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Dynamic Random Walks on Clifford Algebras

René Schott* G. Stacey Staples'

Abstract

Multiplicative random walks with dynamic transitions are defined on
Clifford algebras of arbitrary signature. These multiplicative walks are
then summed to induce additive walks on the algebra. Properties of both
types of walks are considered, and limit theorems are developed.

AMS subject classification: 15A66, 60B99, 60F05, 60G50
Keywords: Clifford algebras, random walks, dynamical systems, hyper-
cubes

1 Introduction

Given nonnegative integers p and ¢, the Clifford algebra C/, ; is a noncommu-
tative associative algebra of dimension 2P74. Special cases include the complex
numbers C = C{ 1, the algebra of quaternions H 22 C/j o, the spacetime algebra
Cl, 3, the algebra of physical space Cl3, and the n-particle fermion algebra
Cl, . Applications of Clifford algebras include electromagnetism, special rela-
tivity, quantum theory, and gravity.

More recent applications of Clifford algebras include image processing [5],
automated geometric theorem proving [6], and computer vision [4]. In work
related to computer vision, Perwass, Gebken, and Sommer [7] use Clifford alge-
bras to discuss the estimation of points, lines, circles, etc. from uncertain data
while keeping track of error propagation. Random walks are relevant in this
context as models of error propagation.

In earlier work by the authors, Clifford methods were applied to the study
of random graphs [10]. The second author has used Clifford methods to formu-
late random walks on the hypercube [9]. Time-homogeneous random walks on
Clifford algebras have also been objects of recent study [8].

The current work follows the approach of the work on Heisenberg groups de-
veloped by Guillotin-Plantard and Schott [2]. Another work relating dynamical
systems to Clifford algebras is Jadczyk’s Clifford approach to quantum frac-
tals [3].
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Definition 1.1. For fixed n > 0, let {ey, ..., e,} denote the canonical orthonor-
mal basis of R™. The 2"-dimensional Clifford algebra of signature (p, q), where
p+ g = n, is defined as the associative algebra generated by the collection {e;}
along with the scalar eg = ey = 1 € R, subject to the following multiplication
rules:

e;e; +eje; =0 for i # j, and (1.1)
o 1,if1<i<p (1.2)
-1 ifp+1<i<p+qg=n.

The Clifford algebra of signature (p, ¢) is denoted C/p, 4.

Generally the vectors generating the algebra do not have to be orthogonal.
When they are orthogonal as in the definition above, the resulting multivectors
are called blades.

Let [n] = {1,,2,...,n} and let arbitrary subsets of [n] be denoted by un-
derlined Roman characters. The basis elements of C/,, , can then be indexed by
these finite subsets by writing e; = [], ¢, er. Arbitrary elements of C/, , have

the form
u = Z u; €, (1.3)
2‘62[7@

where u; € R for each ¢ € 2] For nonnegative integer k, the degree-k part of
u € Cl, 4 will be defined by

(W)=Y uie;. (1.4)

li|=Fk

The inner-product of u,v € Cl, 4 is defined by

(u,v)—<Zuiei,Zviei>— Zui%* (1.5)

ieg[n] ieg[n] l’eQ[n]

Observe that for fixed multi-index i € 2" and arbitrary u € Cl,, 4, (u,€;) = u;,
the coefficient of the multivector e; in the canonical expansion of u. The inner
product induces a Clifford inner-product norm by

lull? = (uyu) = ) ui®. (1.6)

ie2ln]

2 Dynamic Walks on C/,,

Given a random variable £, the expectation of £ will be denoted by either (£)

or E(§). Given a sequence of random variables {¢x}, the notation &y KA P
denotes convergence in distribution to the random variable ¢. The notation



En %, u denotes convergence in probability to u. The notation Y (X) will denote
the uniform distribution on the set X.

Fix nonnegative integers p and ¢, and let n = p+ ¢. Following the approach
of Guillotin-Plantard and Schott [2], let ¥ = (E, A, 4, T') be a dynamical system
where (E, A, p) is a probability space and T is a transformation on E. Let n > 1

and fi,..., f, be functions defined on E with values in [0, £].
Let x € E and let {e;}1<;<n be the unit coordinate vectors of R™. For every
i > 1, the law of the random vector M; = (21, 2,®, ... z,®) is given by
fj (Tl.T) if z = ej
P(M;=z)=qL—f(T2) if z=—e; (2.1)
0 otherwise.

In C¢, 4 the multiplication satisfies

1 ifo0<i<
o I (22)
-1 ifp+1<i<n,
and
eiej:—ejeiiflgi;éjgn. (23)

We are interested in the right dynamic random walk
=@, . e, (@@, 2@ (P, W) k> 1 (24)

The multiplicative walk (s ) can be visualized as a walk on a 2"-vertex simple
graph, as seen in Figure 1 for the walk in Cly 2. In this walk, there is no chance
of visiting the same vertex in two consecutive steps. That is,

P (s = £e; | sp—1 = +e;) =0. (2.5)
(

By definition, the walk (¢ ) alternates between blades of even and odd degree
in C¢, 4. That is, when k 2 |i| (mod 2)

P(q, = +e;) = 0. (2.6)

Moreover, for arbitrary multi-index 4, the product of vectors indexed by
elements of ¢ each occurring with odd multiplicity taken with products of vectors
indexed by elements outside 7 occurring with even multiplicities always results
in blades of the form +e;. This is stated formally in the following lemma.

Lemma 2.1. When k > |i| and k = |i| (mod 2),

P(s, = +e;) = % > (617 . k ,én) (2.7)

L1+ ALlp=k
£; 0dd if j€i, £; even if j¢i
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Figure 1: Graphs associated with walks (¢;) and (73) on Cfg .

Another multiplicative walk is also defined. Let gg,g1,..., g, be functions
defined on E with values in [0, %ﬂ}

Let z € E and let (ej)1<j<n be the unit coordinate vectors of Z™. Also
define the unit scalar ey = ey = 1. For every ¢ > 1, the law of the random

vector Q; = (x0W, 1@, 2, ... 2, is given by
g;(T'x) if z=e,
P(Qi=2)= n+-1 —g;(T'z) if 2z = —e; (2.8)
0 otherwise.

In addition to the multiplicative properties of (2.2) and (2.3), the multipli-
cation satisfies the following for 0 < j < n:

€y€; =€;€y = €. (29)
The right dynamic random walk of interest now is
T = (xo(l)@l(l), oo ,xn(l)) e (xo(”),xl(k), . ,xn(k)), k>1. (2.10)

The multiplicative walk (73) can be visualized as a walk on a 2™-vertex graph
having loops at all vertices, as seen in Figure 1 for the walk in Cfy 5. Unlike
the walk (c), (1) does not alternate between blades of even and odd degree in
Clyq.

Lemma 2.2. Let e; be an arbitrary blade in Clp 4, and let k be an arbitrary
positive integer such that k > |i|. Then,

P (7, = +e;) = ﬁ zoi—o <Z> > <glk_€(}n) (2.11)

L1+ Aln=k—Lg
£; odd if j€i,0; even if j¢i



Proof. For arbitrary multi-index ¢, the product of vectors indexed by elements
of ¢ each occurring with odd multiplicity taken with products of vectors indexed
by elements outside ¢ occurring with even multiplicities always results in blades
of the form +e;. The unit scalar may appear with any multiplicity. Recalling
that 7, is a product of k vectors, the following holds when k > |i|:

P (7, = +e;) = ﬁ > (eo,.é. ,En)

Lo+ ALln=Fk
£; odd if 1<j€i,L; even if 1<j¢i

1 k!
~ (n+ 1)k 2 ol 0]

Lo+ HLln=k
£; odd if 1<j€i,0; even if 1<j¢i

! 1 ko (k=)
‘mzeﬁ 2 (k=o)L ex!--- 2!

L1+ Fln=k—tg
£; odd if 1<j€4,8; even if 1<j¢i

! K k- £
IRCESE 502;:) ol (k — £o)! > (El’m’én) (2.12)

14+l =k—tg
£; odd if 1<j€i,8; even if 1<j¢i

2.1 Expectation

The expectation of an arbitrary step of the right dynamic walk (¢;) can be
computed directly.

Lemma 2.3. Let (sx)i>1 be the Clifford-valued random walk defined by (2.4).
Then,
k

(k) = H zj; (ij(Tix) - Tll) e |- (2.13)

Proof. From (2.1), one seesl_l
(M) = E_j (1)~ (5~ 157')) ) e = Z (2 = L) es. (20

Using independence of the random vectors (M;) and the definition of the random
walk (¢), the expectation of ¢ can then be computed directly.

n

k 1 k ‘ 1
(k) = <H Mi> =[T10m =11 (> <2fj(TZx) - n) e; |. (215

i=1 i=1 =1 \j=1

O



Define the product signature function w : 2" x [n] — {0,1} by

w0, 7)) = (f€izi> | +in{in{p+1L....n})) (mod2). (2.16)

In Cl,,, the product signature function satisfies e;e; = (—1)7@&1be;n 5,
where A represents the set symmetric difference.

Proposition 2.4. Define the notation sf(k) = P(sx = *e;). The probability
density functions sf(k) satisfy the following recurrence relation:

+y - J0 if k <|if,
i (k) = {fj(ch> if i = {7} and k= |i] = 1. (217

£ ,

stk =11 k<1, | 2.18)
- == fi(Tx) ifi={j}and k= |i| = 1.

When k > |i| or k = |i| > 1,

n

stk =3 (0= (i GINFT )70 5y (6 = 1)

j=1
+Z( (i, {7) ( (T x)) INTICE 1>) (2.19)

and

B =3 (1 = = DT g - 1)

j=1
+Z( 80D (5 - 5T ) shay (- 1)) 2:20)

Proof. The conditions sf(k) =0 when k < |1, sELj}(l) = f;(Tz), and sfj}(l) =
L — f;(Tx) are clear from the definition of the walk ().

Let U denote disjoint union. When k& > |i| or k = [i| > 1, the definition of
(sx) dictates that ¢, = e; if and only if one of the following eight cases occurs

for some j € {1,...,n}:
® -1 = Fen () M, = +e;, and ¢ M, = e;.

® Gp—1 = Ee; i}, My, = *+ej, and ¢, 1 M), = e;.

Similar conditions hold for ¢, = —e;. The probabilities associated with these
conditions are exactly the values appearing in the recurrence of the proposition.
O



Straightforward calculation reveals the expectation of the k' step of the

random walk.
)= 3 (570 = sy () es (2.21)

i€2[n]
Proposition 2.5. For any k > 0, the expectation of the k' step of the random
walk satisfies the following:

n

@) =3 (2600~ 1) e (222

j=1

and when k > |i| or k= |i| > 1,

()= Eni (fj(Tkx) - M) (Szra{j}(’f 1) =siagnlk = 1)) €;.

ig2lnl j=1 n
(2.23)
In particular,

n

() =3 (5t - ZED B ((qrenn)). @20

j=1

Proof. Proof is by direct calculation using Proposition 2.4. Beginning with the
observation (2.21),

s Z &wu, D) (5 = 5T ) sy - 0)
~ ; (1= =@ G )5 5y (k= 1)
—Z (wu, o0 (jL - fj<m>) Stagy (b= 1>)
=3 (s D~ sagt 1) (i) - 5 D)

= Z (fj(Tkx) - W) E ((sk-1.€ingj})) - (2.25)

n



Linearity of expectation then gives

ic2l[n]
- ¥ 3 (nrte - g (e e
icalnl j=1
=3 (fj(Tka:) - w(ln{]})> (S;A{j}(k —1) = sk~ 1)) e (2.26)
ic2n j=1

O

Corollary 2.6. For any k > 0 and i € 21", the expectation of <§k,e£-> 18 given
by

(k1)) Z Z <fm k) (@ijo}))

Jo=1 jr—1=1

k—1 1

<ATT (-2 (16 Gad) )| @20
e n 1<m<e—1

Proof. The result follows from Proposition 2.5 and back-substitution. O

As in Lemma 2.3, the expectation of an arbitrary step of the right dynamic
walk (75) can also be computed directly.

Lemma 2.7. Let (74)i>1 be the Clifford-valued random walk defined by (2.10).
Then,
k n

) =11>. (2gj (T'z) — n-lu) e |. (2.28)

i=1 \j=0
Proof. From (2.8), one sees

@1 =3 (500 - (5 o) ) =3 (20,0 - e

§=0 §=0

(2.29)
Using independence of the random vectors (Q;) and the definition of the random
walk (7% ), the expectation of 7, can then be computed directly.

k n

k k _ 1
Th) = <H Qi> =[Tw@)=11(> <ng(T1x) - n+1) e |. (230

i=1 i=1 \j=0

The expected values of the components of 7, can be computed recursively.



Proposition 2.8. Define the notation tf(k‘) = P(1, = *e;). The probability
density functions tzc (k) satisfy the following recurrence relation:

) =4 ik <, (2.31)
g;(Tw) iti={j} and k= |i] = 1

- 0 if k< i,
ti (k) = 2.32
:® { gj(Tz) ifi={j} and k=[i| =1 (2.32)

When k > |i| or k= |i| > 1,

) =t e~ Dan(T) + (3 -~ (T ) 6 (6= )

n

# 3 (1= =l DIyl (4= 1)

n

+ Z ( i,{j}) ( - gj(Tk;c)) by (k= 1)> (2.33)

() = 1 (k= Dao(T) + (i — (T ) (6= )

+Z(1— (i, (GD)gs (T}t 5y (5 = 1)

n

+ Z ( i,{j}H ( = gj(Tkx)> by (k= 1)) (2.34)

Proof. The conditions tf(k) =0 when k < |g], ¢ G }( ) =g;(Tz), and tfj}(l) =
25 — g;(Tx) are clear from the definition of the walk (7).

Let U denote disjoint union. When k& > [i| or k = [i| > 1, the definition of
(1) dictates that 7, = e; if and only if one of the following cases occurs for
some j € {0,...,n}:

® Tp_1 = :I:ei, Qk = :Eeo, and Tk_le = €;.
® Tp_1— :I:ei\{j}, Qk = :I:ej, and Tk_le = €;.

® Tp_1 = :I:eiu{j}, Qk = :i:ej, and Tk_le = €;.

Similar conditions hold for 7, = —e;. The probabilities associated with these
conditions are exactly the values appearing in the recurrence of the proposition.
O

For convenience, define @ (i, {j}) = 0 when j = 0.



Corollary 2.9. The quantity t;(k) = t:(kj) —t; (k) satisfies the following re-
currence:

0 if k< il
ti(k) = 29;(Tx) — 55 ifi={j} and k =1, (2.35)
2go(Tx) — %ﬂ ifi=0and k=1,

and when k > |i| or k= |i| > 1,

ti(k) = | 2g0(T*x) + Zn: <gj(T’fx) — w(l{j})) ti(k—1). (2.36)

= n+1 -

Proof. Proof is by direct computation using Proposition 2.8. O
A recurrence relation for the expectation found in Lemma 2.7 is now revealed.

Corollary 2.10. The expected value of the k™ step of the random walk T3
satisfies the following recurrence:

n

(r)=>_ (29j(Tx) - nL) e, (2.37)

j=0
and when k > |i| or k=i > 1,

() = D |tk —=1) | 290(T"x) +Z( w> e

162[7’] Jj=1

Proof. The stated result is a consequence of

(o) = > ti(k)e;. (2.39)

Corollary 2.11. Fori € 2" and k > 0, the expected value of <Tk,el> s given
by

(i e1)) Z Z <g]0 (Tz) (;i];ﬁ))

Jjo=0 Jk—1=0

X rl_[l (gj/, (T "z) - THl_ 1 (<i1<mA<41{jm}) »{jZ}>)] - (2.40)

{=1

Proof. The result follows from Corollary 2.10 and back-substitution. O

The following lemma is a consequence of the multiplication in C¢, ; and will
make computations more straightforward.

10



Lemma 2.12. Let nonnegative integers p and q be given, and let k > 1 be an

integer. Then, in Cl, ,
k/2
. & Zaﬁ— Z a;? itk=0
i=1 j=p+1
(Z @ ei) = (k—1)/2
i=1 P "

(mod 2)

Zaﬁ— Z a;? Zaiei ifk=1 (mod 2).
j j i=1

(2.41)

Remark 2.13. Throughout the remainder of the paper, notation will be simpli-
fied for the case p = ¢ by adopting the convention (p — ¢)° = (2p —n)? = 1.

Letting a; = 1 for 1 <4 < n in Lemma 2.12 gives the following corollary.

Corollary 2.14. Definey=e; +---+e, € Cl, 4. Then,

v = (2p —n)*, and
7 = (2p —n)* .
Corollary 2.15. Let v be defined as in Corollary 2.14. In Clp 4,

k

) k
(1 +ep+--- +en)k — Z <£) (2p_ n)LZ/QJ,yZ (mod 2).
=0

Proof. With v =e; + --- + e,, applying the binomial theorem gives

1+ = zk: (;)%

£=0

By Corollary 2.14, ¢ = (2p — n)[£/2] ¢ (mod 2),

11

(2.44)

(2.45)



3 Limit theorems

Writing v =e; +--- + e,

=2k Z +g;, (Tx)gj, (T?z) - - - g;, (T*x)ej, - - €j,

1 k—1t 2 mod 2
D IS )l (i VIS
0<51,-+s je<n

k
n+ 1 (n+ 1)k Z ( ) I_Z/2J £ (mod 2). (31)

Lemma 3.1. As k — oo,

k
n+1kz< ) 2p — n LZ/QJ / (mod2)_)0 (32)
£=0

Proof. Begin by writing

_ \_Z/QJ ¢ (mod 2)
0= Z
n+1k ()
1 Kk
- (2 D s (Ba-mem). e

£=0
£ even £ odd

Let the polynomials ¢ (2) and ¢~ (2) be defined by

ort(2) = n+1 — Z ( ) 2, (3.4)

1’ even

B 1 s (R o1y
Pk (Z) = (n+1)k [z:; (€>Z(£ ) ) (3'5)

£ odd

2+1\"
so that ¢ (2%) + 2007 (2%) = <n+1> '

Letting z = (2p — n)'/? so that it (22) + v~ (22) = 0, it becomes clear
that klim n=0. O

12



It now follows that lim (7)), if it exists, is given by

— 00

lim (rp) = lim 25 " g, (Tw)g;,(T%2) - - g, (TF2)ey, -+ €,

k—oo k—oo
0<g1,-- k<
k-1 k—¢
1 k—1¢
- 2 — m/2] ,m (mod 2)
e ()
x 2 Z :l:g.jl (Thlw) “ Gjy (Thlm)ejl ) (36)
0<j1,-dg<n
hy#---#hg€[k]
Remark 3.2. In the homogeneous random walk with gi(x) = n#“ for all k =

k
1 k
07 17 caey Ny, the eXpl“eSSion m KE_O (6) (2]? - n) [£/2] rye (mod 2) is equal to

(1) (cf. [8]). As a result, the followir;g limit is known:

kh—>nolo (1) = 0. (3.7

Observing that tf (k) +¢; (k) = P (7, = +e;), the distribution of 74 can be
expressed. - -

Theorem 3.3. Let e; be an arbitrary blade in Clp 4, and let k be an arbitrary
positive integer. Then,

P(rx =) = m > <€0,.%. ,Zn>

Lo+ Fln=k
£; odd if 1<j€i,¢; even if 1<j¢i

n n

DR I (R
9 l:Hl O e (O ,{je}M . 38)

P(rh=—e;) = m Z <€0,.{€. ,€n>

£o4--HLln=k
£; odd if 1<j€i,¢; even if 1<j¢i

32 Y (e - D)

Jo=0  jx_1=0
y LH (a0~ (12, 1) ,{m))] . (39)

13




Proof. The result follows from the following observation:

P (ry = ;) = t] (k) = % (5 R+t 0) + (6 k) = 17 ()]
— 5 (B = o) + ((n) €] (.10

Similarly,

P (ry = —e;) = t; (k) = % (F®+w) - (Fwm-mw)]. @

Theorem 3.4. If (1) — 0 as k — oo, then
D
e — U ({xe;}) . (3.12)
Proof. If (1) — 0, then sufficiently large values of k give

k
P(r, =€) = Q(T}H)k Z (fo,-..75n) +o(e). (3.13)

Lo+ ALl =Fk
£; odd if 1<j€i,L; even if 1<j¢i

Moreover,

P(r, =—e) = 2(717‘1"1)]@ Z <£07 ' k 7€n) +o(e). (3.14)

Lo+ FLln=Fk
£ odd if 1<j€i,; even if 1<j¢i

Turning now to the distribution of 74, recall Lemma 2.2. Passing to bi-
nary representations of subsets ¢, each blade e; € C/¢, ; is uniquely associated
with a vertex of the n-dimensional hypercube. By identifying each pair +e;,
the walk (7%) induces a walk on the n-dimensional hypercube. The probability
distribution of the k*® step of the associated hypercube random walk is deter-
mined by (2.11). Moreover, the limiting distribution of this walk is known to
be uniform [1].

It then follows that

. . 1
klirrgo (<Tk,el-> = 1) = kILH;OP (<7’k,e£> = 71) = Sari (3.15)
and
lim P ({75, e;) =0) = 21 (3.16)
k—oo ko ®i) = o 2n '
O

14



Considering now the walk (),

SPCIEERP

i=1 \j=1
=9k Z +f;, (Tx) f;,(T2x) - f5, (TFz)e;, - - - €,
Ji,- jke[n]
(2p — (k £)/2] o) (mod 2
+Z k=0 (mo 2

14 h h
X2 Z ifjl(T 1x)"'fje(T ex)ejl"'ejz
J1s--dp€ln]
hy#--#hg€lk]

—1)k
_|_( k) (2p_n)Uc/2j,yk (mod 2).
n

Lemma 3.5. As k — oo,

%(21’ _pylk/2lgk (med2) _,
n

Proof. Note that [2p —n| < n and |k/2| < k/2 imply

(2p — n)'/? g < 1
n — nk/2’
Hence, for all k£ > 0,
(2p — n) Lk/2] k  (mod 2) <n 1 — 1
oy v =Mk2 T p-2)2

k

(3.17)

(3.18)

(3.19)

(3.20)

O

Remark 3.6. In the time-homogeneous case given by fi(z) = % for each k =

1
0,...,n, the expression —(2p —n) Lk/2] yk (mod 2)
n

Like the random walk (7%), klim (k), if it exists, is given by
— 00

Jim () = lim 25 Y Ly, (Ta)fj,(T°2) - f, (T w)ey, -

j17 ;jke[n]
(2p — )L E-0/2)

+Z nk—t

,_y(kfé) (mod 2)

><2e > (@) fi,(TMa)ey, -

J1seesdg€ln]
hi#FEhg€[k]

15

€j

€j

4

k

represents (¢;) (cf. [8]).

(3.21)



Unlike the walk (73), the walk (i) alternates between blades of even and
odd degree. Hence, for each k > 0,

(k) = Z Q; €. (3.22)
iealn]
lilk  (mod 2)

An immediate consequence of this behavior is the following theorem.

Theorem 3.7. If 3\ € Clp, 4 such that klim (sk) = A, then A= 0.

Like 73, with probability 1, ¢, = +e; for some i € 2[71 Hence, for all k > 0,
sk = 1. (3.23)

Theorem 3.8. Let e; be an arbitrary blade in Cly, 4, and let k be an arbitrary
positive integer. Then,

1 k
IP’(%Z%):W 2 (61,~~7€n>

byt ln=k
£; odd if j€i,b; even if j¢i

z_: Z <ij(Tkx) N W(Z}ijo}))

Jk—1=1

[ 1= (o ) )] o

1\9\»—*

1 k
Plon=—ei) =5 x 2 (zl,...,z)

L1+ +en=k
£; odd if j€i,e; even if j¢i

% z:: Z <ij(Tkx) _ w(l)ifo”)

Jk—1=1
k—1 1
x [H <sz(Tkéx) - —-w ((Z A {jm}) 7{ﬂ}>)] : (3'25)
=1 n 1<m<{—1
Proof. Proof is similar to that of Theorem 3.3. O
Theorem 3.9. If (¢;) — 0 as k — oo, then
or 2 U ({£e;: [il =0 (mod 2)}), (3.26)
k1 DU {*e:lil =1 (mod2)}). (3.27)
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Proof. Tf {(s) — 0, then sufficiently large values of k give the following when
k—1il =0 (mod 2).

P =€) = lek Z (61"? 7£n) +o(e). (3.28)

£yt =k
Zj odd if j€i,£; even if Ji¢i

The even and odd subwalks then satisfy

. 1 k
P <§2k =e€;||if =0 (mod 2)) =57 [ Z ) <€1’ - 7€n> +o(e),
(14 Hen=k
£; 0dd if jE€i,0; even if j¢i
(3.29)
P —ellii=1 (mod2)) = - 3 ) s
R ©onk 0, by '

L1+-+Llp=k
£; odd if j€i,0; even if j¢i

(3.30)

Each is proportional to the distribution of the random walk on the (n — 1)-
dimensional hypercube. When |i| =0 (mod 2),

1
[Jim P ((son,€i) =1) = Jim P ((son,€i) =—1) = TR (3.31)
and
lim P Vg o 2ol 3.32
Jim P ((sox, €4) = 0) = —=— (3:32)
Further, when |i| =1 (mod 2),
1
kli}H;o]P) (<§2]€,17e§> = ].) = kEH;oP (<§2k,1,e£> = —1) = 277 (333)
and
lim P ((c2k—1,€;) = 0) e (3.34)
e 2k—1,C4 2n—1 .
O

3.1 Conditions for convergence

Conditions on the functions {g;(z)} such that (7;) — 0 as k — oo will now be
discussed. The time-homogeneous case is considered first by fixing the transition
probability g;(z) for 0 < j <n.

1
Theorem 3.10. Let a be a constant satisfying 0 < a < g Defining g;(z) =
n

a for 0 < j < n, the walk (7)r>0 defined by (2.10) is time-homogeneous.
Then (1) — 0 as k — oo if (7)k>0 s defined on any Clifford algebra of
signature other than (1,0). The walk (13) defined on Cly ¢ converges if and only

if O —.
if <a<2

17



Proof. Given a and random walk (7;) as described in the hypotheses of the
theorem and applying Corollary 2.15,

_ (2a ni 1>k ;‘ (’;)(2pn)f/2

£ even

+ <2a - nil)k 3 (’;) (2p— n)E=D/2 (3.35)

1<e<k
£ odd

kN kE\ iz
Let P(2) = E < ,)z3/2, and let Qx(z) = E ( ,)212 so that
J <<k

0<j<k
j even j odd

Pu(2?) + 2Qi(2?) = (1 + 2)*. Putting 22 = 2p — n, it becomes apparent that

(%) — 0if and only if

1
(14 2) <2a - ) ‘ < 1. Observe that for any choice
n+1

1 1 1
of a € [07 n+1] , the following inequality holds: ’204 ey < g so that
convergence is guaranteed for all signatures except (1,0) via

’(1+z)<2a—ni1)‘§ _itVimd g

I+p+ygq
In signature (1,0), convergence is guaranteed by the observation

1o (20 1)|-2

with the observation that

142
n+1

1
200 — = 3.37
a3 (337)

1 1 1
2a2‘<2@0<a<2. (3.38)

O
Before turning to the dynamic case, an auxiliary result is established.

Lemma 3.11. Given u,v € Cl, 4, the inner product norm satisfies the following
imequality:
Juv]| < 2% [Jul[ - [lo]|. (3.39)

18



Proof. By definition of the inner product norm and application of Schwartz’
Inequality,

2 2
lwol = 2 o) < 3 D lwvgl ] = D2 | D luwgviasl
ke2lnl ke2ln] \ilAj=k ke2lr]l \je2l
2
< >0 (- flolh* < 2™ull®o]®. (3.40)

ke2lnl

O

Theorem 3.12. Let (74)i>0 be the dynamic random walk defined by (2.10).
Then a sufficient condition for (1) — 0 as k — oo is

2 , 1 1
. 7 - | = [ 3
ngOgJ(T x) S+ 1) O<2(n+3)/2),V220.

Proof. Given the random walk (7) as described in the hypotheses of the theo-
rem,

k n 1

n. 7 1
<2 WH <2gj (T'x) — — 1> e;ll. (3.41)
j=0

j:
Observe that

n

> (200 - ) e - > (2070 = 25 ) | =0 (s )-

j=0 7=0
(3.42)
Thus,
k
1 2nk/2 1
_ nk/2 _ _
l{mll = 0 (2 / Hw) ~0 (2/+> 0 (2) L (343)
i=1
Hence, klim (mi) = 0. O

Similar conditions for convergence apply to the random walk (x)k>0. The
time-homogeneous case is considered first.

1
Theorem 3.13. Let « be a fized constant satisfying 0 < o < —. Defining
n

fi(x) = a forl < j <n, the walk (sk)r>0 defined by (2.4) is time-homogeneous.
Then () — 0 as k — 00 if (s )k>0 is defined on any Clifford algebra of signature
other than (1,0). The walk (sx) defined on Cly o converges if and only if 0 <
a <1

19



Proof. Given « and random walk (s;) as described in the hypotheses of the
theorem and applying Corollary 2.14,

=112 (20— 1) e,
:ﬁg;(za_l)ej

= (m —~ Tll) ' (2p —n)*/21 (3.44)

It becomes apparent that (¢;) — 0 if and only if
1
‘\/2p—n| (2&— )‘ < 1.
n

1
Observe that for any choice of a € [0, n]’ the following inequality holds:

1
2cc — —| < —, so that convergence is guaranteed for all signatures except (1,0)
n n
via
1 2p — —
’vIEp—n(M—)‘s Ve —n = vIp —dl <1. (3.45)
n n p+q

In signature (1, 0), convergence is guaranteed by choosing
0 < a < 1. With this assumption,

'\/m<2a—;)‘ =20 -1 < 1. (3.46)

O

Theorem 3.14. Let (s;)k>0 be the dynamic random walk defined by (2.4). Then
a sufficient condition for (g;) — 0 as k — oo is

= ; 1 1 _

Proof. Given the random walk (g;) as described in the hypotheses of the theo-

20



rem,

el = T3 (2= L) e

i=1j=1

<2nk/2H ‘ <2f] (T'z) — Tll>ej . (3.47)

j=1

Observe that

- (o =3) o | =[5 (o - 5) | =

Jj=1

Thus,

o) k 1 2nk/2
ol =0 (2] 5o —0<2nk/z+k
i=1

It follows that klim (sg) = 0.

3.2 Induced Additive Walks

Given multiplicative walks (¢;) and (7x), define the additive walks (Ey) and

(Tw) by

(1]

Z
Il

1= IM=

S
z
I

Tk -

>
Il
—

Moreover, define the even and odd additive walks (Ex ™) and (2

= + _
oN D =

2k

M=

1

G2k—1-

[1]
Z
|
Il
M= -

=~
Il
—

Recalling ¢ = M1 Ms -+ My, and 7, = Ly Lo - - - Ly,

(My - M) = (My - My) (M -

21

(3.50)

(3.51)

N~ ) by

(3.52)

(3.53)

(3.54)

(3.55)



Similarly,
(Ly---Lg) ={(Ly - Lg) (Lgs1 -+ Ly) . (3.56)

Note that for N > 0, values of coefficients in =5 are bounded according to
0< |<EN,e£>| < % Note also that for N > 0, values of coefficients in
Ty are bounded according to 0 < | <TN7e£-> | <N —|i| + 1.

The goal is to prove a law of large numbers and a central limit theorem for
the walks (_N)N>0 and (T n)n>o-

Let i € 2" be arbitrary. Note that for each N > 0, linearity of expectation
gives

n

N n . .
o ik gy _ @ do})
(CENEDHIEDY (s 0) - =E00)

Jk—1=0
k—1 1
X (TP ) — w((z A j ) >) . (3.57
L[[ (om0 = g (8, }) ) |- G50
Proposition 3.15. If (¢x) — 0 as k — oo, then the following limit exists:
== ngnoo (EN) - (3.58)

Similarly, if (k) — 0 as k — oo, then the following limit exists:
T= Jim (Ty). (3.59)

Proof. If (1) — 0 as k — oo, then 7y, A U({+te;}) implies that given arbitrary
€ > 0, there exists N such that for any N > N, |[[(Yny — Tn.)|| < €. Hence,

(Tn)=(Cn —Tn.) +(Tw.) (3.60)

guarantees convergence.

The proof of convergence of = is done analogously considering the subwalks
=t =T
=N and =N - ]

The next result shows that the limiting expectations T and = depend only
on the expected values of 71 and ¢y, respectively.

Theorem 3.16. If (1) — 0 as k — oo, then

4

Z Z(% (Tx) — il)ej . (3.61)

=1 \j=

Similarly, if (sx) — 0 as k — oo, then
~ o0 n 1
E= Z Z (zfj (Tz) — n) e | . (3.62)
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Proof. Given Ty = Q1 + Q1Q2 + -+ + (Q1--- Qn), write Ty = Q2 + Q2Q3 +
<+ (Qa2---Qn) so that

(Tn) = (T1) (1+(T)). (3.63)

Given that the limit T exists, passing to the limit then gives

T=(T))(1+7), (3.64)
so that 1))
T= Y 3.65
T ) (365)
Then,
) () ) ), (3.66)
(1= (1))
which implies the result. R
An analogous argument for = completes the proof. O

Remark 3.17. In the time-homogeneous case, the limiting expectations are found
to be paravector-valued.

Lemma 3.18. For fized i € 2", the variance of <TN — T,ei> s given by

ov(N,i)? = var (<TN - T,e2>)
=E <<TN,el->2) —E (<TN,eZ>) (1 +2 <T, ei>) + <T,e1>2 + <T, e£> ,
(3.67)
where

E(Tve)) =33 o % (gjo(Tkx)_zw>

k=1 jo=0 Jk—1=0

. Krz[ (=t~ 2w (1o ) a{jz}))] (369

s(e) =t X (F)

k=1 Lo+ HLn=Fk
£; odd if 1<j€i,¢; even if 1<j¢i

+2 Y E((mkei)(m5.e:) . (3.69)

1<k<j<N
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Proof. By Theorem 3.3

(o0 Z Z (su742) - L))

n—+1
k—1
X [H <gje(TkZ$) S

1w
e n —+

((i. 2, tm) m}))] . @0)
Summing over k then gives E ((Tx, e;))
On the other hand
((TN,ez ) - (Z (7 e;) )2

D

(Tk 1) (75, €1)
1<k<j<N

1 k
(n+ 1)k 20+-Z+2n:k <£0,...,€n>
£; odd if 1<j€i,0; even if 1<j¢i
+2 ), E((me)(rei)).
1<k<j<N

(3.71)

O
3.3 Central Limit Theorems

It has now been established that under appropriate conditions, such as those
indicated in Theorems 3.13 and 3.14, = exists, and for each N > 0

(2

o=(N, i) =

)
<~—4N —= e->
var

Moreover, as N — oo

(3.72)

(3.73)
Similarly, under conditions such as those in Theorems 3.10 and 3.12, T exists
and for each N > 0,

Ty —T,e;
var W =1.

(3.74)
24



As N — oo,
<1}V<—'Y,ei>

E
or (N, 1)

— 0. (3.75)

Characterizing the limiting distributions of these random variables is all that
remains.

Theorem 3.19. If (¢x) — 0 as k — oo, then

(= -2

[1]:

D
N = N(0,1). (3.76)
Similarly, if (k) — 0 as k — oo, then
<TN - T7ei> D
TN = N(0,1). (3.77)

Proof. Define i.i.d. collections of Bernoulli random variables X; and Y; such
that for each i € N, X; takes values in {0, 1} such that

2" —1
L+ /1= 5
PX;,=1)= 5 , (3.78)
2" —1
L-\1- 5
P(X; = 0) = 5 . (3.79)
For each i € N, Y; takes values in {—1,0} such that
I
L+ 1= 5
B(Y; = ~1) = : , (3.80)
2" —1
1—4/1—
on—1
P(Y; =0) = 5 . (3.81)
Note that for each positive integer i,
2" 1
L+ /1= S
var(X;) = var(Y;) = 5 . (3.82)
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Define Sy = Zszl X and Ty = Zszl T). By the central limit theorem,

25
V25 Z N(0,1), (3.83)
2" —1
M=y
2T,
V2Ty Z N(0,1). (3.84)
2" —1
For each i« = 1,2,..., Z; = X; +Y; is a random variable taking values in
{—1,0,1} such that
B 1
P(Z; = -1) o (3.85)
2n—l 1
P(Z;=0) = g1 (3.86)
1
P(Z,=1)= o (3.87)
For each positive integer i,
1
var(X; +Y;) = var(Z;) = ST (3.88)

Hence, defining Wy = Sy + T, the limiting distribution is the sum of two
Gaussian random variables and

Wy
——— S N(0,1). 3.89
The limiting distribution function is then given by
P(W <z)= lim ! /I e ( 2n1y2> d (3.90)
= X — . .
- N—oo /N2"1 J_ P 2N Y

If (¢x) — 0 as k — oo, the limiting distribution of ¢ is uniform on the
positive and negative basis multivectors of even degree in C¢,, , by Theorem 3.9.
It follows that for each i € 21", (<§2k7 e; >) . is a sequence of random variables
having values in {—1,0, 1} with limiting distribution

2% ifB=1
klinolo]P’ (<§2k,e£> = ﬂ) =<{1-— 2"%1 if3=0 (3.91)
x if 3= —1.

21’L
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In other words, for arbitrary i € 2", as k — oo

(s2x,€:) 2 7. (3.92)

It also follows that

klingo var ({cop, €;)) = ST (3.93)

Convergence in distribution of the sequence (<<2k, e£>)k>0 implies that for
any € > 0, there exists N, such that N > N, implies

N

Fnon.(z) —e<P ( Z <§2imeg> < m) < Fy_n.(2) +¢, (3.94)
k=N.

where writing M = N — N, yields

L]
Fu(z)= Y vu(x). (3.95)

r=—M
Here 95/(z) is the M*™ mass function defined by

o] 1252

wo-(3) L (EDE )

(3.96)
which has support {—M,..., M} and gives the probability that the sum of
M random variables taking values in {—1,0,1} with respective probabilities

{&, 2"2;7151, 5=} is equal to z.
Because 1/(x) is associated with a sum of independent Bernoulli random

variables each converging to a Gaussian random variable, the functions {t}

converge to the mass function of a Gaussian random variable as M — oo.

Fix x €e Rand N > 0. As N — oo, |Fy(2) — Fy_n.(z)| — 0. Observing

N
that Z <§2k,e£-> = <EN+,e1> and replacing ZEn_ by é, one finds
k=1

‘11) (<EN+ - é,e1> < z) - FN(x)’ ~0. (3.97)
Therefore,
(B2 D A(0,1) (3.98)
o=(N.) 1) '
Similarly,
<EN_ — é, e£> D
P AT (3.99)



Ty - T
The characterization of the limiting distribution of % is established
ox(4V,2

in an analogous manner. Define i.i.d. collections of Bernoulli random variables
X;" and Y;" such that for each i € N, X;’ takes values in {0,1}, and Y;’ takes
values in {0, —1} with

ntl
L+4/1— ——
P(X,) =1)=P(Y; = —1) = 5 24— (3.100)
2n+1 -1
Loyl
P(X;=0)=PY,’=0) = 5 . (3.101)
Then, for eachi=1,2,..., Z;/ = X, +Y;’ is a random variable taking values
in {—1,0,1} such that
1
on — 1
P(Z'=0)= T (3.103)
1
/ p— p—
Pz =1)= TESE (3.104)
For each positive integer i,
1
var(X,' +Y;) =var(Z,) = on (3.105)

Define Sy’ = Zgzl X, and Ty' = Zé\;l T;.'. By the central limit theorem,

V2SN

: Z N(0,1), (3.106)
n+1l _
V2T : Z N(0,1). (3.107)
n+1 _
& (1 . 221)

Hence, defining Wy’ = Sy’ + Ty, the limiting distribution is the sum of
two Gaussian random variables and

Wy'
VvV IN2»
The limiting distribution function is then given by

1 T 2ny2
P(W <z)= lim ——— — . 1
(W' <x) i \/W‘Hw/_oo eXp( SN > dy (3.109)

B N(0,1). (3.108)
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If (r;) — 0 as k — oo, the limiting distribution of 75 is uniform on the
positive and negative basis multivectors of C¢, ; by Theorem 3.4. It follows that
for each i € 21", (<Tk, ei>) k>0 is a sequence of random variables having values
in {—1,0,1} with limiting distribution

2-(ntl) if g =1
Jim P ((th,ei) =B)=¢1-2"" if3=0 (3.110)
2=+ if g = 1.

It also follows that 1

klingovar ((Tk,€:)) = on- (3.111)
For arbitrary i € 2[", as k — oo
(i) 2 Z,. (3.112)

Convergence in distribution of the sequence (<Tk,ei>) k>0 implies that for
any € > 0, there exists N, such that N > N, implies

N

Gn-n.(7) —e <P < Z (Th,€) < 33) <Gn-n.(z)+e, (3.113)
k=N.

where writing M = N — N, yields

L)
Gu)= > ou(k). (3.114)
K=—M

Here ¢(x) is the M mass function defined by

M—\iﬂ\J

R U= VAN Y S A gn _ 1\ M—(lzl+28)
o =(zm) L (0)(ian)ee= ()

(3.115)
which has support {—M,..., M} and gives the probability that the sum of
M random variables taking values in {—1,0,1} with respective probabilities
{54, 2;:1,2"%} is equal to z.
Because ¢y (x) is associated with a sum of independent Bernoulli random
variables each converging to a Gaussian random variable, the functions {¢}
converge to the mass function of a Gaussian random variable as M — oo.

Fix x € Rand N > 0. As N — o0, |Gn(z) — Gy_n.(x)] — 0. Observing

N
that Z <Tk, e£»> = <TN,el~> and replacing Y n. by Y, one finds
k=1

‘IP’ (<TN - T,ei> < ;E) - GN(x)’ 0. (3.116)
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Hence,

<TN -7, ei> P
-~ S N(0,1). 3.117
N (0,1) (3.117)
O
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