reconfigurable
computing,” Journal of Microprocessors and Microsystems, Elsevier,
vol. Volume 30 Issue 6, pp. 367-387, September 2006.

[10] C. Sorel and Y. Lavarenne, “From algorithm and architecture specifi-
cations to automatic generation of distributed real-time executives: a
seamless flow of graphs transformations,” Formal Methods and Models
for Codesign Conference, France, pp. 123— 132, June 2003.

[11] S. Lenours, F. Nouvel, and J.-F. Helard, “Design and implementation
of mc-cdma systems for future wireless networks,” EURASIP JASP, pp.
16041615, August 2004.

[12] “Xilinx intellectual property center,” http://www.xilinx.com/ipcenter/.

[13] S. Evain, J.-P. Diguet, and D. Houzet, “A generic cad tool for efficient
noc design,” Proceedings of 2004 International Symposium on Intelligent
Signal Processing and Communication Systems, 2004. ISPACS 2004.,
pp. 728 — 733, 18-19 Nov. 2004.

[14] “Ocp international partnership. open core protocol specification. 2.0
release candidate,” 2003.

[15] “Pccomp: Small ¢ compiler for picoblaze,” http://www.poderico.co.uk.

	Introduction
	Related work
	Automatic design flow targeting run-time reconfigurable architectures
	Generic computation structure
	Design generation for run-time reconfiguration management

	Results
	Implementation on a prototyping platform
	Functions mapping
	Resulting FPGA architecture
	Numerical results of implementation

	Implementation based on a Network On Chip
	MicroSpider NoC presentation
	Specific features
	Implementation

	Conclusion
	References

