Cumulative distribution function estimation under interval censoring case 1.

Abstract : We consider projection methods for the estimation of cumulative distribution function under interval censoring, case 1. Such censored data also known as current status data, arise when the only information available on the variable of interest is whether it is greater or less than an observed random time. Two types of adaptive estimators are investigated. The first one is a two-step estimator built as a quotient estimator. The second estimator results from a mean square regression contrast. Both estimators are proved to achieve automatically the standard optimal rate associated with the unknown regularity of the function, but with some restriction for the quotient estimator. Simulation experiments are presented to illustrate and compare the methods.
Type de document :
Article dans une revue
Electronic journal of statistics , Shaker Heights, OH : Institute of Mathematical Statistics, 2009, 3, pp.1-24. <10.1214/08-EJS209>
Liste complète des métadonnées


https://hal.archives-ouvertes.fr/hal-00264889
Contributeur : Fabienne Comte <>
Soumis le : mardi 18 mars 2008 - 11:28:08
Dernière modification le : mardi 11 octobre 2016 - 13:28:29
Document(s) archivé(s) le : vendredi 21 mai 2010 - 00:36:28

Fichier

censcase1.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

Elodie Brunel, Fabienne Comte. Cumulative distribution function estimation under interval censoring case 1.. Electronic journal of statistics , Shaker Heights, OH : Institute of Mathematical Statistics, 2009, 3, pp.1-24. <10.1214/08-EJS209>. <hal-00264889>

Partager

Métriques

Consultations de
la notice

153

Téléchargements du document

64