Uniqueness Results for Nonlocal Hamilton-Jacobi Equations

Abstract : We are interested in nonlocal Eikonal Equations describing the evolution of interfaces moving with a nonlocal, non monotone velocity. For these equations, only the existence of global-in-time weak solutions is available in some particular cases. In this paper, we propose a new approach for proving uniqueness of the solution when the front is expanding. This approach simplifies and extends existing results for dislocation dynamics. It also provides the first uniqueness result for a Fitzhugh-Nagumo system. The key ingredients are some new perimeter estimates for the evolving fronts as well as some uniform interior cone property for these fronts.
Type de document :
Article dans une revue
Journal of Functional Analysis, Elsevier, 2009, 257 (5), pp.1261-1287. <10.1016/j.jfa.2009.04.014>
Liste complète des métadonnées


https://hal.archives-ouvertes.fr/hal-00264757
Contributeur : Guy Barles <>
Soumis le : lundi 17 mars 2008 - 17:26:58
Dernière modification le : mercredi 12 juillet 2017 - 01:15:11
Document(s) archivé(s) le : vendredi 21 mai 2010 - 00:34:00

Fichiers

fitzhugh-nagumo.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

Guy Barles, Pierre Cardaliaguet, Olivier Ley, Aurélien Monteillet. Uniqueness Results for Nonlocal Hamilton-Jacobi Equations. Journal of Functional Analysis, Elsevier, 2009, 257 (5), pp.1261-1287. <10.1016/j.jfa.2009.04.014>. <hal-00264757>

Partager

Métriques

Consultations de
la notice

424

Téléchargements du document

137